第九章_有限元法-边界积分方法_270802905

第九章_有限元法-边界积分方法_270802905
第九章_有限元法-边界积分方法_270802905

粘弹性人工边界在ANSYS中实现

从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下 p(t)=t 当0< DIV> p(t)=2-t 当1<=t<=2时 p(t)=0 当t>2时 材料弹性模量E=2.5,泊松比0.25,密度1 网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。网格图如图1所示 时程分析的时间步长为0.02秒,共计算16秒。计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2). 计算所用命令流如下: /PREP7 L=4 !水平长度 H=2 !竖起深度 E=2.5 !弹性模量 density=1 !密度 nu=0.25 !泊松比 dxyz=0.1 !网格尺寸 G = E/(2.*(1.+nu)) !剪切模量 alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改 Cp=sqrt(alfa/density) !压缩波速 Cs=sqrt(g/density) !剪切波速 R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度 KbT=0.5*G/R*dxyz KbN=1.0*G/R*dxyz CbT=density*Cs*dxyz CbN=density*Cp*dxyz

ET, 1, plane42,,,2 !按平面应变计算 et, 2, combin14, ,, 2 !切向 et, 3, combin14, ,, 2 !法向 r, 2, KbT, CbT r, 3, KbN, CbN MP, EX, 1, E MP, PRXY, 1, nu MP, DENS, 1, density rectng,-L/2.,L/2,0.,H asel, all aesize, all, dxyz mshape,0,2D mshkey,1 amesh, all !以下建立底边界法向和切向弹簧阻尼单元 nsel,s,loc,y,0. *get,np,node,,count !得到选中的结点数,存入np *get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax *do,ip,1,np npnum=node((ip-1)*dxyz-L/2.,0.,0.) x=nx(npnum) y=ny(npnum) z=nz(npnum) npmax=npmax+1 n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3

粘弹性人工边界在ABAQUS软件中的实现

粘弹性人工边界在ABAQUS 软件中的实现(一) 由于粘弹性人工边界是在粘性边界发展而来的,所以为了更加精确的模拟粘弹性边界,我从粘性边界的ABAQUS 实现开始。 首先在粘性边界下的波源问题: 应用ABAQUS 建立二维均匀弹性半空间进行分析, 考虑半无限介质模型, 介质密度为1 700 kg /m 3, 杨氏模量E 为1. 70×108 Pa, 泊松比v 为0. 25, 在顶面处入射脉冲波, 初始压缩波速Vp 为200 m / s, 周期为0.1 s, 幅值为1g, 加速度时程如图1所示。计算范围为100 m × 20 m, 单元大小为1m ×1m 。模型示意图如图2。 0.000.020.040.060.080.10 0.0 0.2 0.4 0.6 0.8 1.0 振幅脉冲 波 加速度时程 图1 图2 通过ABAQUS 软件模拟,得到结果文件:Job-huwei6131

然后解决波源问题: 取一个长为 8m ,深为 4m 的土层为地基,地基土的弹性模量取 2.5Pa ,泊松比取 0.25,剪切模量取 1Pa ,密度取 1kg/m 3,剪切波速取 1m/s ,压缩波速取 3m/s ,输入一个频率为 4Hz ,最大幅值为 1m 的剪切正弦波,持时去一个周期约为 1.57s. 输入脉冲波: -1.0 -0.5 0.0 0.5 1.0 位移(m )时间(s ) 图3 同样采用粘性人工边界 网格划分为0.1m ×0.1m ,侧向人工边界采用和波源问题相同的方法即释放脉冲波作用方向,约束其他方向。 图4

通过数值软件模拟得到的结果:Job-huwei6141

6.1 电磁场边界积分方程

第六章 边界单元法 有限元法属于偏微分方程法。对于求解有界电磁场域的场分布,尤其是有复杂边界和多种媒质、线性或非线性、静态或时变场的数值计算都是十分成功的,有的文献认为有限元法是应用最广,最重要的数值分析方法。 当然,任何一种数值分析方法都不是万能的,有限元法的不足之处主要表现为: 1. 对于无界求解区域的处理比较困难; 2. 所求得的数值解是位函数值,再通过求导,一般比位值的精度低一个数量级,所以计算精度较低; 3. 对时变电磁场的求解,计算量太大。 在以上这几点所反映的问题上,边界单元法解决得比较好,有明显优势。此外,边界单元法还具有能降低所研究问题的维数,离散剖分和数据准备简单等特点,它已成为计算场的重要方法,我们需要进行学习。 6.1 电磁场边界积分方程 6.1.1电磁场边界元方程的基本关系 设三维线性泊松方程为所求场的控制方程,D 是具有边界面S 的求解区域。在S 上含有给定的第一和第二类边界条件的边界1S 和2S ,21S S S +=。对于这类恒定场,定解问题可表示为: 式中:u 表示位函数,f 是场源密度函数(如ε ρ-)。若已求得近似解u ~ ,带入边值问题, 用R 、1R 和2R 分别表示方程余量及边界余量:

f u R -?=~2 u u R S ~-=1 S q q R -=2 取权函数w ,按加权余量法,令误差分配的加权积分为: 021>=<->??<->

人工边界转换方法解读

静-动力分析中人工边界转换方法的研究 摘要:通过将粘弹性动力人工边界应用于同时考虑静力效应和动力效应的工程算例,阐明了此类问题静-动力分析人工边界转换时保证模型为静力平衡体的必要性。通过将粘弹性静-动力统一人工边界应用于半无限空间体有限元模型的静力分析中,验证了静力计算中的误差将使模型动力分析的稳态反应出现相近的误差。在此基础上,系统阐述了适用于同时考虑静力效应和动力效应的工程问题的静-动力分析人工边界转换方法。 关键词:人工边界,静力分析,动力分析,边界转换 Abstract:Though the application of dynamic viscous-spring artificial boundary to an engineering case with a consideration of both static and dynamic effect, and the application of the unified viscous-spring boundary for static and dynamic analysis to static analysis of a finite modal of half space, the problems of the applications of viscous-spring artificial boundary to this kind of engineering calculation was pointed out, and its corresponding solving method was proposed. On the base, a systematic switching method of these artificial boundaries was specified. Keywords: artificial boundary, static analysis, dynamic analysis, switching of boundaries 1 前言 人工边界从广义上可分为静力人工边界和动力人工边界。静力人工边界由来已久,通常有固定边界、滚轴边界等。动力人工边界经过几十年的研究发展,已形成具有全局人工边界和局部人工边界的两大类别,并应用于各自适应的工程计算中[1]。 动力人工边界发展到现在已有透射边界、粘性边界、粘弹性边界等几种类型。1994年,Deeks 提出粘弹性人工边界[11]。1998年,刘晶波等人发展了二维的黏弹性人工边界[3],又于2005年将其发展为三维时域黏弹性人工边界[4]。2006年,刘晶波等人再将二维黏弹性边界发展成一致粘弹性人工边界及其对应的粘弹性边界单元[5],并于2007年推导了三维一致粘弹性人工边界及等效粘弹性边界单元[6]。 目前对静-动力分析的普遍做法是采用静力人工边界和动力人工边界分别对静力问题和动力问题进行计算,将计算结果进行叠加后得到完整的结果[1]。但由于叠加原理仅在线弹性小变形范围内适用,原则上不能应用于涉及非线性或大变形问题的分析。 目前对涉及非线性或大变形问题的静-动力分析,常用的人工边界转换方法主要有以下几种:(1)静力分析和动力分析都采用滚轴边界或固定边界;(2)静力分析中采用滚轴边界或固定边界,动力分析采用粘弹性边界、透射边界、粘性边界等人工边界;(3)静力分析和动力分析都采用静-动力统一边界,如粘弹性静-动力统一人工边界。 对第(1)种方法,由于固定边界使波动全部反射,已有许多文献证明其具有放大振动效应的作用,目前已经使用得不多。刘晶波等人基于黏弹性动力人工边界和半无限空间中静力问题的基本解,建立了对动力问题和静力问题均适用的三维黏弹性静-动力统一人工边界,从而上述第(3)种方法得以解决[1]。 然而,在使用人工边界对地下结构进行动力分析时,还存在一些问题。如第(2)种方法,由于在静-动力分析的人工边界转换时的方法存在问题,致使产生错误的结果。在第(3)种方法中,将粘弹性静-动力统一人工边界应用于地下结构的静力分析时,其解与准确值存在误差。本文将就此两问题进行论证和分析,并阐述合理的地下结构静-动力分析人工边界转换方法。 2 静力和动力有限元分析原理

有限元边界条件和载荷

X边界条件和载荷 10.1边界条件 施加的力和/或者约束叫做边界条件。在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。 经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1.集中载荷(作用在一个点或节点上) 将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2.在线或边上的力 上图中,平板受到10N的力。力被平均分配到边的11个节点上。注意角上的力只作用在半个单元的边上。

上图是位移的云图。注意位于板的角上的红色“热点”。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。 上述例子中,平板依然承受10N的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3.牵引力(或斜压力) 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

有限差分法、边界元法和离散元法

有限差分法 已经发展的一些近似数值分析方法中,最初常用的是有限差分法,它可以处理一些相当困难的问题。但对于几何形状复杂的边界条件,其解的精度受到限制,甚至发生困难。作为60年代最重要的科技成就之一的有单元法。在理论和工程应用上都_得到迅速发展,几乎所有用经典力学解析方法难以解决的工程力学问题郁可以用有限元方法求解。它将连续的求解域离散为一组有限个单元的组合体,解析地模拟或逼近求解区域。由于单元能按各种不同的联结方式组合在一起,且单元本身又可有不同的几何形状,因此可以适应几何形状复杂的求解域。相限元的另一特点是利用每一单元内假设的近似函数来表示全求解区域上待求的未知场函数。单元内的近似函数由未知场函数在各个单元结点上数值以及插值函数表达,这就使未知场函数的结点值成为新的未知量,把一个连续的无限自由度问题变成离散的有限自由度问题,只要结点来知量解出,便可以确定单元组合体上的场函数。随着单元数目的增加,近似解收敛于精确解。但是有限元方法常常需要很大的存贮容量,甚至大得无法计算;由于相邻界面上只能位移协调,对于奇异性问题(应力出现间断)的处理比较麻烦。这是有限单元法的不足之处。 边界元法 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。与有限元法在连续体域内划分单元的基本思想不同,边界元法是在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件,通过对边界分元插值离散,化为代数方程组求解。降低了问题的维数,可用较简单的单元准确地模拟边界形状,利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。 上述两种数值方法的主要区别在于,边界元法是“边界”方法,而有限元法是“区域”方法,但都是针对连续介质而言,只能获得某一荷载或边界条件下的

内燃机零部件有限元计算中边界条件处理的研究

内燃机零部件有限元计算中边界条件处理的研究 * 孙 军 汪景峰 桂长林 (合肥工业大学机械与汽车工程学院 合肥 230009) 摘 要:有限元方法已经成为内燃机零部件应力和变形计算的主要手段,但是目前在内燃机零部件有限元分析中采用的边界条件是否合理,有无必要采用更符合实际的边界条件?本文以曲轴为例,模拟实际 状况,采用不同的边界条件进行了有限元计算。计算结果表明,边界条件处理对曲轴有限元分析结果影响很大。因此,为了提高内燃机零部件有限元计算结果的精度,非常有必要根据实际情况确定边界条件。 关键词:边界条件 有限元 内燃机中图分类号:TK412.4 文献标识码:A 文章编号:1671-0630(2005)03-0006-03 Study on Boundary Condition in Finite Ele ment Calculation for Parts of Internal Co mbustion Engi ne Sun Jun ,W ang Jingfeng ,Gui Changlin H efeiUn i v ersity of Techno l o gy (H efei 230009) Abst ract :The fi n ite ele m ent m et h od has beco m e the m a i n m eans to calcu late t h e stress and de f o r m ation o f parts for inter na l co m bustion engine .Bu,t whether the boundary conditi o ns used i n FE ana l y sis on parts o f i n -ter nal co m busti o n eng ine are reasonable ?Is it necessary to use the boundary condition ,wh ich ism ore adapta -b le to the facts ?As an exa m p le ,the crankshaft is ca lculated by FE usi n g d ifferent boundary conditi o ns that si m ulate factual conditi o ns .The resu lts sho w t h at the boundary conditi o ns have i m portant effects on the results of FE analysis o f crankshaf.t Therefo re ,it is necessary to choose boundary cond itions acco r d i n g to factua l con -d iti o n i n o r der to i m prove the prec isi o n of calcu l a ti n g resu lts for parts o f i n ternal co m bustion eng i n e .K eyw ords :Boundary conditi o n ,F i n ite ele m en,t I C eng i n e 前言 随着有限元计算技术的进步,有限元方法目前已 经成为内燃机零部件应力和变形计算的主要手段。内燃机零部件的有限元分析,类似于其他问题的有限元分析,边界条件的处理是否合理直接影响计算结果的精确性。本文以曲轴为例,分析目前采用的边界条件是否合理,有无必要采用更符合实际的边界条件。 目前在曲轴有限元计算中,载荷边界条件的处理(重点是作用在轴颈表面的力处理)基本采用的是定 型模式,其假设作用在轴颈上的载荷(其与曲轴轴承油膜压力对应)为分布载荷,沿轴线方向均布或呈抛物线分布,沿圆周方向呈余弦分布 [1~4] 。这种处理方 法简单易行,但其属于较理想的状况,因为实际曲轴轴承的油膜压力分布规律复杂,且随时间变化。沿轴向抛物线型的油膜压力分布规律仅适合于无限短且轴颈轴线与轴承孔中心线平行的滑动轴承,实际的曲轴轴承为有限长轴承,且由于受到诸多因素的影响,如载荷作用下轴的变形、轴承的制造与装配误差和轴的热变形 * 基金项目:国家自然科学基金资助项目(50175023) 作者简介:孙军(1960-),男,硕士,研究方向,内燃机现代设计理论与方法。 第34卷 第3期2005年6月小型内燃机与摩托车 S MALL I N TERNAL COM B UST I O N ENG I N E AND MOTORCYCLE Vo.l 34No .3 June .2005

6.3 边界积分方程的离散化方程

6.3 离散化边界积分方程的建立 以二维边界离散化方程的建立为例,重点突出离散化方法的学习。 6.3.1建立Laplace 场的边界离散化方程 电磁场边界元法的通用积分方程 (4) 其中: ?????? ?∈∈∈=域外 光滑的边界上域内D D c i 0 211 设在Laplace 场中的二维边界上一点i 处,有方程: 在二维场的边界线l 上进行离散,将l 划分为许多小段,每段以直线段或曲线段逼近,作为一个单元。设l 点共被分为0N 个单元,其中在第一类边界1l 段上划分了1N 个单元,在第二类边界2l 段上划分了2N 个单元: 210N N N += 作为单元待求量的插值计算方式,可分为几种: ① 恒值单元 同一单元中的待求量u 和 n u ??都设为恒定值 (或称零次插值),实际上是取单元中点的u 值(或 n u ??值)作为单元的u 值(或n u ??值)。这样,取单 元中点为节点,所以求解变量数等于节点数。 ② 线性单元

它也是直线单元,其u 值在单元两端点之间按线性变化(即线性插值)。单元两端点为单元的节点。 ③ 曲线单元 每单元上的节点数大于2,以多节点拟合的曲线逼近边界单元,以单元节点上的高阶插值函数作为待求位函数近似解。 取最简单的单元——恒值单元为例,介绍边界元离散方法。 按上面的方程对i 单元的“i ”节点离散化 ∑? ∑? ==??= ??+ o j o j N j l N j l i l n u F l n F u u 1 1 d d 2 1 ∑? ∑?=== ??+ 1 1 d d 2 1N j l N j l j j i j o j l F q l n F u u ,?= j l ij l F G d ,上式表示为: 设i 点为i 单元的中点(021N i 、、、 =),有 ()∑∑==== 1 01 21N j N j j ij j ij N i q G u H ,,, 式中: 于是上述0N 个方程写为矩阵形式 GQ HU = 由定解问题中的第一类边界1l ,对应有1N 个单元的位值u s 是已知的,2l 是第二类边界,对应有2N 个单元n u q s ??= 位是已知。所以上述矩阵方程中,有2N 个单元的u 值和 1N 个单元的q 值是未知的,即是说矩阵方程有021N N N =+个未知数。设单元排列顺序 在1l 边界上为1,2,……,1N ,在2l 边是上为11+N 、21+N 、…、0N ,则上述矩阵方

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

IDESA有限元分析_第6篇第26章 基于几何施加边界条件

第26章MasterFEM 教程:定义边界条件 前面的教程简单介绍了仿真分析的流程。本篇将介绍更多高级定义边界条件的内容(载荷和约束)。 用户将学会: ?创建约束和约束集。 ?创建载荷和载荷集。 ?创建边界条件集。 ?解算定义以上边界条件的模型。 ?创建均布载荷。 ?解算定义以上边界条件的模型。 ?比较不同工况下的结果。 开始前必备知识: 熟悉MasterFEM界面和创建零件。 熟悉在模型文件中管理零件。 熟悉拉伸特征和旋转特征的布尔运算。 熟悉仿真分析流程。 熟悉自由网格划分。 设置1/3 如果还没有运行一个新的模型文件,创建一个新文件并命名。 ·1·

·2· File Open 打开模型文件菜单 确信用户是在以下工作状态和任务当中 : 设置工作单位为毫米(mm) Options Units 设置2/3 工作内容:按照以下尺寸草绘封闭形状的图形。 提示 : 为什么:这个零件代表了典型机构连杆的应力集中部位。

工作内容: 命名零件 提示: 命名菜单 设置3/3 工作内容:创建一个和零件关联的有限元模型(FEM1)。 提示 保存模型文件。 File Save 警告! 如果软件提示用户保存模型文件,用户应选择:No 记住:只有教程中提示保存模型文件,而不是软件提示保存的时候,用户才可以执行保存文件操作。 为什么: 在上一次保存以后的错误操作不能撤销恢复,用户可以选择重新打开文件,恢复到上一次保存时的状态。 提示: ·3·

重新打开模型文件的快捷键:按Control-Z。 创建约束和约束集1/3 工作内容:全约束以下高亮表面。 怎样做: 表面上定义约束的菜单 OK 创建约束和约束集2/3 注意事项: 会产生约束符号。 在几何边缘、表面、顶点的约束用不同的颜色和符号表示。 ·4·

固体力学中的边界积分方程及其边界元法综述

计算固体力学 读书报告 固体力学中的边界积分方程及其边界元法 综述 Review of the Boundary Integral Equation and Boundary Element Method in Solid Mechanics 土木工程系 2014年03月17日

评语

目录 摘要 (2) A BSTRACT (2) 一、引言 (3) 1)什么是边界元法[1] (3) 2)积分方程和边界元法的发展历史[2] (3) 二、边界元法[5] (4) 1)概述 (4) 2)基本解 (4) 3)拉普拉斯(Laplace)积分方程 (5) 4)拉普拉斯(Laplace)边界积分方程 (6) 5)拉普拉斯(Laplace)积分方程离散化与解法 (6) 6)泊松(Poisson)边界积分方程 (7) 三、结束语 (8) 参考文献 (9)

摘要 本文综述了边界元法的历史、现状及发展,并对积分方程和边界元法的原理进行了简单推导。边界元法是在经典的积分方程的基础上,吸收了有限元法的离散技术而发展起来的计算方法,具有计算简单、适应性强、精度高的优点。它以边界积分方程为数学基础,同时采用了与有限元法相似的划分单元离散技术,通过将边界离散为边界元,将边界积分方程离散为代数方程组,再用数值方法求解代数方程组,从而得到原问题边界积分方程的解。用传统的有限单元法求解不可压缩材料会遇到严重困难,但是用边界元法求解这类材料不会有任何问题。近年来随着将快速多级算法引入边界元法,使边界元法的计算效率和解题规模都有了几个数量级的提高。 关键词:边界元法积分方程边界离散快速多级算法 Abstract This paper reviews the history, current situation and development of the boundary element method and deduced the integral equation. The boundary element method is based on the integral equation and absorbed the discrete technology of finite element method. It has the advantages of simple calculation, strong adaptability and high accuracy. It is based on the boundary integral equation, though boundary discretization discrete boundary integral equations into algebraic equations, and then by the numerical method solving algebraic equations, thus obtain the original problem solution of boundary integral equations. The solution of nearly or exactly incompressible material problems presents serious difficulties and errors when using the conventional displacement-based finite element method, because the general stress-strain equations of elasticity contain terms that become infinite as Poisson’s ratio reaches 0.5, while the boundary element method accommodates such problems without any difficulty due to the nature of the integral equations used in the analysis. In recent years, the fast multi-pole boundary element method has received much attention because some large-scale engineering design and analysis problems were analyzed faster using boundary element method than with finite element method. This new trend suggests future prospects for boundary element method applications. Keywords:Boundary Element Method; Integral Equation; Boundary Discretization Method; Fast Multipole Algorithm

DDA方法中的人工边界问题研究

第34卷第5期岩石力学与工程学报V ol.34 No.5 2015年5月Chinese Journal of Rock Mechanics and Engineering May,2015 DDA方法中的人工边界问题研究 付晓东,盛谦,张勇慧 (中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北武汉 430071) 摘要:数值分析中的人工边界可能会引入虚假的反射波,不可避免地影响求解,针对非连续变形分析(DDA)方法中的人工边界问题,首先,基于Newmark法推导黏性边界、黏弹性边界对DDA方程组的贡献;其次,为更好地解决地震等外源入射问题,在DDA中引入了自由场边界;最后,为保证静、动力分析过程转换时边界的一致性,在DDA中实现静动力统一边界。利用改进后的DDA程序进行算例分析,结果表明:各人工边界理论在DDA程序实施正确;黏性边界能高效地吸收人工边界处的反射波,黏弹性边界可以反映介质的弹性恢复能力;与黏性边界相比,两侧施加自由场边界模拟无限域运动可以减少边界的影响;引入统一人工边界的DDA可以完整地模拟静、动力计算全过程。 关键词:数值分析;非连续变形分析;人工边界;黏性边界;黏弹性边界;自由场边界;静动力统一边界 中图分类号:O 242 文献标识码:A 文章编号:1000–6915(2015)05–0986–08 INVESTIGATION ON ARTIFICIAL BOUNDARY PROBLEM IN DISCONTINUOUS DEFORMATION ANALYSIS METHOD FU Xiaodong,SHENG Qian,ZHANG Yonghui (State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,Wuhan,Hubei430071,China) Abstract:The artificial boundaries in numerical analysis may introduce fictitious scattered waves,which inevitably affect the simulation results. The artificial boundary problem in the discontinuous deformation analysis (DDA) method had been investigated in detail. Firstly,the contributions to the DDA equations for nonreflecting boundaries(including the viscous boundary and the viscoelastic boundary) were deduced based on the Newmark method. Secondly,to accurately simulate the motion due to external source wave such as earthquakes,a free-field boundary in DDA was introduced. Lastly,the unified static-dynamic boundary was implemented in DDA to ensure the consistency of the transformation of the boundaries. The analysis of examples with the improved DDA program showed that each artificial boundary theory has been correctly implemented. The viscous boundary was found to be highly effective for the absorption of the reflection wave at the artificial boundaries,and the viscoelastic boundary adequately simulated the elastic recovery of the infinite domain. The DDA model with the free-field boundaries at both sides is better than that imposed by the viscous boundary. The DDA with the unified boundary can completely simulate the static and dynamic calculation process. Key words:numerical analysis;discontinuous deformation analysis(DDA);artificial boundaries;viscous boundary;viscoelastic boundary;free-field boundary;static-dynamic unified boundary 收稿日期:2014–02–25;修回日期:2014–07–19 基金项目:国家重点基础研究发展计划(973)项目(2015CB057905);国家自然科学基金资助项目(11272331);国家自然科学基金重大研究计划集成项目(91215301) 作者简介:付晓东(1986–),男,2009年毕业于四川大学水利水电学院农业水利工程专业,现任助理研究员,主要从事岩土力学领域中数值计算方面的研究工作。E-mail:xdfu@https://www.360docs.net/doc/ba13319735.html, DOI:10.13722/https://www.360docs.net/doc/ba13319735.html,ki.jrme.2014.0176

粘弹性人工边界应用中的几个关键问题及其在ANSYS中的实现

粘弹性人工边界应用中的几个关键问题及其在 ANSYS 中的实现 蒋伟 河海大学土木工程学院,江苏南京 (210098) E-mail: jw800403@https://www.360docs.net/doc/ba13319735.html, 摘 要:粘弹性人工边界能同时模拟半无限地基的能量辐射效应和弹性恢复能力,精度较高,计算结果稳定,在工程中受到越来越广泛的应用。本文通过粘弹性人工边界理论,比较全面地介绍了粘弹性人工边界应用中人工边界的设置、参数选取、波动输入方法等几个关键问题以及在通用有限元分析软件ANSYS 中的实现,并结合平面问题算例,验证了该方法的有效性和准确性。 关键词:粘弹性人工边界;结构-地基动力相互作用;ANSYS ;波动输入 1. 引言 半无限地基的模拟问题是结构-地基动力相互作用分析中的一个关键问题。目前通常的做法是在截取的有限域截断面上设置人工边界,合理地设置人工边界对于正确反映结构-地基的整体动力特性很重要。 人工边界大致可分为全局人工边界和局部人工边界两大类。局部人工边界与全局人工边界相比,具有所需计算机存储量小、计算时间短、实用性强等优点,因此在实际工程中得到了比较广泛的应用。局部人工边界中,工程上目前较常用的有廖振鹏等提出的透射边界[1]、Lysmer 等提出的粘性边界[2],以及Deeks 在粘性边界的基础上提出了粘弹性人工边界[3]等。透射边界虽具有较高精度,但在实际应用中一般仅限于二阶精度以内,并且存在编程较复杂、计算中可能引起高频失稳等问题。粘性边界虽只有一阶精度,但概念清楚,易于程序实现,所以应用比较广泛,但其仅考虑了对散射波的吸收,不能模拟半无限地基的弹性恢复能力。粘弹性边界具有能同时模拟散射波辐射和半无限地基的弹性恢复能力的优点,且能克服粘性边界引起的低频漂移问题,稳定性好。目前,粘弹性人工边界已经开始应用到实际工程中,并越来越受到工程界的重视。本文将以二维平面问题结合大型通用有限元计算软件ANSYS ,就粘弹性人工边界如何实现的几个问题做一简要的介绍。 2. 粘弹性人工边界的几个关键问题 2.1 粘弹性人工边界理论 粘弹性人工边界的推导过程同粘性边界相类似,在假设边界上不存在能量反射的前提下,基于二维散射波为柱面波的情形可推导出任一半径b r 处,以b r J K 为外法线的微元面上应力同该处速度和位移的关系式为: (,)(,)(,)2b b b S b w r t G r t w r t c r t τρ?=? ?? (1) 令 2b b G K r =, b S C c ρ= (2) 其中,G 为剪切模量,ρ为介质密度,S c 为介质中的剪切波速。

相关文档
最新文档