干燥实验实验报告

干燥实验实验报告
干燥实验实验报告

姓名

院专业班

年月日干燥实验

实验内容指导教师一、实验名称:

干燥实验

二、实验目的:

1、了解气流常压干燥设备的流程和工作原理;

2、测定物料的干燥曲线和干燥速率曲线;

3、测定传质系数K H。

三、实验原理:

干燥实验是在恒定的干燥条件下进行的,即实验操作为间歇式,采用大量的热空气干燥少量的湿物料,空气进出干燥器的温度、湿度、流速及物料的接触方式不变。

干燥曲线是指物料的平均干基湿度和温度随干燥时间而变化的关系曲线。干燥速率曲线则是指干燥速率随平均干基湿度而变化的曲线。

平均干基湿度是指1kg绝干物料中含水分的Kg数。绝干物料是把物料放在烘箱内,保持物性不变的条件下干燥至恒重而得。

1、干燥曲线

如图2-2-8-1所示,AB为预热阶段,BC为恒速阶段,CD为降速阶段。

2、干燥速率曲线

图2-2-8-2称干燥速率曲线,它可由图2-2-8-1干燥的数据整理而得。C点对应的湿度叫临界湿度Xo,E点对应的湿度叫平衡湿度X P。

姓名

院专业班

年月日实验内容指导教师

图2-2-8-1 干燥曲线

图2-2-8-2 干燥速率曲线

干燥速率曲线的形状随物料内部结构的不同而异。像纸板等多孔吸水性物料,干燥时水分借毛细孔作用由物料内部向表面迁移,干燥过程有恒速和降速两阶段,恒速阶段如图2-2-8-2中BC直线段,降速阶段曲线常似图中CD段。对于沙石类无孔固体,干燥时水分是借扩散作用由物料内部向表面迁移,此类物料的干燥常常不存在恒速阶段,作图时可用一水平虚线表示其恒速干燥过程,而它们的降速干燥阶段常似图中DE段形状。测定不同时间的湿料质量后,可按下列公式计算物料的湿

姓名

院 专业 班 年 月 日

实验内容 指导教师

度X 和干燥速率u 。

C W G G W -=[kg] (1)

C

G W

X =

[kg 水/kg 绝干料] (2) )(1---=?i i W W W [kg] (3)

1--=?i i i τττ [s] (4) τ

???=

A W

u 3600 [kg 水/m 2·h] (5)

式中:Gc ——绝干物料质量[kg]

G w ——干燥过程称得的湿料质量[kg] W ——干燥过程湿料中尚含有的水分量[kg] X ——物料的平均干基湿度[kg 水/kg 绝干料] △W ——汽化水分量[kg] τi ,τ

i-1——前后二次测定时间[s]

△τ——汽化△W 水分所需要时间[s] A ——干燥面积[m 2] u ——干燥速率[kg 水/m 2·h]

式(3)中的负号表示W 值随时间增加而减少。 3、恒速阶段传质系数的求取

在恒速阶段干燥过程的质量传递速率可用下式计算:

)(H H K u W H m -= [kg 水/m 2·h] (6) 式中:u m ——恒速阶段干燥速率平均值,可由作图求得 K H ——传质系数[kg 水/m 2·h ·△H]

姓名

院 专业 班 年 月 日

实验内容 指导教师

H w ——空气的饱和湿度[kg 水/kg 干空气],可查图表或用下式计算: 1

.26

1034.2W

W t H -?= (7)

H ——空气的湿度[kg 水/kg 干空气],可查图表,若当干球温度为70、80、90℃时也可用下列式子计算:

77

.3301002.4,70W t H C t -?==时当 (8) 43

.4901090.2,80W

t H C t -?==时当 (9) 98

.41001037.3,90W

t H C t -?==时当 (10)

式中:t ——空气干球温度[℃] t w ——空气湿球温度[℃]

将以上的查图所得值或计算所得值代入下式便可计算传质系数。

)/(H H u K W m H -= [kg 水/m 2·h ·△H] (11)

四、设备流程简介

实验设备如图2-2-8-3所示,空气由风机1输送,经孔板流量计4计量,电热器6加热后进干燥室10,与湿物料12接触,出干燥室后再入风机循环使用。风机出口的温度计3为计算空气流量时的需要而设,斜压压差计5与孔板4配套构成流量计以测定空气流量,电热器6内有三组电热丝,其中一组通过温控器(未画出)与导电温度计7相连,用温度计7可控制空气温度。干球温度8、湿球温度9和干球温度13用于测量热空气进出干燥室的状态参数。天平11左臂吊着湿物料12,在右臂托盘上加砝码即可称得湿物料的相对重量。蝶阀14为调节空气流量用,但只能半关,以免空气断流后电热器6被烧毁。气阀15和气阀2为微调空气进、出量之用。

五、实验步骤

姓名

院专业班

年月日实验内容指导教师

1、熟悉各仪表阀门的使用方法,打开蝶阀4,起动风机和电热器,检查风机和电器仪表是否正常,然后停电停机。

2、将导电温度调至设定值,向湿球温度计9注水,把天平调至平衡,蝶阀开2/3,关闭两气阀。

3、将已知质量的绝干物料加入指定量的水,若是干砂则搅拌均匀,若是纸板则让水扩散均匀,再称湿物料的质量以确定加入水量。

4、把湿物料挂于干燥室内从天平左臂垂下的挂钩上,向右臂托盘上加砝码,称取湿料的相对重量。

5、从右托盘上减去相当于所加入水质量1/10左右的砝码(记下取出砝码质量),此时天平由于物料相对偏重而倾科,起动风机和电热器,同时按下秒表1。

6、待天平恢复平衡即停秒表1,同时按下秒表2,记下秒表1及各仪表读数。再从右盘减去与第一次相同质量的砝码,……,如此重复操作直至物料中95%以上的水分被汽化为止。

7、实验完毕,停电热器和风机,取出干物料称重以核对汽化水分量。

姓名

院专业班

年月日实验内容指导教师

1、风机

2、排气气阀

3、温度计

4、孔板

5、压差计

6、电热器

7、控温器

8、干球温度计

9、湿球温度计10、干燥室

11、天平12、湿物料13、温度计14、蝶阀15、进气气阀

图2-2-8-3 气流常压干燥实验设备图

姓名

院专业班

年月日实验内容指导教师六、数据处理表及图

姓名

院专业班

年月日实验内容指导教师

X~t线U-X线

姓名

院专业班

年月日实验内容指导教师七、举例计算

姓名

院专业班

年月日实验内容指导教师八、分析讨论

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

流化床实验报告

流化床干燥实验装置 一、实验目的 1. 了解流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ = =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿 分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量 iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的 1. 了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加

(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。干燥过程可分为以下三个阶段。 图2 物料含水量、物料温度与时间的关系 图3 干燥速率曲线 (1)物料预热阶段(AB段) 在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

干燥实验

干燥实验 一、实验目的 1、掌握干燥曲线和干燥速率曲线的实验测定方法,加深对干燥操作过程及其机理的理解; 2、了解干、湿球温度计的使用方法; 3、了解和分析影响干燥速率的因素。 二、实验原理 当温度较高的未饱和空气与湿物料接触时,存在气固间热量和质量的传递。根据干燥过程中不同期间的特点,干燥过程分为两个阶段。 第一阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段也称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸气分压也维持恒定,故干燥速率恒定不变。 第二阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制,故此阶段亦称为内部迁移控制阶段。水着湿含量逐渐减少,物料内部水分的迁移速率也逐渐减小,故干燥速率不断下降。恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。

恒速阶段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据,本实验在恒定干燥条件下对浸透水的石棉块进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 物料的干燥速率U 为单位时间物料表面上汽化的水分质量: τ τ??-=-=X S G d dX S G U C C (9-1) 式中:U — 干燥速率,kg/m 2.s S — 干燥面积,m 2 Δτ— 时间间隔,s G C — 绝干物料量,kg ΔX —Δτ内气化的干基含水量 将干燥曲线(图9-1)中的数据换算成U 与X 间的关系,并进行绘制即可得干燥速率曲线(见图9-2)。 三、实验装置 实验装置为洞道干燥器,主要组成部分包括实验台、干燥室、物料吊架、快速天平、干/湿球温度计、加热调压器、热风装置和电源开关等。 图9-1 干燥曲线 图9-2 干燥速率曲线 X X

流化床干燥实验——流化床和洞道干燥----实验报告

流化床和洞道干燥综合实验 一、实验目的 1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 2.1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: -c G dX dw U A d A d τ τ = =kg/(m 2/s) 式中,U -干燥速率,又称干燥通量,kg/(m 2 s ); A -干燥表面积,m 2 ; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ; X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。 2.2. 干燥速率的测定方法

(1)将电子天平开启,待用。 (2)将快速水分测定仪开启,待用。 (3)将0.5~1kg 的红豆(如取0.5~1kg 的绿豆/花生放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (4)开启风机,调节风量至40~60m 3 /h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出四颗红豆的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量G i 和终了质量G ic ,则物料中瞬间含水率为: i ic i ic G -G X = G 计算出每一时刻的瞬间含水量X i ,然后将X i 对干燥时间i τ作图,如图1,即为干燥曲线。 图1恒定干燥条件下的干燥曲线 上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同i dX 下的斜率 i i dX d τ,再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图2 所示。

流化床干燥实验

北京化工大学化工原理 实验报告 实验名称:流化床干燥实验 班级:环工0903 学号:200912102 姓名:滕飞

一、实验目的及人物 1.了解流化床干燥器的基本流程及操作方式。 2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数KH及降速阶段的比例系数KX。 二、实验原理 1、流化曲线 在实验中可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(下图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本不动,压降与流速成正比,斜率约为1。当气速逐渐增加(进入BC段),床层开始膨胀,压降与气速关系不再成比例。当气速逐渐增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速增加床层高度逐渐增加,但床层压降基本保持不变。当气速增大到某一值(D点),床层压降减小,颗粒逐渐被气体带走,此时便进 u。在流化状态下降低气速,压降与入气流输送阶段。D点处流速即为带出速度 气速关系将沿图中DC线返回至C点。若气速继续降低,曲线沿CA’变化。C点 u。 处流速被称为起始流化速度 mf 2、干燥特性曲线 将湿物料置于一定干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可见物料含水量(X)与时间(t)的关系曲线及物料温度(θ)与时间(t)的关系曲线(如下图左)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,及干燥速率曲线(如下图右)。

化工原理实验思考题整理

1.洞道干燥实验及干燥特性曲线的测定 (1)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。 本实验中所采取的措施:干燥室其侧面及底面均外包绝缘材料、用电加热器加热空气再通入干燥室且流速保持恒定、湿物的放置要与气流保持平行。 (2)控制恒速干燥速率阶段的因素是什么?降速的又是什么? 答:①恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。 ②降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。 (3)为什么要先启动风机,再启动加热器?实验过程中干湿球温度计是否变化?为什么?如何判断实验已经结束? 答:①让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器; ②理论上干、湿球温度是不变的,但实验过程中干球温度不变,但湿球温度缓慢上升,估计是因为干燥的速率不断降低,使得气体湿度降低,从而温度变化。 ③湿毛毡恒重时,即为实验结束。 (4)若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率,临界湿含量又如何变化?为什么?

答:干燥曲线起始点上升,下降幅度增大,达到临界点时间缩短,临界点含水量降低。因为加快了热空气排湿能力。 (5)毛毡含水是什么性质的水分? 毛毡含水有自由水和平衡水,其中干燥为了除去自由水。 (6)实验过程中干、湿球温度计是否变化?为什么? 答:实验结果表明干、湿球温度计都有变化,但变化不大。 理论上用大量的湿空气干燥少量物料可认为符合定态空气条件。定态空气条件:空气状态不变(气流的温度t、相对湿度φ)等。干球温度不变,湿球温度不变。 绝热增湿过程,则干球温度变小,湿球温度不变。 (7)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:①指干燥介质的温度、湿度、流速及与物料的接触方式,均在整个干燥过程中保持恒定;②本实验中本实验用大量空气干燥少量物料,则可以认为湿空气在干燥过程温度。湿度均不变,再加上气流速度以及气流与物料的接触方式不变。所以这个过程可视为实验在在恒定干燥条件下进行。

化工原理课件干燥实验

干燥实验 一、实验目的 1.掌握物料干燥速率曲线的测定方法 2.了解操作条件对干燥速率曲线的影响 二、实验任务 测定纸板在恒定干燥条件下的干燥曲线和干燥速率曲线 确定其平衡含水量X* 及其临界含水量X c 三、实验原理 干燥曲线X-T 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。记录物料不同时间下质量,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留在物料中的水分就是平衡水分。再将物料烘干后称重得到绝干物料重,则物料中瞬间含水率为:

干燥速率曲线为U -X 的关系 干燥速率,单位时间单位面积上汽化水份量。 τ ττ?-= ??==+S G G S W Sd dW U i i 1 所测定的U 为物料的含水量有X i 下降至X i+1的干燥速率,为一个平均值。 Gc G G X c i i -=, 是一个瞬时值,在U -X 图中X 应为平均值 S -被干燥物料的汽化面积 τ-干燥时间 △W -一定间隔干燥时间汽化的水份量,本实验中为3g △τ-每汽化△Wg 时水分所需要的干燥时间。 Xi -湿物料在I 时刻的干基含水量,kg 水/kg 绝干料 Gi ,G i +1――分别为△τ时间间隔内开始和终了时湿物料重量 Gc ――绝干物料的质量

四、实验设备流程 空气由风机输送,经孔板流量计,电加热器后进入干燥室,对试样进行干燥,干燥后的废气再经风机循环使用。电加热器由晶体管继电器控制,使空气的温度恒定。 干燥室前方装有干球及湿球温度计,干燥室后也装有干球温度计,用以测量干燥室内空气的热状况。风机出口端的温度计用以测量流经孔板流量计的空气温度,空气流量用蝶阀调节,任何时候该阀都不能全关,否则电加热器会因空气不流动过热而损坏。风机进口端的片式阀用于控制系统所吸入的新鲜空气,而出口端的片式阀门则由空气进口端的片式阀则用于调节系统向外排出的废气量。 五、实验步骤: 1.称量支架的重量,向湿球温度计中加水 2.打开面板右侧面上的总电源开关,这时风机启动,仪表自检后显示初始值。 3.打开加热I、加热II、加热III,预热 4.将电子天平复位调零 5.干燥室前干球温度计接近75℃时,断开加热III

洞道干燥实验说明书

洞道干燥实验装置使用说明书 洞道干燥实验装置使用说明书 一、实验装置主要用途及功能 化工原理实验教学:干燥动力学曲线的测定、水-空气系统传热系数测定; 科学研究:本装置还可用于各类非热敏性物料的结合水、非结合水与平衡水含量的实验测定,以及气流干燥过程的热力学特性与热、质同时传递过程的实验研究;由下图可知,本实验装置主要由风机、电加热器、温度控制器、干燥室、风管等设备所组成。空气由风机鼓入电加热器,加热升温后经列管换热器再进入干燥室对物料进行干燥,循环风量由干燥室中的热球风速仪测量。离开干燥室的尾气,经碟阀再返回风机进口循环使用。循环空气温度可通过温度控制器自动调节,以保持在恒定干燥条件下进行实验。空气湿度可由相对湿度计间接获取(读取室温和相对湿度,计算后获得湿度),也可由干燥室前后的干、湿球温度计间接测定(查表读取)。加热空气流量可由碟阀开度来调节。 本实验的湿物料采用特制的无胶纤维纸板,所以有较强的吸水性。操作时将纸板直接放在干燥室内的电子天平托架上进行干燥,电子天平可连续显示湿纸板的重量。因而通过电子天平可直接读取湿纸板任一时刻干燥后的结果,计算出纸板在一定的时间间隔内的失重,即为纸板在这一段时间内所蒸发的水分量。 二、实验装置的主要技术性能指标 1、该装置主要由干燥器、列管换热器、离心风机、热球风速仪、电子天平、电加热器、液体流量计、温控仪表、开关、指示灯等组成。 2、装置整体外形尺寸:长×宽×高1700 mm×500 mm×1200mm。 3、装置总配电要求:AC220V,3.5kw,16A。 4、水分干燥速率:0.005-0.020gcm-2 min-1。 5、气流干燥室断面尺寸:宽×高140×200mm。 6、列管换热器(列管总外表面积0.20m2,19-φ18×1.5mm,长度400/500mm)。 7、转子流量计:水量LZB-10(16-160)L/h。 8、循环风及风量测量: ●离心风机:2800rpm,风量550 m3/h,风压120mmH2O,效率66%,轴功率0.37kw。 ●风量可调范围0-300 m3/h;风速:主管0-10m/s,箱内0-6m/s

流化床干燥实验

北京化工大学 实验报告 课程名称:化工原理实验实验日期: 班级:姓名: 同组人:装置型号:沸腾干燥实验装置 流化床干燥实验 一、摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化 关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。 二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及 恒速阶段的传值系数k H及降速阶段的比例系数K X 四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一)

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。

华工化工原理实验考试复习

化工原理实验复习 1.填空题 1.在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 2.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 3.干燥过程可分为等速干燥和降速干燥。 4.干燥实验的主要目的之一是掌握干燥曲线和干燥速率曲线的测定方法。 5.实验结束后应清扫现场卫生,合格后方可离开。 6.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应该减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 11.某填料塔用水吸收空气中的氨气,当液体流量和进塔气体的浓度不变时,增大混合气体的流量,此时仍能进行正常操作,则尾气中氨气的浓度增大 12.在干燥实验中,提高空气的进口温度则干燥速率提高;若提高进口空气的湿度则干燥速率降低。 13.常见的精馏设备有填料塔和板式塔。 14.理论塔板数的测定可用逐板计算法和图解法。 15.理论塔板是指离开该塔板的气液两相互成平衡的塔板。 16.填料塔和板式塔分别用等板高度和全塔效率来分析、评价它们的分离性能。 2.简答题 一.精馏实验 1.其它条件都不变,只改变回流比,对塔性能会产生什么影响?答:精馏中的回流比R,在塔的设计中是影响设备费用(塔板数、再沸器、及冷凝器传热面积)和操作费用(加热蒸汽及冷却水消耗量)的一个重要因素,所以

流化床干燥实验报告

北方民族大学学生实验报告 院(部): 化学与化学工程 姓名: 汪远鹏学号: ******** 专业: 过程装备与控制工程班级: 153 同组人员: 田友安世康虎贵全 课程名称: 化工原理实验 实验名称: 流化床干燥实验 实验日期: 2017、10。30 批阅日期: 成绩: 教师签名: 北方民族大学教务处制 实验名称:流化床干燥实验 一、目得及任务 ①了解流化床干燥器得基本流程及操作方法、 ②掌握流化床流化曲线得测定方法,测定流化床床层压降与气速得关系曲线。 ③测定物料含水量及床层温度随时间变化得关系曲线、 ④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段得传质系数kH及降速阶段得比例系数Kx。 二、基本原理 1、流化曲线

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入B C段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段、D点处流速即被称为带出速度(u0)、 在流化状态下降低气速,压降与气速关系线将沿图中得DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而就是沿CA’变化。C点处流速被称为起始流化速度(u mf)、 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这就是流化床得重要特点。据此,可以通过测定床层压降来判断床层流化得优劣。 2、干燥特性曲线 将湿物料置于一定得干燥条件下,测定被干燥物料得质量与温度随时间变化得关系,可得到物料含水量(X)与时间(τ)得关系曲线及物料温度(θ)与时间(τ)得关系曲线。物料含水量与时间关系曲线得斜率即为干燥速率(u)。将干燥速率对物料含水量作图。

化工原理流化床干燥实验报告

北京化工大学 实验报告 流化床干燥实验 一、摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化 关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。 二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及 恒速阶段的传值系数k H及降速阶段的比例系数K X 四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一) 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气

速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。

流化床干燥综合3D虚拟仿真试验项目操作说明

流化床干燥综合3D 虚拟仿真实验项目操作说明

流化床干燥综合3D虚拟仿真实验项目是利用动态数学模型实时模拟真实实验流化床干燥的现象和过程,通过3D 仿真实验装置交互式操作,产生和真实实验相一致的实验现象和结果。根据学生的需求与知识结构,构建了两个层次(基础理论型、仿真操作型)四个教学单元的实验内容,使实践教学内容由验证理论向综合应用、研究设计延伸,使不同层次、不同类型的学生都能在本仿真项目中,根据自己的需要来进行自主学习。能够体现化工实验步骤和数据梳理等基本实验过程,满足工艺操作要求,满足流程操作训练要求,能够安全、长周期运行。既能让每位学生都能亲自动手做实验,观察实验现象,记录实验数据,达到验证公式和原理的目的,且能够进一步通过对设备参数的改变,来加深对知识点和原理的理解。 一、干燥工艺及相关设备的认识 本单元主要包括干燥工艺的主要原理、流程、设备及过程特点等,并拓展介绍相关的流体输送设备、传热流程及设备。通过手动设备拆装,观察流化床干燥器内部构件,达到了解其整体结构的目的。 二、流化床干燥单元操作的开车、停车 本单元的主要目的是让学生掌握流化床干燥单元的开、停车方法过程中所需要控制的相

关参数等。在这一单元,采用指导模式和自主操作两种学习方式。指导模式的学习,是学生在软件提示下,进行设备的开停车步骤操作。学生也可以选择自主操作模式,自主操作设备的开车、正常运行和停车步骤。 基本操作 1、快捷键操作:W(前)S(后)A(左)D(右)、鼠标右键(视角旋转)。 图 1-1 注:在非中文输入状态下,点击 W 可逐步放大页面,点击 A 界面右移,可使左边装置进入视角,点击 D 界面左移,可使右边装置进入视角,点击 S,退出拉近,界面恢复。 2、进入主场景后,可进入相应实验室,如流体力学实验室,完成实验的全部操作,进入实验室后可回到主场景中。按住鼠标滚轮上下移动鼠标可进行视角的调整。 3、拉近镜头:鼠标左键双击设备进行操作,还可使用快捷键 W。 4、开关阀门或者其他电源键或者泵开启键为鼠标左键单击操作。 (二)、仿真操作 启动软件后,首先进入如下界面: 实验介绍:介绍实验的基本情况,如实验目的及内容、实验原理、实验装置基本情况,实验方法及步骤和实验注意事项等。 设置:可设置全局标签和环境音效。 退出:点击退出出现如下界面,继续点击确定,则退出软件。

化工原理流化床干燥实验

北京化工大学学生实验报告 院(部):化学工程学院 姓名:学号: 专业:化工班级: 同组人员: 课程名称:化工原理实验 实验名称:干燥实验 实验日期: 2014-5-15 批阅日期:成绩:教师签名:

流化床干燥实验 摘要:本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线。通过实验,了解流化床的使用方法及其工作原理。 关键词:干燥,干燥速率曲线,流化床床层压降 一、目的及任务 1.了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质细述及降速阶段的比例系数。 二、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到的流化床床层压降与气速的关系曲线。 图1:流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时, )。 便进入了气流输送阶段。D点处流速即被称为带出速度(u 在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。

四川大学化工原理干燥实习报告

本科实习报告 学院化学工程 学生姓名张锡坤 专业化学工程与工艺 学号 2014141492186 年级 2014级 指导教师何凌 教务处制表 二ΟΟ六年 12 月 20日

对流干燥实验 一、实验目的 (1)了解洞道式循环干燥器的基本流程、工作原理和操作方法。 (2)掌握物料干燥曲线的测定方法。 (3)测定湿物料的临界含水量X C 。 (4)加强对干燥原理的理解,掌握影响干燥速率的因素。 二、实验原理 干燥是以热能为动力,利用分子浓度不同所带来的扩散性去除固体物料中湿份的操作。干燥过程中,物料首先被空气预热,温度上升到空气的湿球温度,干燥速率上升,随后保持平衡,温度不变,干燥速率恒定。当物料中的自由水被干燥完全后,干燥速率下降,最后至为0,到达水分的平衡。实际过程中,物料的预热时间很短,可以被忽略。 (1)干燥曲线。 干燥曲线是物料的湿含量X 与干燥时间τ的关系曲线。它反映了物料在干燥过程中湿含量随干燥时间的变化关系,其具体形状因物料性质及干燥条件而有所不同,干燥曲线的基本变化趋势如图3-15所示。干燥曲线中BC 段为直线,CD 段为曲线,直线和曲线的交点为临界点,临界点的物料湿含量为临界湿含量XC 。 (2)干燥速率曲线。 干燥速率曲线是干燥速率与物料湿含量的关系曲 线。它反映了物料干燥过程的基本规律,如图所示。从图中可以明显看出,湿物料在干燥过程中经历了三个阶段:物料预热升温段、恒速干燥段和降速干燥段。常常采用实验的方法来测定干燥速率曲线。干燥速率曲线是工业干燥器设计的依据,因而具有重要的现实意义。 干燥速率是以单位时间内、单位面积上所汽化的水分量来表示,其数学式为 τ τAd dX G Ad dW c == u (3-36) 式中:u ——干燥速率,s m ?2 /kg 水; W ——汽化水分量,kg ; G C ——绝干物料量,kg ; X ——湿物料的干基含湿量,kg 水/kg 绝干物料; 图3-16干燥速率曲线

实验八流化床干燥实验

流化床干燥实验 一、实验目的: 1、了解掌握连续流化床干燥方法; 2、估算体积传热系数和热效率。 二、基本原理: 1)对流传热系数的计算 3 (/V m Q W m V t α=??℃) (1) 气体向固体物料传热的后果是引起物料升温Q1和水分蒸发Q2。其传热速率为: 12() (2)Q Q Q =+ w 1221221 ()(() (3)c m c m w Q G c G c x θθθθ=--)=(+c ) w 101('')-() (4)v L v m w Q W I I W r θθ=-)=((+c c ) w 式中: Q 1一湿含量为X 2的物料从θ1升温到θ2所需要的传热速率 Q 2一蒸发(kg /s)水所需的传热速率。 Cm 2一出干燥器物料的湿比热·(KJ /kg 绝干料·℃) I V ’—θm 温度下水蒸气的焓,KJ /kg I L ’一θ1温度下液态水的焓,KJ /kg 流化床干燥器有效容积24V D h π = 脱水速率由物料衡算求出: 12121112 0111121112()(1)()11 (1)() (5)11c w w W G X X G w w w G G w w w w w =-=-----=--?-- 式中: G c 一绝干料速率kg /s G 1一实际加料速率kg /s W 1,W 2一分别为进出口湿基含水量,kg 水/kg 物料:

X 1,X 2一分别为进出口干基含水量, kg 水/kg 绝干物料, G 01,G 11,一分别加料初重与余重,kg Δ1一为加料时间 s 2、热效率η计算 100% (6)Q Q η=?蒸入 干燥过程中蒸发水分所消耗的热量向干燥提供热量 Q 蒸=W(2490+1.88t 2—4.187θ1) (w) (7) Q 入由热量衡算求出: Q 入=Q p +Q D =U p I D +U D I D (8) 式中:U 、I 一表示电压电流 P 、D 一表示预热器和干燥器 Q 出=L(I 2—I 0)+Gc(I 2’—I 1’) (W) (9) 100%Q Q Q η=?入出入 — 三、装置与流程 设备流程图见图1,电路示意图见2。 图1 流态化干澡操作实验流程示意图 1-风机(旋涡泵): 2-旁路阀(空气流量调节阀); 3-温度计(测气体进流量计前的温度); 4-压差计(测流量); 5-孔板流量计:6-空气预热器(电加热器): 7-空气进口温度计; 8-放空阀:9-进气阀:10-出料接收瓶; 11-出料温度计:12-分布板(80不锈钢丝网)·;13-流化床干燥器·(玻璃制品,表面镀以透明导电膜); 14-透明膜电极引线:15-粉尘接收瓶;1 6-旋风分离器:17-干燥器出口温度计;18-取干燥器内剩科插口; 1 9-带搅拌器的直流电机(进固料用): 20、21-原料(湿固料)瓶;22-压差计;23-干燥器内剩料接收瓶;

相关文档
最新文档