三峡大学数学建模第一题电力生产问题

三峡大学数学建模第一题电力生产问题
三峡大学数学建模第一题电力生产问题

电力生产问题

为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。

所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。

任何代价。

问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?

问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?

电力生产问题的数学模型

摘要

本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。

对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。

对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,

并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。

关键词:线性规划、总功率、使用数量、总成本

1.问题重述

1.1问题背景

为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。

所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。

任何代价。

1.2需要解决的问题

问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?

问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?

2.模型假设

假设1:调整发电机功率没有成本

假设2:发电机生产的电量在传输过程中没有损耗

假设3:忽略发电机启动的时间

假设4:发电机的功率在时段初调整好后在那个时段内保持不变

3.符号说明

4.问题分析

此题研究的是电力生产中在满足每日电力需求的条件下,使每日的总成本达到最小的数学建模问题。

针对问题一:从以下三方面来分析

(1)对已知条件的分析:从已知的条件来看,本题将一天分为了七个时间段,在每一个时间段都有对应的电力需求量。为了满足每日的电力需求,有四种型号的发电机可供使用,每种型号的发电机都已知其可用数量、最小输出功率、最大输出功率、固定成本、每兆瓦边际成本、启用成本。要使总成本达到最小,则问题的目标函数就是总成本函数。

(2)对目标函数的分析:总成本由三个指标组成,即固定总成本、边际总成本、启动总成本。分别对每个指标进行分析。固定总成本为第i个时间段的时间、型号j发电机在第i个时间段的数量、型号j发电机每小时的固定成本这三者之积的累积和。边际总成本为第i个时间段的时间、型号j发电机在第i个时间段超出此时间段最小总功率的功率、型号j发电机每兆瓦边际成本这三者之积的累积和。启动总成本为型号j发电机启动数量和型号j发电机的启动成本之积的累积和。

(3)对约束条件的分析:对机型j发电机在第i个时间段总功率的约束有两个。一是若机型j 发电机在第i个时间段不使用,则机型j发电机在第i个时间段的总功率为零;若机型

j发电机在第i个时间段使用,则机型j发电机在第i个时间段的总功率要满足大于等于单个机型j发电机的最小输出功率且小于等于全部机型j发电机最大输出功率之和;二是四种机型的发电机在第i个时间段生产的总功率要满足大于等于第i个时间段的用电量需求。

针对问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,即发电机组在第i 个时间段所能发出的最大总功率的80%要大于等于该时段的用电需求。

5.问题一的解答

针对问题一我们建立了模型一 6.1模型一的建立

该模型是为了解决电力生产中,在满足每日电力需求的条件下,用四类不同型号的发电机在一天的七个时段进行电力生产,使总成本达到最小的问题。总成本由以下三项指标组成:

指标一:固定总成本

j j

ij

i j i

G Q

C S ][714

1

?∑∑==

指标二:边际总成本

j j j

ij ij

i j i

B P Q

C C

S ?-?∑∑==)][

(714

1

指标三:启用总成本j j

j i j

ij i j j

j

i j

ij V Q C Q C Q C Q C sign ?-?+--==-∑∑

])[

]([2

1

])[]([

@)1(7

14

1

)1(

为了使总成本达到最小,我们建立了如下的目标函数:

(1)若机型j 发电机在第i 个时间段不使用,则机型j 发电机在第i 个时间 段的总功率为零;若机型j 发电机在第i 个时间段使用,则机型j 发电 机在第i 个时间段的总功率要满足大于等于单个机型j 发电机的最小输 出功率且小于等于全部机型j 发电机最大输出功率之和。据此,我们建 立了如下约束条件:

其中i =1,2,···,7j =1,2,3,4

(2)四种机型的发电机在第i 个时间段生产的总功率要满足大于等于第i 个时间段的用电量需求。据此,我们建立如下约束条件: 其中i =1,2,···,7j =1,2,3,4 6.2模型一的求解

我们用Lingo 软件求解这个模型,对于 0 =≤≤ij j j ij j C Q N C P 或这个约束条件,Lingo 软件不能直接处理,因此,我们先用分支定界法将此条件改为j j ij

Q N ≤≤C 0,然后用Lingo 软件求

解,分析计算结果发现有的时段的某型号发电机输出功率小于该型号发电机的最小功率,故对ij

C 进行调整,调整后得到满足约束条件的最低总成本为146.9210万元。根据Lingo 软件计算得到的第i 时段型号为j 的几个发电机发出的总功率,然后用Matlab 软件以总功率除以该型号单个发电机的最大输出功率,然后向正无穷方向取整,得到第i 时段型号为j 的发电机的数量。各个时段各种型号几个发电机发出的总功率及对应的发电机数量如下表一所示:

6.问题二的解答

根据问题一的模型,我们已经求出了在满足每日电力需求的条件下,用四类不同型号的发电机在一天的七个时段进行电力生产,使总成本达到最小,而问题二要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。故在第一问的目标函数和约束条件保持不变的情况下,应再增加一个约束条件,即第i个时段发电机组所能输出地最大功率的80%应大于第i个时段的用电需求。列出目标函数和约束条件如下:

N 将目标函数和约束条件用矩阵的形式表示出来,然后用Matlab软件求解,求解结果中有的j

不为整数,故用分支定界法进行调整,调整后得到满足约束条件的最小总成本为每天157.5426万元。

各个时段各种型号的发电机发出的平均功率和对应的数量见下表:

7.模型的评价、改进及推广

8.1模型评价

优点:(1)根据题目的要求我们确立了三个指标,即固定总成本、边际总

成本、启用总成本,以上三项总成本之和即为总成本,通过对

三项总成本的逐项分析,建立了最优的目标函数。

(2)对于约束条件的建立,我们综合考虑了各种情况,使约束条件

达到了具体化全面化。

(3)以每个时段每种型号的几个发电机发出的总功率为变量,将56

个未知数缩减为28个,将约束条件中的非线性约束转化为线性

约束,将整数规划转化为非整数规划,并提高了运行速度,

缺点:我们用总功率来表示数量,通过总功率来求数量,而此数量的结果不能在LINGO中直接表示出来,需要另外通过其他软件来得出结果,使建模工作复杂化

8.2模型改进

(1)所建模型是在发电机无故障的条件下建立的,如果考虑发电机随使用

时间的增加,在不同的时间段(譬如以月为时间段单位)需要不同的

检修费用,再把检修费用平分到每一天,将此检修费用也算作总成本

的一部分。增加约束条件,使模型更精准优化。

(3)所建模型假设了发电机的功率在时段初调整好后在那个时段内保持不

变,如果在每个时段,发电机的功率在满足约束条的情况下为可变的,

则可以根据实际情况做不同调整,使模型更实际化。

8.3模型推广

我们建的模型不仅适用于电力生产,也适用于其它方面的生产,也可用于产销平衡问题,选址问题,值班问题等等。

8.参考文献

[1]赵静,但琦,数学建模与数学实验,高等教育出版社,2008.

[2]楼顺天,姚若玉,沈俊霞,MATLAB7.x程序设计语言,西安电子科技大学出

版社,2008.

sets:

!电力生产问题;

shiduan/1..7/:s,x;

xinghao/1..4/:n,p,q,g,b,v;

link(shiduan,xinghao):c;

endsets

data:

!各个时段的小时数;

s=6,3,3,2,4,4,2;

!各个时段的用电需求;

x=12000,32000,25000,36000,25000,30000,18000;

!可用数量;

n=10,4,8,3;

!最小输出功率;

p=750,1000,1200,1800;

!最大输出功率;

q=1750,1500,2000,3500;

!固定成本;

g=2500,1800,3750,4800;

!边际成本;

b=2.7,2.2,1.8,3.8;

!启动成本;

v=5000,1600,2400,1200;

enddata

!目标函数

@floor(c(i,j)/q(j)+0.999999)为第i时段型号为j的发电机的数量

@if函数用来判断:当i=1时,i-1=7;

min=@sum(link(i,j):s(i)*(@floor(c(i,j)/q(j)+0.999999)*g(j)+(c(i,j)-(@floor(c(i,j)/q(j)+0.999999))* p(j))*b(j))

+(@sign((@floor(c(i,j)/q(j)+0.999999))-(@floor((@if(i#ge#2,c(i-1,j),0))/q(j)+0.999999))+1))/2* (@if(i#ge#2,@floor(c(i,j)/q(j)+0.999999)-(@floor(c(i-1,j)/q(j)+0.999999)),@floor(c(1,j)/q(j)+0.9999

!第i时段的总发电量大于该时段的用电需求;

@for(shiduan(i):@sum(xinghao(j):c(i,j))>=x(i));

!型号为j的发电机发出的总功率小于或等于该型号几个发电机所能发出的最大功率; @for(link(i,j):c(i,j)<=n(j)*q(j));

!型号为j的发电机发出的总功率大于或等于0;

@for(link(i,j):c(i,j)>=0);

End

程序运行结果

Feasiblesolutionfound.

Objectivevalue:1463554.

Infeasibilities:0.2394529E-11

Totalsolveriterations:377

VariableValueReducedCost

S(1)6.0000000.000000

S(2)3.0000000.000000

S(3)3.0000000.000000

S(4)2.0000000.000000

S(5)4.0000000.000000

S(6)4.0000000.000000

S(7)2.0000000.000000

X(1)12000.000.000000

X(2)32000.000.000000

X(3)25000.000.000000

X(4)36000.000.000000

X(5)25000.000.000000

X(6)30000.000.000000

X(7)18000.000.000000

N(1)10.000000.000000

N(2)4.0000000.000000

N(3)8.0000000.000000

N(4)3.0000000.000000

P(1)750.00000.000000

P(2)1000.0000.000000

P(3)1200.0000.000000

P(4)1800.0000.000000

Q(1)1750.0000.000000

Q(2)1500.0000.000000

Q(3)2000.0000.000000

Q(4)3500.0000.000000

G(1)2500.0000.000000

G(2)1800.0000.000000

G(3)3750.0000.000000

G(4)4800.0000.000000

B(4)3.8000000.000000

V(1)5000.0000.000000

V(2)1600.0000.000000

V(3)2400.0000.000000

V(4)1200.0000.000000

C(1,1)0.0000000.000000

C(1,2)6000.0000.000000

C(1,3)6000.0000.000000

C(1,4)0.0000000.000000

C(2,1)1743.539-1.937143

C(2,2)6000.0000.000000

C(2,3)14769.190.000000

C(2,4)9487.2720.000000

C(3,1)2957.0260.000000

C(3,2)6000.0000.000000

C(3,3)16000.000.000000

C(3,4)42.97358-0.2914286

C(4,1)4645.5110.000000

C(4,2)6000.0000.000000

C(4,3)16000.000.000000

C(4,4)9354.4890.000000

C(5,1)2892.3220.000000

C(5,2)6000.0000.000000

C(5,3)15986.150.000000

C(5,4)121.52832.982857

C(6,1)2294.0311.017143

C(6,2)6000.0000.000000

C(6,3)16000.000.000000

C(6,4)5705.9690.000000

C(7,1)9.4007851.124286

C(7,2)5997.4050.000000

C(7,3)11993.190.000000

C(7,4)0.0000000.000000 RowSlackorSurplusDualPrice 11463554.-1.000000

20.000000-14.37000

30.000000-10.85143

40.000000-8.914286

50.000000-10.22857

60.000000-9.028571

70.000000-13.72571

80.000000-3.390000 917500.000.000000

100.0000000.6366667 1110000.000.000000 1210500.000.000000

161012.7280.000000 1714542.970.000000 180.0000003.114286 190.0000001.129286 2010457.030.000000 2112854.490.000000 220.0000006.361905 230.0000005.038571 241145.5112.765714 2514607.680.000000 260.0000001.295238 2713.84997-1.351429 2810378.470.000000 2915205.970.000000 300.0000005.992381 310.0000000.9457143 324794.0310.000000 3317490.600.000000 342.594708-1.010000 354006.8060.000000 3610500.000.000000 370.000000-2.030000 386000.0000.000000 396000.0000.000000 400.000000-4.418571 411743.5390.000000 426000.0000.000000 4314769.190.000000 449487.2720.000000 452957.0260.000000 466000.0000.000000 4716000.000.000000 4842.973580.000000 494645.5110.000000 506000.0000.000000 5116000.000.000000 529354.4890.000000 532892.3220.000000 546000.0000.000000 5515986.150.000000 56121.52830.000000 572294.0310.000000 586000.0000.000000 5916000.000.000000 605705.9690.000000 619.4007850.000000

附录四:模型一调整后所用程序

sets:

!电力生产问题;

shiduan/1..7/:s,x;

xinghao/1..4/:n,p,q,g,b,v;

link(shiduan,xinghao):c;

endsets

data:

!各个时段的小时数;

s=6,3,3,2,4,4,2;

!各个时段的用电需求;

x=12000,32000,25000,36000,25000,30000,18000;

!可用数量;

n=10,4,8,3;

!最小输出功率;

p=750,1000,1200,1800;

!最大输出功率(留有20%余量);

q=1400,1200,1600,2800;

!固定成本;

g=2500,1800,3750,4800;

!边际成本;

b=2.7,2.2,1.8,3.8;

!启动成本;

v=5000,1600,2400,1200;

enddata

!目标函数

@floor(c(i,j)/q(j)+0.999999)为第i时段型号为j的发电机的数量

@if函数用来判断:当i=1时,i-1=7;

min=@sum(link(i,j):s(i)*(@floor(c(i,j)/q(j)+0.999999)*g(j)+(c(i,j)-(@floor(c(i,j)/q(j)+0.999999))* p(j))*b(j))

+(@sign((@floor(c(i,j)/q(j)+0.999999))-(@floor((@if(i#ge#2,c(i-1,j),0))/q(j)+0.999999))+1))/2* (@if(i#ge#2,@floor(c(i,j)/q(j)+0.999999)-(@floor(c(i-1,j)/q(j)+0.999999)),@floor(c(1,j)/q(j)+0.9999 99)))*v(j));

!第i时段的总发电量大于该时段的用电需求;

@for(shiduan(i):@sum(xinghao(j):c(i,j))>=x(i));

!型号为j的发电机发出的总功率小于或等于该型号几个发电机所能发出的最大功率;

@for(link(i,j):c(i,j)<=n(j)*q(j));

!型号为j的发电机发出的总功率大于或等于0;

@for(link(i,j):c(i,j)>=0);

c(3,4)=0;

c(5,4)=0;

End

Localoptimalsolutionfound. Objectivevalue:1575426. Objectivebound:1541773. Infeasibilities:0.1818989E-11 Extendedsolversteps:4 Totalsolveriterations:685024 VariableValueReducedCost

S(1)6.0000000.000000

S(2)3.0000000.000000

S(3)3.0000000.000000

S(4)2.0000000.000000

S(5)4.0000000.000000

S(6)4.0000000.000000

S(7)2.0000000.000000

X(1)12000.000.000000

X(2)32000.000.000000

X(3)25000.000.000000

X(4)36000.000.000000

X(5)25000.000.000000

X(6)30000.000.000000

X(7)18000.000.000000

N(1)10.000000.000000

N(2)4.0000000.000000

N(4)3.0000000.000000

P(1)750.00000.000000

P(2)1000.0000.000000

P(3)1200.0000.000000

P(4)1800.0000.000000

Q(1)1400.0000.000000

Q(2)1200.0000.000000

Q(3)1600.0000.000000

Q(4)2800.0000.000000

G(1)2500.0000.000000

G(2)1800.0000.000000

G(3)3750.0000.000000

G(4)4800.0000.000000

B(1)2.7000000.000000

B(2)2.2000000.000000

B(3)1.8000000.000000

B(4)3.8000000.000000

V(1)5000.0000.000000

V(2)1600.0000.000000

V(3)2400.0000.000000

V(4)1200.0000.000000

C(1,1)800.0224-9.991071 C(1,2)4799.989-3.645833

C(1,4)0.2800000E-020.7017857 C(2,1)10400.020.000000

C(2,2)4799.989-19.58929

C(2,3)11199.99-14.55804

C(2,4)5600.003-14.47500

C(3,1)9000.025-3.870536

C(3,2)4799.989-2.031250

C(3,3)11199.990.000000

C(3,4)0.0000000.000000

C(4,1)11199.990.000000

C(4,2)4799.989-7.702381

C(4,3)12799.99-3.598214

C(4,4)7200.038-3.578571

C(5,1)9000.0250.000000

C(5,2)4799.989-4.690476

C(5,3)11199.99-2.482143

C(5,4)0.0000000.000000

C(6,1)8399.98710.19643

C(6,2)4799.989-5.208333

C(6,3)11199.990.000000

C(6,4)5600.0380.6821429

C(7,1)0.0000000.000000

C(7,2)4799.989-0.4375000

C(7,4)3600.0251.091071 RowSlackorSurplusDualPrice 11575426.-1.000000

20.000000-17.51250

30.000000-25.18929

40.000000-7.631250

50.000000-11.43571

60.000000-12.15714

70.000000-12.67500

80.000000-4.837500 913199.980.000000

100.1080000E-010.000000 116400.0140.000000 128399.9970.000000 133599.9780.000000

140.1080000E-010.000000 151600.0140.000000 162799.9970.000000 174999.9750.000000

180.1080000E-010.000000 191600.0140.000000 208400.0000.000000 212800.0130.000000

230.1440000E-010.000000 241199.9620.000000 254999.9750.000000 260.1080000E-010.000000 271600.0140.000000 288400.0000.000000 295600.0130.000000 300.1080000E-010.000000 311600.0140.000000 322799.9620.000000 3314000.000.000000 340.1080000E-010.000000 353200.0140.000000 364799.9750.000000 37800.02240.000000 384799.9890.000000 396399.9860.000000 400.2800000E-020.000000 4110400.020.000000 424799.9890.000000 4311199.990.000000 445600.0030.000000 459000.0250.000000

4711199.990.000000

480.0000000.000000

4911199.990.000000

504799.9890.000000

5112799.990.000000

527200.0380.000000

539000.0250.000000

544799.9890.000000

5511199.990.000000

560.0000000.000000

578399.9870.000000

584799.9890.000000

5911199.990.000000

605600.0380.000000

610.0000000.000000

624799.9890.000000

639599.9860.000000

643600.0250.000000

650.000000-3.768750

660.000000-3.042858

670.000000-0.5624996

687649.9870.000000

附录五:问题一中用Matlab软件求第i个时间段型号j发电机的数量的程序c=[0600060000

3047.908600015952.090

3500.00260001600010500

30006000160000

857.16876000160007142.831

05285.47012714.830];%c(i,j)为第i时段型号为j的几个发电机发出的总功率

q=[1750150020003500];

qq=repmat(q,7,1);%qq(i,j)为型号为j的单个发电机所能发出的最大功率

n=[10483];

nn=repmat(n,7,1);%nn(i,j)为型号为j的发电机的可用数量

N=ceil(c./qq)%N(i,j)为第i时段型号为j的发电机的数量

N<=nn%N(i,j)应小于nn(i,j),故运算结果应该为所有元素均为1的7行4列的矩阵,此运算用于检验

程序运行结果

N=

0430

2483

2480

3483

2480

1483

0470

ans=

1111

1111

1111

1111

附录六:问题二中用Matlab软件求第i个时间段型号j发电机的数量的程序

c=[800480064000

104004800112005600

90004800112000

112004800128007200

90004800112000

84004800112005600

0480096003600];%c(i,j)为第i时段型号为j的几个发电机发出的总功率

q=[1400120016002800];

qq=repmat(q,7,1);%qq(i,j)为型号为j的单个发电机所能发出的最大功率

n=[10483];

nn=repmat(n,7,1);%nn(i,j)为型号为j的发电机的可用数量

N=ceil(c./qq)%N(i,j)为第i时段型号为j的发电机的数量

N<=nn%N(i,j)应小于nn(i,j),故运算结果应该为所有元素均为1的7行4列的矩阵,此运算用于检验

N=

1440

8472

7470

8483

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1.一个连通图能够一笔画出的充分必要条件是 . 2. 设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元. 3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1) 参加展览会的人数n ;(2)气温T 超过C 10; (3)冰淇淋的售价p . 由此建立的冰淇淋销量的比例模型应为 . 4. 如图一是一个邮路,邮递员从邮局A 出发走遍所有 长方形街路后再返回邮局.若每个小长方形街路的边长横向 均为1km ,纵向均为2km ,则他至少要走km . 二、分析判断题(每题10分,共20分) 1. 有一大堆油腻的盘子和一盆热的洗涤剂水。为尽量图一 多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。 2. 某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性. 三、计算题(每题20分,共40分) 1. 某工厂计划用两种原材料B A ,生产甲、乙两种产品,两种原材料的最高供应量依次为22和20个单位;每单位产品甲需用两种原材料依次为1、1个单位,产值为3(百元);乙的需要量依次为3、1个单位,产值为9(百元);又根据市场预测,产品乙的市场需求量最多为6个单位,而甲、乙两种产品的需求比不超过5:2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况. 2. 两个水厂21,A A 将自来水供应三个小区,,,321B B B 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表.试安排供水方案,使总供水费最小?

数学建模野兔生长问题

野兔生长问题 摘要 根据题目,野兔生长属自然范畴,若在生存条件良好,且无外力干扰的情况下,其种群数量是呈对数型增长的,从著名的斐波纳契数列解决兔子生长问题也可以看出,兔子的生长,呈递增的状态。可由题目条件可知,野兔生长并不是处于理想的情况下的,中间有递减的情况,考虑到自然的各种原因,诸如,天敌的捕杀,自然灾害,疾病,生存地的减少等。 对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型拟和多项式拟合来模。Logistic模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。用多项式拟合可以大致模拟预测未来的兔子数量。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。描述某一研究对象的增长过程如生态旅游区环境容量的确定,森林资源的管理以及耐用消费品社会拥有量的预测、国民生产总值的预测等;也可作为其它复杂模型的理论基础如Lotka-Volterra两种群竞争模型;以上的大多数的工作都是拿逻辑斯蒂模型来用,但也由此可看出逻辑斯蒂方程不管在自然科学领域还是在社会科学中都具有非常广泛的用途。 关键字:Logistic模型生态学 MATLAB程序 问题重述 野兔生长问题。首先,野兔是生长在自然环境中的。自然很复杂,存在着许多影响种群发展的因素。我们知道,假如给野兔一个理想的环境,野兔数量是呈J型增长的。现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。我们探讨了其中的因素: (1),兔子内部因素,竞争,雄雌比利失去平衡,老化严重等。 (1),自然灾害,比如说草原火灾,使野兔生长环境遭到破坏;再如气候反常,使野兔的产卵,交配受影响。 (2),天敌的捕食,狼,狐狸等天敌大量地捕食使野兔生存受到威胁。 (3),疾病的侵扰,野兔种群中,蔓延并流行疾病,必然使野兔存活率下降。。(4),人类的影响,城市扩建,使其栖息地面积减少;捕杀。

数学建模--杨桂元--第一章习题答案

第一章 1-1习题 1.设用原料A 生产甲、乙、丙的数量分别为131211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为333231,,x x x ,则可以建立线性规划问题的数学模型: ?? ??? ??? ?? ?????=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=) 3,2,1,(,00 5.05.05.004.0 6.06.00 15.015.085.008.02.02.006.06.04.012002500 2000..8.38.56.78.18.36.52.08.16.3max 33231332221232 22123121113121113332312322 21131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ij LINDO 求解程序见程序XT1-1-1。 求解结果: 1200 ,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0,0,0332313===x x x ,24640max =S (元) 。 2.设用设备,,,,,32121B B B A A 加工产品Ⅰ的数量分别为54321,,,,x x x x x ,设备121,,B A A 加工产品Ⅱ的数量分别为876,,x x x ,设备22,B A 加工产品Ⅲ的数量分别为109,x x ,则目标函数为: 976321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-= 4000 7200700011478340008625010000129731260001053005 1048397261x x x x x x x x x x ?-+?-+?-++?-+? -整理后得到: ??? ??? ?=≥=-=-+=--++≤≤+≤+≤++≤+-+-++---+=)10,9,8,7,6,5,4,3,2,1(,00;0;0;40007;7000114;400086; 100001297;6000105..2304.19256.15.03692.115.135.04474.0375.07816.075.0max 10987654321510483972611098765 4321j x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x S j 整数 LINDO 求解的程序见程序XT1-1-2。 求解结果: 324,500,0,571,859,0,230,120010987654321==========x x x x x x x x x x 446.1155max =S 3.设自己生产甲、乙、丙的数量分别为312111,,x x x ,外协加工甲、乙、丙第数量分别为322212,,x x x (外协加工的铸造、机加工和装配的工时均不超过5000小时),则

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

数学建模期末试卷A及答案

2009《数学建模》期末试卷A 考试形式:开卷 考试时间:120分钟 姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。 2.(10分)试建立不允许缺货的生产销售存贮模型。 设生产速率为常数k ,销售速率为常数r ,k r <。 在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。设每次生产开工 费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。 3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型 ?????=-=0)0()1(x x x x x r dt dx m 中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。 4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间. (1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短? (2)求出该图的一棵最小生成树。 5.(15分)求解如下非线性规划: 20 s.t.2 122 2 121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:

的模型。 7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。 《数学建模》模拟试卷(三)参考解答 1. 数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 2. 单位时间总费用 k T r k r c T c T c 2)()(21-+= ,使)(T c 达到最小的最优周期 )(2T 21*r k r c k c -= 。当k r <<时,r c c 21*2T = ,相当于不考虑生产的情况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。 3. t ——时刻; )(t x ——t 时刻的人口数量; r ——人口的固有增长率; m x ——自然资源和环境条件所能容纳的最大人口数量;

数学建模一周试题。

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 试 题 说 明 1.本次数学建模周共有如下十五道题。每支队伍(2-3人/队)必须从以下题中任意选取一题,并完成一篇论文,具体要求参阅《论文格式规范》。 2.指导老师会根据题目的难度对论文最后的评分进行调整。 3.题目标注为“A ”的为有一定难度的题目,选择此题你们将更有可能得到高分。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次 序出场而B 队以 j β次序出场,则打满5局A 队可胜ij a 局。由此得矩阵 () ij R a =如下: (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到的,这样的数据处理和预测方式 有何优缺点? (二)野兔生长问题 时野兔的数量。 (三)停车场的设计问题 在New England 的一个镇上,有一位于街角处面积100?200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 (四)奖学金的评定 (A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困扰。平均来说,ABC 的教员们一向打分较松(现在所给的平均分是A —),这使得无法对好的和中等的学生加以区分.然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次. 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序.例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A ,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 (1)假设学生成绩是按照(A+,A, A —, B+ ,…)这样的方式给出的,教务长的想法能否实现?

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

数学建模模拟试题(一)

数学建模模拟试题(一) 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是 . 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 . 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)ml /mg (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ?-=-?+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况. 2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模36套试题

第1题企业评价 选定20个评价者对某一企业的市场营销效果进行评价,将评价等级分为五等,如表一所示,评价等级的数字表示人数,如“资产负债率”一栏表示有6个人认为很好,9个人认为较好等等,采用适当的方法对该企业属于哪一等级作出评价。 表一企业市场营销效果评价情况 第2题强烈的碰撞 美国国家航空和航天局(NASA)从过去某个时间以来一直在考虑一颗大的小行星撞击地球会产生的后果。 作为这种努力的组成部分,要求你们队来考虑这种撞击的后果,加入小行星撞击到了南极洲的话。人们关心的是撞到南极洲比撞到地球的其它地方可能会有很不同的后果。 假设小行星的直径大约为1000米,还假设它正好在南极与南极洲大陆相撞。 要求你们对这样一颗小行星的撞击提供评估。特别是,NASA希望有一个关于这种撞击下可能的人类人员伤亡的数量和所在地区的估计,对南半球海洋的食物生产的破坏的估计,以及由于南极洲极地冰岩的大量融化造成的可能的沿海岸地区的洪水的估计。

第3题灌溉问题 下图是一个农田图,边表示田埂,周围是灌溉渠,问至少要挖开多少个田埂才能使每一块地都能灌上水?给出挖开田埂的一个方案。 第4题路线设计 现在有8个城市,已知两个城市之间的路费如下表,现在有一个人从A城市出发旅行,应该选择怎样的路线才能刚好每个城市都到达一次又回到A城市,其总路费最少? A B C D E F G H A B C D E F G 56 35 21 51 60 43 39 21 57 78 70 64 49 36 68 --- 70 60 51 61 65 26 13 45 62 53 26 50 第5题水质评价 按照《中华人民共和国地下水质量标准》,地下水水质共分六个等级(如表一)。现经过抽样得到三个地区的水质状况(如表二),对照标准,试评价他们各属哪一级。 Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模模拟试题

2012年数学建模竞赛试题 注意事项(请参赛队员详细阅读!) 1. 凯里学院校内数学建模竞赛丁2012年6月29日8: 00至7月 1日20 : 00举行。 2. 参赛队可在A、B两题中任选其中一题,可以使用各种图书资料、网络信息、计算机和软件以及各种实验手段。 3. 答卷论文请提交WORD文档方式的A4纸电子稿。并按下列要求制作。 论文用白色A4纸单面打印;上下左右各留出至少 2.5厘米的贞边距; 从左侧装订。 封面:只需填上所选论文题目(注明A或B)及参赛队序号,其他一律不要。 首页:论文题目、摘要(含模型的主要特点、建模方法和主要结果)。 正文:问题提出、问题分析、模型假设、符号说明、模型建立、模型求 解、计算方法设计和软件实现、模型结果分析和检验、模型优缺点分析等。 4. 论文从第三页开始编写贞码,贞码必须位丁每贞贞脚中部,用阿拉伯数字从“ 1”开始连续编号。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三 级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用 小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词), 在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出贞码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号]作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号]作者,论文名,杂志名,卷期号:起止贞码,出版年。 参考文献中网上资源的表述方式为: [编号]作者,资源标题,网址,访问时间(年月日)。 5. 竞赛评奖以模型假设的合理性、建模的创造性、结果的正确性、文字表述的活晰程度为主要标准。 6. 答卷(电子稿)务必丁2012年7月1日20:00 —22:00交到凯里学院数学实验室潘东云或雷学红老师处。 凯里学院数学建模领导小组 2012年06月28日

数学建模-草原鼠患问题(1)

摘要: 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。由生物知识知道,鼠患的主要原因是由于人为对自然环境的损坏使得生态失去了平衡,至使老鼠的视线得到了很好的扩充,在加上天敌数量的减少,使得老鼠数目得不到有效控制。为了更好的对其进行有效、合理的控制,并对其各种方案进行有效性分析,本文主要通过对老鼠和天敌数目之间的关系利用微分等数学方法对模型进行了建立,并在最后给出了自己的最好的方案,但本文存在一定的缺点,对数据的要求较高,需要对大量数据进行统计,使得模型过于复杂。 关键字:微分方程、几何型曲线、生态平衡、鼠患 一、问题重述 在我国的内蒙古大草原,由于各种人为因素对自然生态系统的破坏(如过度放牧、大量消灭草原上的狼群等),造成草原鼠患问题严重,并由此引发了严重的生态问题。 老鼠在草原上是家族式掘洞群居。它们食量巨大,繁殖力强。由于挖掘造成的环境损失远远大于单纯的食草所造成的危害。所有鼠害发生的地方水土流失严重。有的甚至形成了大面积寸草不生的“鼠荒地”。 更糟糕的是至今我们尚未找到能有效控制进而消灭草原老鼠的办法。也就是说,至少以目前的技术力量,我们还不能用人工种草的办法永久地恢复自然植被。因为不当的灭治方法,鼠害日益泛滥,而且越灭越多,因而也就不得不继续灭下去了。但是,能否最终将老鼠赶出草原,目前尚难以作出定论。 控制草原鼠患,现在人们通常采用的有下面几种方法: (1) 灭鼠药现在所用的灭鼠药在杀死老鼠的同时,也杀死了老鼠的天敌。因此,实际的情况是,撒灭鼠药后老鼠的数量反而以几何级数增长。改进的方法是,可以研制无公害的灭鼠药,但这需要一定的时间和大量资金的投入。 (2) 引入老鼠的天敌通过人工喂养和驯化老鼠的天敌,如鹰、狐狸、狼等,将一定数量的老鼠的天敌引入鼠患严重的草原,利用它们控制老鼠的数量。这种方法在短期内有效,但也有一定的问题:一是费用比较高,例如,喂养和驯化一只银狐的费用要上千元;二是引入的数量难以确定,数量太小,难以控制鼠患,数量太多就会引起新的生态问题。 (3) 人工种植牧草鼠类是一种需要开阔视野的生物种,只要有茂密的牧草生长,它们就无法生存。它们的视线之内如果毫无遮拦,便会肆意横行。在草场植被密集的地方,老鼠并不容易打洞,而且在这样的环境中,老鼠遇到天敌追捕时也难以及时躲避,所以数量不会激增。但是,据有关资料显示,青藏高原上几乎所有的人工种草都会在一定时间内自行退化。 问题1、建立恰当数学模型,对上述灭鼠方法的效果进行评估分析,要考虑到短期和长期的效果以及资金投入的问题;

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

数学建模狐狸野兔问题

狐狸野兔问题 摘要:封闭自然环境中的狐狸和野兔存在捕食与被捕食关系,本题旨在通过对自然状态下 两物种数量变化规律的分析,推测加入人类活动(即人工捕获)时两物种数量的变化,进而得出人类活动对自然物种的影响,为人类活动提供参考,使其在自然允许的范围内,促进人与自然和谐相处。 对于问题一,首先建立微分方程,描述两物种数量随时间变化的Volterra 模型 ()0,0,0,021212211>>>>?????? ?+-=-=r r k k xy r y k dt dy xy r x k dt dx 并用解析法求得狐狸与野兔数量的关系 ()()2211k r x k r y x e y e c --= 为直观反映两物种数量随时间的变化规律,选取三组有代表性的初值,利用Matlab 软件绘图。在狐狸和野兔随时间的变化图像中,大致得出其数量呈周期变化,为进一步检验周期性,再用Matlab 绘图做出狐狸与野兔数量的关系图,得到封闭曲线,因此分析结果为:狐狸和野兔的数量都呈现周期性的变化,但不在同一时刻达到峰值。 对于问题二,利用数值解法,令模型中两式皆为0,即求得狐狸和野兔数量的平衡状态。且由问题一中狐狸与野兔数量的关系图知野兔和狐狸的平衡量恰为他们在一个周期内的平均值。 对于问题三,在Volterra 模型基础上引入人工捕获系数。 只捕获野兔时,野兔的自然增长率降低,狐狸自然死亡率增加,改进后模型同问题二处理方式一样,求得平衡状态,得出结论:捕获野兔时,狐狸数量减少,野兔数量反而增加,即Volterra 原理:为了减少强者,只需捕获弱者。 只捕获狐狸时,分析方法与只捕获野兔时相同,并得出野兔狐狸数量皆增加的结论。 问题三为自然界人类捕获生物提供了新的思路,即可以在正常允许范围内,为了达到减少某一种群数量的目的,相应的捕获其食饵,或适度地捕获捕食者使捕食者与被捕食者的数量都有所增加。 关键词:Volterra 模型Matlab 软件解析法周期性

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

相关文档
最新文档