冰蓄冷中央空调系统应用中载冷剂的选择

冰蓄冷中央空调系统应用中载冷剂的选择
冰蓄冷中央空调系统应用中载冷剂的选择

冰蓄冷空调系统应用中载冷剂的选择

在蓄冰空调系统应用中,盘管热交换器的流体温度经常降到水的冰点以下。在这种

情况下就不能再使用纯水作为载冷剂,这时,冰蓄冷空调系统普遍采用的载冷剂是水和防冻液的混合物。这种混合物降低了载冷剂溶液的冰点,从而保证系统在运行过程中, 载冷剂温度在冰点以上不会发生冻结。除了一些特殊的情况外,最常用的防冻液是乙烯乙二醇(ethylene glycol)和丙烯乙二醇(propylene glycol)。

图1:

如图1所示,丙烯乙二醇提供的防冻保护稍逊于乙烯乙二醇.因此,丙烯乙二醇需要采用较高的浓度来获得与乙烯乙二醇相同的冰点.

当我们使用乙烯乙二醇的时候,防冻液和水的混合物的浓度只需要达到乙烯乙二醇质

量浓度的25%,此时所获得的冰点可以保证整个冰蓄冷空调系统安全的运行。如果采

用丙烯乙二醇则需要30%的质量浓度才能满足要求。

除了冰点温度的区别以外,载冷剂混合物的其他物理特性也都与水的物性有很大的

区别。

表1:表中载冷剂流体温度是 4.4℃

解决方案冰点比热粘度

水0°C) 4.20 kJ/kg-°K 1.5 mPa-sec

乙烯乙二醇(25%) -11.7°C 3.77 kJ/kg-°K 3.2 mPa-sec

丙烯乙二醇(30%) -12.8°C 3.85 kJ/kg-°K 5.2 mPa-sec

如表1所示,因为丙烯乙二醇比乙烯乙二醇的比热大,所以在保证系统制冷量的

前提下,丙烯乙二醇需要的流量会小。但这并不表示会降低泵功率或者改善传热,因

为丙烯乙二醇的粘度比乙烯乙二醇要大的多,这也就意味着,使用丙烯乙二醇的冰蓄

冷空调系统需要一个更大功率的水泵。甚至因为传热的损失导致系统需要一个更大的

制冷盘管。

对于大多数的冰蓄冷空调系统,首选的载冷剂应该是25%的乙烯乙二醇和75%

水的混合物。它提供给系统较高性能的防冻保护,对系统各个部件的传热影响也是最

小的。乙烯乙二醇的运行寿命长,而且性能稳定,无腐蚀性。合理的使用这种载冷剂

对系统盘管,系统管路,冷水机组的各个部件都很安全。

考虑载冷剂的口服毒性的时候(例如,食品安全或者药品安全)丙烯乙二醇较普

遍的采用。因为丙烯乙二醇是食品安全级产品,仅仅是所要求的载冷剂温度下传热效

果较差,因此,丙烯乙二醇不能完全被乙烯乙二醇替代。在这种应用中也可以考虑其

他的一些载冷剂,例如甲酸钾。

表2:

解决方案进水温度盘管排数制冷量空气侧压力降流量流体侧压力降℃kw kPa L/S kPa

水7.2 6 133 160 4.76 20.6

乙烯乙二醇(25%) 7.2 6 116 154 5.45 23.5 乙烯乙二醇

在载冷剂中增加防冻液的负面的影响可以通过测试变风量空调器的制冷盘管的性

能来获得。表2所示的性能是该冰蓄冷系统中制冷盘管的性能。该盘管为6排管,翅

片数为118片/英寸,这个盘管通过风量5663L/S,在进水温度7.2℃,总制冷量133KW。

如果单独用水做载冷剂(不含任何防冻液),这个盘管需要流量为 4.76L/S温度

7.2℃的载冷剂水提供所需的制冷量。在这个流量下,载冷剂通过管道的压力降是

20.6kPa。

如果在系统中加入乙烯乙二醇作为载冷剂,则系统的制冷量为116KW,系统的

制冷量下降了13%。载冷剂流体在空气处理机盘管的压力降为23.5kPa,比先前增加

了14%。

载冷剂混合液体较低的比热和较高的粘度是导致制冷量的损失和压力降的增大

的直接原因。通过盘管的选型和系统设计可以使损失的制冷量得到一定程度的恢复。

表3:

解决方案进口温度盘管排数制冷量空气侧压力降流量流体侧压力降℃kPa l/s kPa

水7.2 6 133 160 4.76 20.6

乙烯乙二醇(25%)7.2 6 116 154 5.45 23.5

乙烯乙二醇(25%)7.2 8 133 208 5.45 29.3

乙烯乙二醇(25%)7.2 6 133 162 7.62 42.8

乙烯乙二醇(25%) 4.4 6 133 160 5.31 22.5

乙烯乙二醇(25%) 3.3 6 133 160 4.22 19.2 如果选一个新的盘管来安装,增加新盘管的面积可以获得所需要的制冷量。在表

3 所示的这个例子中,把盘管的排数从 6 排增加到 8 排,系统的制冷量达到设计的

133kw 的制冷量。当然,空气侧的阻力也同时增加了,这会导致风机功率的增加,风

机电机也要选大了。还有,水侧的阻力也会增加,这会导致水泵功率的增加,水泵也

要选大。

还有一个方案是增大通过盘管的载冷剂的流量来获得所需要的制冷量。在如表3的例

子中,制冷剂的流量增大到了7.62L/S,这个方案的运用,避免了空气侧阻力的增加,

但是却导致了一个更高的水侧阻力,需要比前一个方案选择更大功率的水泵。

实际上,最好的方法是降低进入盘管载冷剂的温度来获得设计的制冷量。使用最初的盘管,把进入盘管载冷剂的温度从7.2℃降低到 4.4℃就能获得的设计的制冷量。这种方案没有影响空气侧的压力降,载冷剂的流量比前三种方案都要低。较低的载冷剂流量弥补了在载冷剂中增加冷冻液的影响。降低了液侧的压力降和水泵的功率。为了产生一个更低的载冷剂温度,需要使冷水机组工作更长的时间,消耗的功率也会增加。关键是要平衡好各个方面的关系。不仅要获得设计的制冷量,而且要降低安装成本和系统能耗,最省钱的办法是降低进入盘管的载冷剂温度。

尽量的降低进入盘管的载冷剂的温度,例如表3所示,把温度降低到3.3℃.能够获得更大的收益。传热性能的改善使得流量比最初的盘管设计要低,液体侧压力降也降低了。这比纯粹用水做载冷剂的系统,泵所消耗的功率也更低。

从另一个方面讲,进盘管的载冷剂温度较低,使得盘管选型时的翅片数减少来替代降低载冷剂的流量的收益,这样的话,盘管的成本降低了,空气侧的阻力也降低了。风机功率也随之降低。

最后,降低进入盘管的载冷剂的温度导致送风温度降低,空气处理机组,变风量末端,和送风管道都会相应的减小,风机的功率消耗也相应减小了。

在载冷剂中增加冷冻液造成的传热损失对冷水机组的制冷量和制冷效率都会产生负面的影响。系统性能的降低是由于载冷剂混合物较低的比热和较高的粘度。如表 1 所示,应该在系统选型过程中选择较低粘度的载冷剂,在系统普遍采用的温度下,乙烯乙二醇的粘度比丙烯乙二醇的粘度要小。

另外,保持载冷剂中防冻液的浓度最小,正如先前所提到的,最好使用质量浓度25 %的乙烯乙二醇作为防冻液,因为如果使用丙烯乙二醇,载冷剂的质量浓度要30%才能达到设计的冰点。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷系统技术总结

第一讲应用概念 一、冰蓄冷空调 “冰蓄冷空调”一词大家都一目了解,英文为‘ICE STORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。早期称谓[COOL STORAGE(蓄冷)],此包含了[制冷水蓄冷]的冷气系统。但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL (ENERGY)STORAGE AIR CONDITIONING SYSTEM (缩写为TES)],可译为[蓄能式空调系统]。对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。 二、关于蓄冷系统的计量 在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。 图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。图上100个方格中的每一格是代表10“冷吨·小时”。 事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。 如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。 三、冷水机组的“参差率” 定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即: 参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力)*100%=750/1000*100

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

冰蓄冷空调过冷成核研究

冰蓄冷空调过冷成核研究  方贵银 (中国科学技术大学 合肥 230061) 对冰蓄冷空调中的水过冷成核机理进行了理论和实验研究,筛选出较好的成核剂,使得水的过冷度减小直至消除,这对提高冰蓄冷空调系统的效率极为有利。 关键词:冰蓄冷空调 过冷 成核剂 1 前 言 自80年代蓄冷空调系统再度兴起以来,冰蓄冷空调系统逐渐成为蓄冷系统的主流,各种类型的蓄冰系统相继开发出来,由早期的制冷剂冰盘管式发展到载冷剂冰盘式以及其他如全冻结式、制冰滑落式、冰泥式、容器式、冰球式等各种不同的蓄冰类型。 冰是一种廉价易得的高潜热蓄冷介质。冰蓄冷空调系统具有如下优点:①蓄冷密度高,蓄冷槽空间小。②蓄冷槽散热损失少。③冰蓄冷系统可提供低温冷冻水,减少了泵的动力,节省了管路费用。④冰蓄冷系统的冷风供应可减小风扇功率,降低风扇噪音。⑤节省管道施工费和管道空间。⑥降温速度快,除湿能力强,提高了空调品质。但冰蓄冷系统也有其缺点,主机容量减少,效率下降,主机在蓄冰过程中载冷剂(乙二醇溶液)出口温度常常要求低于-6℃~-8℃,这时制冷机的蒸发压力和温度均下降,和一般水蓄冷空调主机出水温度7℃相比,主机容量只有60%左右。 冰蓄冷空调主机载冷剂出口温度要求较低的原因是水凝固成冰时存在5℃~6℃的过冷度(亦即水开始结冰时温度为-5℃~-6℃),直至冰晶核开始形成后才回升到0℃凝固成冰。实践证明加入适当的添加剂可改善其成核特性,能减小水的过冷度,可提高空调主机蓄冰时的蒸发温度,使主机效率得以提高。 2 水的过冷和成核机理 冰晶的成核过程主要由热力学条件决定,而冰晶的生长过程主要由动力学条件决定。在等温等压条件下,固液两相体系的平衡条件是: G L(T f)=G S(T f)(1)这里,G L(T f)和G S(T f)分别为在冰点T f 下液相和固相的吉布斯函数。 若要产生液相向固相转变(即结冰)的自发过程,必须使液体过冷到某一低于T f的温度T o,过冷度?T=T f-T o,应有: G L(T o)>G S(T o)(2) 形成冰晶的相变驱动力: ?G(T o)=G L(T o)-G S(T o)(3) 对上式可作如下近似简化: ?G(T o)=?H(T o)-T o?S(T o) ≈?H(T f)-(T f-?T)?S(T f) =?T??S(T f) =L f?T T f(4)式中,H、S和L f分别表示焓、熵和冰的融解热。 当水处于过冷态(亚稳态)时,可能以 13 低温与特气 1999 1

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

六大类冰箱优缺点介绍

六大类冰箱优缺点介绍 冰箱是我们家庭生活中不可缺少的一件电器,冰箱不仅能储存食物,也让我们的生活更加舒适方便。现在冰箱的种类有很多,那么到底哪种冰箱好呢?下面为您介绍六大类冰箱的优缺点。 一、对开门冰箱 优点:这种对开门冰箱,比较适合那种无法给较宽的冰箱门留有位置的窄小空间中使用。一般空间内部空间面积比较大,外观比较的大气,除了实用性以外还具有一定的装饰厨房空间的作用。 缺点:但是相对于其他型号的冰箱,这种类型的冰箱比较的适合比较耗能,对于一般的普通消费者来说,并不是很划算。 二、内置式冰箱 优点:整洁、一体化布局,设计新颖,冰箱嵌入橱柜内,柜体周围包有木质板材。宽度范围:36?48英寸(1英寸=2.54厘米)。 缺点:价格高,需要专人安装,可利用存储空间比其他类冰箱少。

三、法式下冷冻冰箱 优点:这种所谓的法式下冷冻冰箱,以都是采用对开门设计,上半部分有两个冰箱门,下半部分作为冷冻室,这种冰箱成为越来越多人的选择,主要体现在外观比较的亮丽时尚,内置的容量较大,一般还配备有取冰取水装置。 缺点:需要俯身拿取冷冻室的食物。 四、上冷冻冰箱 优点:上冷冻冰箱比较多的适用于小户型的空间,一般厨房空间比较小,预算有限的家庭,上冷冻冰箱是最佳选择。这类冰箱的性能及款式,一般都比较的延续传统的风格,其占用空间小,价格低廉,贮存空间最大,成为这一类型的冰箱的最大的优点。在市场上还是成为许多普通消费者的选择。宽度范围:30?33英寸(1英寸=2.54厘米)。 缺点:通常情况下需要俯身拿取位于下部冷藏室的储存物品,还需为较宽的冰箱门留有一部分空间。 五、传统下冷冻冰箱 优点:比较传统的冰箱款式,一般都是将冰箱冷冻室设置在下半部分。更易于拿取上冷藏室的食物。宽度范围与上冷冻冰箱相同,为30?33英寸(1英寸=2.54厘米)。 缺点:需要俯身拿取冷冻室的食物,还需为较宽的冰箱门留有一部分空间。 六、嵌入柜体冰箱 优点:这种柜体冰箱,一般需要在装修厨房时预留出恰当的空间,在空间中比较能够和厨柜融为一体,比较的时尚美观。这一类冰箱主要有冷冻冰箱、传统型下冷冻冰箱以及对开门冰箱3种形式。

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷复习小结

名词解释 1、蓄冷密度:单位质量蓄冰介质所蓄存的能量 2、相变(潜热)蓄能:利用蓄冰介质的相变特性,蓄存相变潜热的蓄能方式 3、显热蓄能:指利用蓄能材料的温度变化来蓄存显热能量的蓄能方法 4、动态蓄冰:指冰的制备和储存不在同一位置,制冰机和蓄冷槽相对独立 5、静态蓄冰:指冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构 6、相变(潜热)蓄冷:利用介质的物态变化来蓄冷 7、显热蓄冷:通过降低蓄冷介质的温度进行蓄冷 8、飞轮蓄能:机械蓄能的一种,将电能转化成可蓄存的动能或势能:(1)电网电量富裕时,飞轮蓄能系统通过电动机拖动飞轮加速以动能形式蓄存电能(2)电网需电量时,飞轮减速并拖动发动机发电以放出电能 9、抽水蓄能:利用电力系统负荷低谷时的剩余电量,由抽水蓄能机组作水泵工况运行,将下水库的水抽至上水库,即将不可蓄存的电能转化成可蓄存的水的势能,并蓄存于上水库中 10、部分蓄冷:在夜间非用电高峰时制冷设备运行,蓄存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分由制冷设备承担。 11、全部蓄冷:其蓄冷时间与空调时间完全错开:夜间启动制冷机蓄冷,当其制冷量达到空调所需全部冷量时待机,白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不工作 12、主机上游:空调回水先流经主机,使主机能在较高的蒸发温度下进行。 13、主机下游:在串联流程中,主机在蓄冷槽之后,空调回水先回到蓄冷槽里降温,再到主机降至供冷温度 14、机组优先:在串联流程中,主机位于蓄冷槽上游,空调回水先到其中取冷 15、蓄冰优先:从空调负荷端流回的热乙二醇溶液,先经蓄冰装置冷却到某一中间温度,而后经制冷机冷却至设定温度 16、移峰填谷:指在夜间电网低谷时间,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网高峰用电时间,再将冷量释放出来满足高峰空调负荷的需要。这样,制冷系统的大部分耗电发生在夜间用电低谷期,而在白天用电高峰期只有辅助设备在运行,从而实现用电负荷的“移峰填谷” 17、自然分层型蓄水槽:利用密度的影响将冷热水隔开,依靠稳定的斜温层 斜温层:由于冷热水间自然的导热作用而形成的一个冷热温度过渡层。厚度0.3~1.0m 18、间接供冷水蓄冷系统:系统在供冷回路中采用换热器与用户形成间接连接换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路,这样用户侧管路可防止氧化腐蚀、有机物及菌类繁殖等影响。适用场合:主要适用于高层、超高层空调供冷。 19、外融冰:温度较高的空调回水直接送入盘管的表面结有冰层的蓄冷槽,使盘管表面上的冰层自外向内逐渐融化; 20、内融冰:来自用户或二次换热装置的温度较高的载冷剂(或制冷剂)仍在盘管内循环,通过盘管表面将热量传递给冰层,使盘管外表面的冰层自内向外逐渐融化进行取冷 21、盘管外蓄冰:是空调系统中常见的一种蓄冰方式即直接冻结在蒸发盘管上,盘管伸入蓄冷槽内构成结冰时的主干管 22、功能热流体:是由相变材料微粒(直径为微米量级)和单向传热流体构成的一种固液多相流体 23、封装冰蓄能:是将封装在一定形状的塑料容器内的水制成冰的过程 24、TES:蓄能Thermal Energy Storage 25、IPF:制冰率Ice Packing Factor 指蓄冷槽中制冰量与制冰前蓄冷槽内水量的体积百分比 26、FOM:冷量释放系数,指从蓄冷槽移走的冷量与理论可用蓄冷量之比。 27、GSHP:地源热泵Groud Source Heat Pump是以地源能作为热泵空调夏季制冷的冷却源,冬季采暖供热的低温热源,同时是实现采暖、制冷和生活用水的一种系统 简答题 1.空调系统应用的前提条件有哪些? (1)合适的电费结构及其他优惠政策(2)空调冷负荷在用电峰谷时段应有一定的不均衡性。

冰蓄冷设备

冰蓄冷设备 一、分类 美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。 表2-1 *注:载冷剂一般为乙烯乙二醇水溶液。

最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。 二、冰盘管式(ICE-ON-COIL) 冷媒盘管式(REFRIGERANT ICE-ON COIL) 外融冰系统(EXTERNAL MELT ICE-ON COIL STORAGE SYSTEMS) 该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。 此种形式的冰蓄冷盘管以美国BAC公司为代表。盘管为钢制,连续卷焊而成,外表面为热镀锌。管外径为1.05"(26.67mm),冰层最大厚度为1.4"(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。 融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 (1)10小时放热特性(图2-1)

该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。由此在乳品行业中经常采用。最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。 在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1"-3.5"之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。 三、完全冻结式(TOTAL FREEZE-UP) 卤水静态储冰(GLYCOL STATIC ICE) 内融冰式(INTERNAL MELT ICE-ON-COIL STORAGE) 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进

水蓄冷和冰蓄冷选型参考

水蓄冷和冰蓄冷选型参考 来源:本站原创时间:2010-6-12 点击数: 826 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2)Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水

冰蓄冷空调常识

冰蓄冷空调系统常识 冰蓄冷是利用冰的熔解热进行蓄冷,因此蓄冷密度较水蓄冷大,相同蓄冷能力的蓄冰槽与蓄水槽之体积比1:8~10。与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使用蓄冷槽体积较小;温度稳定,便于控制。 常见的冰蓄冷系统形式: 1、冰球式(Ice Ball):将溶液注入塑胶球内但不充满,预留一膨胀空间。将塑料球放入蓄冰罐内,再注入冷水机组制出的低温乙二醇水溶液,使冰球内的溶液冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过冰罐内塑胶球将冰球内的冰融化而释冷。 2、完全冻结式(Total-Freeze-Up):是将塑料或金属管伸入蓄冰筒(槽)内,管内通以冷水机组制出的低温乙二醇水溶液(也称二次冷剂),使蓄冰筒内90%以上的水冻结起来。融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过塑料或金属管内部,将管外的冰融化而释冷。 冰蓄冷空调系统是怎样运行的? 夜间,冷水机组保持乙烯乙二醇溶液在-3℃~ -4℃运行,此时的乙烯乙二醇溶液会在机组与冰筒的热交换之间对流,慢慢的将冰筒内的水结成冰块。在制冰运行时,乙烯乙二醇溶液是不通过空气处理机组的。 日间,由冷水机组回来的11℃部分溶液通过冰筒冷却至1℃;另一部分11℃的溶液则与冰筒出来的1℃溶液混合在一起而成为6℃,再而进入空气处理机组,约在13℃离去。设定在6℃的三通控制阀操作此混合状态。空气处理机组将24℃的空气冷却到13℃﹙常温系统﹚。 春秋季的日间,可以随意由冷水机组或蓄冰筒提供建筑物的全部冷量。 市场应用较成熟的有盘管式、冰球式、冰晶式。 盘管式特点:蓄冷及放冷过程稳定,水力管网易于平衡。蓄冰及融冰速度较慢;盘管管道较细,流动阻力大。 冰球式特点:设备结构简单,阻力小,技术要求低。蓄冰及融冰速度较快。缺点:冰球需密集堆放,会造成冰球外冷媒水的流量不均及旁通,易引起传热的不稳定,冰球间反复挤压影响寿命。 蓄冰装置中使用塑料换热管与金属换热管之比较 金属管的导热系数比之塑料管要大很多,但是,在对冰筒的影响方面,这只是一个并不重要的方面。 (1)如果对蓄冰筒的整体换热效果进行考虑,会发现绝大部分热阻(也即影响结冰/融冰的根本原因) 是在蓄冷材料方面,即水这一侧。换热盘管材料本身对于总热阻的影响非常之小。 (2)高灵已经公布了在多种条件下蓄冰筒蓄冷/释冷的运行性能数据。这些数据都是由实际测量得出的结果,而不是由模拟或计算所得。可以完全参考这些测试结果去评价材料不同所导致的结果。 (3)传热不仅取决于盘管材料本身的导热系数,而且和换热面积有关。这也是高灵冰筒要在190型蓄冰筒中使用长达4300米塑料盘管的原因。高灵蓄冰筒中结冰厚度平均只有12mm (4)除了换热面积和材料性质外,冰筒中的传热还和盘管中液体流动状态及盘管粗细、盘管间距等因素有关。 (5)如果把高灵产品和其它产品的制冰温度进行比较,会发现在多项能效指标中,高灵产品是最高的。要知道,正是结冰过程决定了效率以及制冷机的运行费用。 (6)高灵冰筒盘管中的逆流设计(相邻管中的液体流动方向相反),保证了全长度盘管都是有效换热面积。

水蓄冷与冰蓄冷的比较

水蓄冷与冰蓄冷比较

将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。因此,冰、水蓄冷系统在下列方面发生了变化。 (1)蓄冷系统制冷机的容量 从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C为0.6 0.65 (制冰温度为-6C时),其制冷能力比制冷机组在空调工况低了0.4?0.35, 也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。而水蓄冷就不存在这一问题。 (2)蓄冷装置的蓄冷密度 从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40?50kW/m3),蓄 冷水池的蓄冷密度为(7?11.6kW /m3)。冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷 密度的5倍左右。 这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。其实这是一种错觉。产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄 冷槽需要安装在室内,并要求有一定的安装距离。我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。 (3)蓄冷装置的兼容性 水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。而冰蓄冷系统蓄冰槽则没有此功能。 (4)蓄冷系统的建设投资 冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统, 而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。 冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省 制冷用电10%左右。水蓄冷储槽可实施夏季蓄冷,冬季蓄热,做到蓄冷、蓄热

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷介绍

1、蓄冷空调原理 蓄冷中央空调系统是一种通过蓄能来节约空调系统运行费用的技术,其基本工作原理是:建筑物空调时间所需冷量的部分或全部在非空调时间利用蓄冷介质的显热或其相变过程的潜热迁移等特性,将能量以低温状态蓄存起来,然后根据空调负荷要求释放这些冷量,这样在用电高峰时期就可以少开甚至不开主机。当空调使用时间与非空调时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用。 在一般工程中,空调系统用电量占总耗电量的35%--65%,而制冷主机的电耗在空调系统中又占65%--75%。在常规空调设计中,冷冰主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在绝大部分情况下均处于低效率的部分负荷状态运行,显得很不经济。 蓄冷中央空调从系统构成上来说只是在常规空调系统的基础上增加了一套蓄冷装置,其它各部分在结构上与常规空调相同,它在使用范围方面也与常规空调基本一致。 2、蓄冷中央空调的意义 随着社会的发展,中央空调在大中城市的普及率日渐增高。据统计,空调高峰时用电量达到城市用电负荷的25%-30%,加大了电网的峰谷用电差。蓄冷中央空调之所以得到各国政府和工程技术界的重视,正因为它对电网有卓越的移峰填谷功能,是电力需求侧最有效的电能蓄存方法,蓄冷对于用户还有以下的一些突出优点: 1)空调的出水温度低、制冷效果好,低温送风系统节省投资和能耗。 2)空调环境相对湿度较低,空调品质提高,有利于防止中央空调综合症。 3)利用峰谷荷电价差,平衡电网负荷。减少空调年运行费。 4)减少冷水机组容量,降低一次性投资。 5)在主机出现故障或断电的情况下,蓄冷系统相当于应急冷源,系统可靠性高。6)当建筑物功能变化或面积增加引起冷负荷增加时,只要增加蓄冷装置的蓄冷量, 即可满足大楼新增冷量需要。 3、蓄冷发展史 第一代:冰球蓄冷第二代:冰盘管蓄冷第三代:动态冰蓄冷―――――――――――――――――――――――――――――――― 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方

相关文档
最新文档