随机振动功率谱估计方法研究

随机振动功率谱估计方法研究
随机振动功率谱估计方法研究

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

经典功率谱估计方法实现问题的研究

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是与任 何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段 )(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将 )(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外 x(n)是全零序列,这种处 理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。 2.2 相关法谱估计(BT )法

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

随机振动(振动频谱)计算(Random Vibration)

Random Vibration 1. 定义 1.1 功率谱密度 当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。 功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。 1.2 均方根 均方根(RMS)是指将N项的平方和除于N后,开平方的结果。均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。 2. 加速度功率谱密度 2.1 单位 加速度单位:m/s^2或g 加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz Hz单位为:1/s, 所以加速度功率谱密度单位也可写为:m^2/s^3 2.2功率谱密度函数 功率谱密度函数曲线的纵坐标是(g2/Hz)。功率谱曲线下的面积就是随机加速度的总方差(g2): σ2= ∫Φ(f)df 其中:Φ(f)........功率谱密度函数 σ ............. 均方根加速度 3. 计算示例 随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下: σ2=0.01*(2000-100)=19 σ=4.36g 峰值加速度不大于3倍均方根加速度:13.08g

4、SAE J 1455 随机振动要求 4.1功率谱图 4.1.1 Vertical axis 4.1.2 Transverse axis 4.1.3 Longitudinal axis

4.2 Vertical axis加速度计算 功率谱曲线下的面积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不大于3倍均方根加速度:6.18g 5. FGE随机振动要求 5.1功率谱图

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

利用经典谱估计法估计信号的功率谱(随机信号)

随机信号 利用经典谱估计法估计信号的功率谱

作业综述: 给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。 这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。 一.题目要求 给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。 二.基本原理及方法 经典谱估计的方法,实质上依赖于传统的傅里叶变换法。它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。 1. BT法(Blackman-Tukey) ●理论基础: (1)随机序列的维纳-辛钦定理 由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为 等式两边取傅里叶变换,则随机序列的功率谱密度 (2)谱估计 BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。即 其中可有式得到。 2. 周期图法 ●理论基础: 周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。在前面我们已知,各态历经的连续随机过程的功率谱密度满足

式中 是连续随机过程第i 个样本的截取函数 的频谱。对应在随机序列中则有 由于随机序列中观测数据 仅在 的点上存在,则 的N 点离散傅里叶变换为: 因此有随机信号的观测数据 的功率谱估计值(称“周期图”)如下: 由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率 谱。 3.平均法: 理论基础: 平均法可视为周期图法的改进。周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果 , , , 是不相关的随机变量,且都有个均值 及其方差 ,则可以证明它们的算术平均的均值为 ,方差为 。 由定理可见:具有 个独立同分布随机变量平均的方差,是单个随机变量方差的 , 当 时,方差 ,可以达到一致估计的目的。因此,将 个独立的估计量经过算术 平均后得到的估计量的方差也是原估计量方差的 。 平均图法即是将数据 , , 分段求周期图法后再平均。例如,给定N=1000个数据样本(平均法适用于数据量大的场合),则可以将它分成10个长度为100的小段,分别计算每一段的周期图 ()()2 1001100,100(1) 1 ,1,2,```,10100 l j l n l G w X e l ω-=-= =∑ 然后将这10个周期图加以平均得谱估计值: ()() 10 100100,1 110l l G w G w ==∑ 由于这10小段的周期图取决于同一个过程,因而其均值相同。若这10个小段的周期图是统计独立的,则这10个小段平均之后的方差却是单段方差的 。

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

随机振动功率谱密度

701z 0102030 4050607080 0.002 0.0040.0060.0080.01 0.0120.014 0.016频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -65-60-55-50-45-40-35-30 -25-20 -15频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.1378m/s2(70km/h,z 方向,第一次试验,前排) 0.1378 0102030 4050607080 0.5 1 1.5 2 2.5 -3 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701y 0102030 4050607080 1 2 3 4 5 6 7 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -70-65-60-55-50-45-40-35 -30 -25-20频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.0164m/s2(70km/h,y 方向,第一次试验,前排) 0102030 4050607080 0.5 1 1.5 2 2.5 3 -5 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701x 0102030 4050607080 0.20.40.60.811.2 1.41.61.8 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 0102030 4050607080 -70 -65-60-55-50-45-40 -35-30 -25频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

功率谱估计浅谈汇总

功率谱估计浅谈 摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计 前言 功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。 周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。 下面就给出这两类谱估计的简单原理介绍与方法实现。 经典谱估计法 经典法是基于传统的傅里叶变换。本文主要介绍一种方法:周期图法。 周期图法 由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。下面讨论离散随机信号序列的功率谱问题。 连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

经典功率谱估计

Classical Power Spectrum Estimation Abstract With the increasing need of spectrum, various computational methods and algorithms have been proposed in the literature. Keeping these views and facts of spectrum shaping capability by FRFT based windows we have proposed a closed form solution for Bartlett window in fractional domain. This may be useful for analysis of different upcoming generations of mobile communication in a better way which are based on OFDM technique. Moreover, it is useful for real-time processing of non-stationary signals. As per our best knowledge the closed form solution mentioned in this paper have not been reported in the literature till date.This paper focuses on classical period spectral estimation and moderu spectral estimation based on Burg algorithm. By comparing various algorithms in computational complexity and resolution, Burg algorithm was used to signal processing finally. Experimental and simulation results indicated that digital signal processing system would meet system requirements for measurement accuracy. Keywords periodogram spectral estimation ; Burg algorithm I. INTRODUCTION When we expand the frequency response of any digital filter by means of Fourier series, we get impulse response of the digital filter in the form of coefficients of the Fourier series. But the resultant filter is unrealizable and also its impulse response in infinite in duration. If we directly truncate this series to a finite number of points we have to face with well known Gibbs phenomenon, so we modify the Fourier coefficients by

功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的 结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变 量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密 度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。 另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位

功率谱估计MATLAB实现

功率谱估计性能分析及其MATLAB实现 一、经典功率谱估计分类简介 1.间接法 根据维纳-辛钦定理,1958年Blackman和Turkey给出了这一方法的具体实现,即先由N个观察值,估计出自相关函数,求自相关函数傅里叶变换,以此变换结果作为对功率谱的估计。 2.直接法 直接法功率谱估计是间接法功率谱估计的一个特例,又称为周期图法,它是把随机信号的N 个观察值直接进行傅里叶变换,得到,然后取其幅值的平方,再除以N,作为对功率谱的估计。 3.改进的周期图法 将N点的观察值分成L个数据段,每段的数据为M,然后计算L个数据段的周期图的平均 ,作为功率谱的估计,以此来改善用N点观察数据直接计算的周期图的方差特性。根据分段方法的不同,又可以分为Welch法和Bartlett法。 Welch法 所分的数据段可以互相重叠,选用的数据窗可以是任意窗。 Bartlett法 所分的数据段互不重叠,选用的数据窗是矩形窗。

二、经典功率谱估计的性能比较 1.仿真结果 为了比较经典功率谱估计的性能,本文采用的信号是高斯白噪声加两个正弦信号,采样率Fs=1000Hz,两个正弦信号的频率分别为f1=200Hz,f2=210Hz。所用数据长度N=400. 仿真结果如下: Figure1(a)示出了待估计信号的时域波形;

Figure2(b)示出了用该数据段直接求出的周期图,所用的数据窗为矩形窗; Figure2(c)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为矩形窗,长度M=128,数据没有加窗; Figure2(d)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为Hamming 窗,长度M=64,数据没有加窗; Figure2(e)是用Welch平均法求出的功率谱曲线,每段数据的长度为64点,重叠32点,使用的Hamming窗; Figure2(f)是用Welch平均法求出的功率谱曲线,每段数据的长度为100点,重叠48点,使用的Hamming窗; 2.性能比较 1)直接法得到的功率谱分辨率最高,但是方差性能最差,功率谱起伏剧烈,容易出现 虚假谱峰; 2)间接法由于使用了平滑窗对直接法估计的功率谱进行了平滑,因此方差性能比直接 法好,功率谱比直接法估计的要平滑,但其分辨率比直接法低。 3)Welch平均周期图法是三种经典功率谱估计方法中方差性能最好的,估计的功率谱 也最为平滑,但这是以分辨率的下降及偏差的增大为代价的。 3.关于经典功率谱估计的总结 1)功率谱估计,不论是直接法还是间接法都可以用FFT快速计算,且物理概念明确,因而 仍是目前较常用的谱估计方法。 2)谱的分辨率较低,它正比于2π/N,N是所使用的数据长度。 3)方差性能不好,不是真实功率谱的一致估计,且N增大时,功率谱起伏加剧。 4)周期图的平滑和平均是和窗函数的使用紧密关联的,平滑和平均主要是用来改善周期图 的方差性能,但往往又减小了分辨率和增加了偏差,没有一个窗函数能使估计的功率谱在方差、偏差和分辨率各个方面都得到改善,因此使用窗函数只是改进估计质量的一个技巧问题,并不能从根本上解决问题。 三、AR模型功率谱估计 1.A R模型功率谱估计简介 AR模型功率谱估计是现代谱估计中最常用的一种方法,这是因为AR模型参数的精确估计可以用解一组线性方程(Yule-Walker方程)的方法求得。其核心思想是:将信号看成是一个p 阶AR过程,通过建立Yule-Walker方程求解AR模型的参数,从而得到功率谱的估计。 由于已知的仅仅是长度有限的观测数据,因此AR模型参数的求得,通常是首先通过某种算法求得自相关函数的估计值,进而求得AR模型参数的估计值。常用的几种AR模型参数提取方法有: 1)自相关法 假定观测数据区间之外的数据为0,在均方误差意义下使得数据的前向预测误差最小。

基于matlab的经典功率谱估计(有源程序)

经典功率谱估计 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx); 改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。 1. Bartlett法 Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。 Matlab代码示例: clear; Fs=1000; n=0:1/Fs:1; xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));

随机振动-试验人员必须了解的参数及设置

随机振动-试验人员必须了解的参数及设置 江苏省电子信息产品质量监督检验研究院谢杰 一.简述 近年来,随机振动试验在我院所有振动试验中的比例越来越高,原因有三:1、科学进步,此类设备的软件大量普及,一般只需在原来的电磁振动台加上一套控制软件及配套设备就可实行。2、企业随着国际标准的大量采用,许多振动试验都采用随机振动。3、随机振动相对传统的正弦振动有着无法比拟的优点,它能模拟各种实际运输条件下可能遇到的振动情况,如模拟公路运输,模拟铁路运输,模拟海运运输等等。本文主要介绍对于试验人员来说必须了解的随机振动参数及设置要求。 二.随机振动数据 上图是某一随机振动试验后的试验数据,对于试验人员来说,必须了解其中的一些参数含义。 曲线中,横坐标是频率,纵坐标是PSD,一般简称为频谱曲线。 PSD:Power spectrum density 功率谱密度 PSD单位有二种:g2/Hz,(m2/Hz)2/Hz,二者之间换算:1 g2/Hz=96(m2/Hz)2/Hz PSD是随机振动中的重要参数,可理解为每频率单位中所含振动能量的大小,其值越大,相对应的频率段振幅值会变大,在试验中提高最低频率的PSD 值可明显感觉到振幅增大。 频谱曲线的特点:1、它是对数坐标,主要是为了表述画线方便。2、它有一条平线或多条平线及斜线组成,平线和斜线之间首尾相连组成。3、试验条件中,PSD值不变的是平线,用+dB/oct表示向上的斜线,用- dB/oct 表示向下的斜线。如-3 dB/oct 表示每增加一倍频率,PSD值下降一半。 频谱曲线中,中间一条是设定曲线,上面二条和下面二条是设备的保护及中断线,附加在中间设定值上的变化曲线是振动台实际控制曲线。

相关文档
最新文档