小型单相变压器设计

小型单相变压器设计
小型单相变压器设计

1. 变压器的工作原理

变压器的功能主要有:电压变换;阻抗变换等,变压器常用的铁心形状一般有E型和C型铁心。

变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的

能量的变换装备。

变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。当交流变压器U1加到一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中产生感应电动势。这时如果二次侧与外电路的负载接通,便有交流I2流出,负载端电压即为U2。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为N1,副绕组匝数为N1。

图(1)变压器结构示意图

图(2)变压器简化电路图

1.1电压变换

当一次绕组两端加上交流电压U1时,绕组中通过交流电流I1,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通Φ,主磁通在一次绕组中产生感应电动势e1。u1、i1、e1等的参考方向的设定与交流铁心线圈电路相同。

E1=-j4.44N1fΦ(1-1)

dt d 1

11N -e u Φ

== (1-2)

dt

d 222N

e u Φ

=-= (1-3) 变压器一、二次绕组的电动势之比称为变压器的电压比,K 为变比。

K N N E E U U 2

1

2121=== (1-4) K

U U 1

2= (1-5)

说明只要改变原、副绕组的匝数比,也就是改变N1、N2,就能按要求改变电压。

1.2电流变换

变压器在工作时,二次电流I 2的大小主要取决于负载阻抗模|Z 1|的大小,而一次电流I 1的大小则取决于I 2的大小。

又因 2211I U I U = (1-6)

所以 21

2

1I I U U =

(1-7) 说明变压器在改变电压的同时,亦能改变电流。

小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。

2.变压器的基本结构

2.1变压器结构

a)铁心:铁心是变压器磁路部分。为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅

量较高的、厚度为0.35或0.5mm、表面涂有绝漆的热轧或冷轧硅钢片叠装而成。铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。

铁心结构有两种基本形式:心式和壳式。铁心在叠装时如图所示。

2

1

3

4

(a)奇数层

2

3

1

4

(b)偶数层

b)绕组:绕组是变压器的电路部分。一般采用绝缘纸包的铝线或铜线绕成。为了节省

铜材,我国变压器线圈大部分是采用铝线。

c)其它结构部件:储油柜、气体继电器、油箱,铁柱;铁轭;高压线圈;低压线圈

2.2主要类型

按相数的不同变压器可分为单相变压器和三相变压器等。

按每相绕组的数量不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。

按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。此类变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。此类变压器用铜量少,多用于小容量变压器中。

按用途的不同,变压器可分为电力变压器、电炉变压器、整流变压器、仪用变压器等。

按冷却方式的不同,变压器可分为干式变压器,油浸式变压器

2.3额定值

变压器上的铭牌的标注,就是这台变压器的额定值,额定值的作用是说明变压器的工作能力和工作条件。运行值不可超过额定值,否则会造成仪器的损坏。

变压器的额定值有如下几种:

1额定电压U1N/U2N

如果是单相变压器,其额定电压是指变压器在空载运行时高、低压绕组电压的额定值。

2额定电流I1N/I2N

单相变压器的额定电流是指变压器在满载运行时高低压绕组的电流值

3额定容量S N

额定容量简称容量,是指变压器视在功率的额定值。

单相变压器中

S N=U2N I2N=U1N I1N(2-1)4额定频率f N

我国规定的工业标准频率f N=50HZ

3. 设计内容

设计内容分为如下部分:额定容量的确定;铁心尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁心尺寸的最后确定。

3.1额定容量的确定

变压器的容量又称视在功率,是指变压器二次侧输出的功率,通常用KV A 表示

3.1.1二次侧总容量

小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视在功率之代数和,即:

I U I

U I U S n

n +++= (3)

3

2

2

2

(3-1)

式中 S 2 表示二次侧总容量。

U 2、U 3……U N 表示二次侧各个绕组电压的有效值(V ); I 2、I 3……I N 表示二次侧各个绕组的负载电流有效值(A )。

3.1.2一次绕组的容量

对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为

η

2

1S S =

(3-2)

式中分母表示变压器的效率,约为0.8~0.9。

3.1.3变压器的额定容量

由于本次设计为小型单相变压器,所以不考虑在三相变压器中的情况,只考虑在小型单相变压器的情况。

小型单相变压器的额定容量取一、二绕组容量的平均值。

S=2

1

×(S 1+S 2) (3-3)

3.1.4一次电流的确定

11)

2.1~1.1(U S

I = (3-4)

式中(1.1~1.2)考虑励磁电流的经验系数,对容量很小的变压器应取大的系数。

3.2铁心尺寸的选定

3.2.1计算铁心截面积A

为了减小铁损耗,变压器的铁心是用彼此绝缘的硅钢片叠成或非晶材料制成。其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,变压器铁心在叠装时相临两层硅钢片的接缝要相互错开。

A ——铁心柱的净面积,单位为cm 2

K 0——截面计算系数,与变压器额定容量S n 有关,按表3-1选取,当采用优质冷轧硅钢片时K 0可取小些截面积计算系数K 0。

表3-1 截面积计算系数K 0的估算值

S 2/(V A) 0-10 10-50 50-500 500-1000 1000以上

K 0

2

1.75-2

1.4-2

1.2-1.4

1

计算心柱截面积A 后,就可确定心柱的宽度和厚度

A=ab=ab ;k c (3-5)

式中 a ——铁心柱的宽度(mm );

b ——铁心柱的净叠厚(mm ); b ;

——铁心柱的实际厚度(mm );

按A 的值,确定a 和b 的大小,答案是很多的,一般取b=(1.2~2.0)a ,,并尽可能选用通用的硅钢片尺寸。表3-2列出了通用的小型变压器硅钢片尺寸。

表3-2 小型变压器通用的硅钢片尺寸

a c h A , H 13 16 19 22 25 28 32 38 44 50 58 64

7.5 9 10.5 11 12.5 14 16 19 22 25 28 32

22 24 30 33 37.5 42 48 57 66 75 84 96

40 50 60 66 75 84 96 114 132 150 168 192

34 40 50 55 62.5 70 80 95 110 125 140 160

本设计的铁心采用硅钢片,也可用如下经验公式:

A=S

N

75

.1 (3-6)

3.3绕组的匝数与导线直径

3.3.0 计算主磁通

Φm=ABm (3-7)

3.3.1计算每伏电压应绕的匝数

从变压器的电势公式E=4.44fNB m A,若频率f=50Hz,可得出每伏所需的匝数

A

A f E N

B B N m m 3

80105.444.410?=

== (3-8)

N 0——对应于每伏电压的匝数 ,单位:V / 匝

B m ——铁心柱内工作磁密最大值,单位:T A ——铁心柱截面积,单位:cm 2 当铁心材料国热轧硅钢片时,取Bm=1.0 ~ 1.2T ;采用冷轧硅钢片时,可取Bm=1.2~1.5T 然后根据N 和各线圈额定电压求出各线圈的匝数。

N 1=N 0U 1 (3-9) N 2=(1.05~1.10)N 0U 2 (3-10) N 3=(1.05~1.10)N 0U 3 (3-11)

式中N 1、N 2 ……N n ——各线圈的匝数。 所以可得直接计算公式

φ

m

N

f U

N 44.411= (3-12)

φ

m

N

f U

N

44.422

= (3-13)

为补偿负载时漏阻抗压降,副边各线圈的匝数均增加了5%~10%。

3.3.2计算导线直径d

小型变压器的线圈多采用漆包圆铜线绕制。为限制铜损耗及发热,按各个绕组的负载

电流,选择导线截面,如选的小,则电流密度大,可节省材料,但铜耗增加,温升增高。小容量变压器是自然冷却的干式变压器,容许电流密度较低,根据实践经验,通过导线的电流密度J 不能过大,对于一般的空气自然冷却工作条件,J=2—3A/mm 2。

对于连续工作时可取J=2.5A/mm 2

导线的截面积: j I

A C =

导线直径:I 75.10mm j

I

13.1j I 4d ===

π 导线直径可根据工作电流计算,

式中: d —原、副边各线圈导线直径,单位:mm ;

I —原、副边各线圈中的工作电流,单位:A ; 3.3.3绕组(线圈)排列及铁心尺寸的最后确定。

绕组的匝数和导线的直径确定后,可作绕组排列。绕组每层匝数为

')]

4~2([9.0d h N c -=

(3-14)

式中 d ,—绝缘导线外径(mm );

h ——铁心窗高(mm );

0.9——考虑绕组框架两端厚度的系数;

(2~4)——考虑裕度系数。

各绕组所需层数为

m=N/Nc (3-15)各绕组厚度为

t i=m i(d i+δi)+γ,(i=1、2 …n)(3-16)

式中δi——层间绝缘厚度(mm),导线较细(0.2mm以下),用一层厚度为0.02~0.04mm白玻璃纸,导线较粗(0.2mm以上),用一层厚度为0.05~0.07mm的电缆纸(或牛皮纸),更粗的导线,可用厚度为0.12mm的青壳纸;

γ——绕组间的绝缘厚度(mm),当电压不超过500V时,可用2~3层电缆纸夹1~2层黄蜡布等。

绕组总厚度为

t=(t0+t1+t2+ ……t n)(3-17)

——绕组框架的厚度(mm)

式中t

计算所得的绕组总厚度t必须略小于铁心窗口宽度c,若t>c,可加大铁心叠装厚度,减小绕组匝数或重选硅钢片的尺寸,按上述步骤重复计算和核算,至合适时为止。

4.实例制作

如上图所示,取U 1=220V ,U 2=270V ,U 3=60V , I 2=0.15A ,I 3=0.1A 。 计算变压器的主要参数,并选择可行的材料。 1.计算变压器的额定容量S N

a) 计算副边的容量:

S 2=U 2 I 2 + U 3 I 3=270*0.15+60*0.1=46.5 (V·A)

b) 计算原边的容量:

S 1=S 2/η

小型单相变压器的效率η的估算值可以取η=0.8,因此21S S =/η=46.5/0.8=58.125(V·A)。 c) 计算变压器的额定容量

S N =1/2(S 1+S 2)=0.5×(58.125+46.5)=52.31(V·A)

考虑到存在着一定的损耗,故可以定变压器的额定容量近似取56V·A

2. 铁心尺寸的选定

a )计算铁心截面积A

N 0S K A =

根据表2. 截面积计算系数K 0的估算值可以取K 0=1.75 因此

13.1561.75S K A N 0=== b )铁心中柱宽度a 与铁心叠厚b 的计算 参数a 、b 的选取可以近似取a=28mm 因此,

b=110A/a=110×10.48/25=51.4 mm.

此时b/a=51.4/28=1.84满足b=(1.2 - 2)a 的通常要求。 由a=28mm 得c=14mm ,h=42mm ,A ,=84mm ,H=70mm

3.计算绕组线圈匝数

a)求出每伏电压应绕的匝数 取f=50HZ

m m AB A fB E N N 450000

44.41030=

===3.4(匝/V ) 式中的Bm=1.1T (铁心材料国热轧硅钢片)

b)根据N 0和各线圈额定电压求出各绕组的匝数

N 1=N 0U 1=3.4×220=748

N 2=(1.05~1.10)N 0U 2=1.10×3.4×270=1010 N 3=(1.05~1.10)N 0U 3=1.10×3.4×60=225

c)各绕组每层匝数

N L1 = 7846.02

429.0'd 2h .901=-=- N L2 = 130277.02

429.0'd 2h .902=-=- N L3=159226

.02

429.0'd 2h .903=-=- 4.各绕组所需层数

m 1=10N N L11

= m 2=16N N 2L22

= m 3=2N N L3

3

= 5.计算导线直径d

导线的截面积:

A c =I/j

I 1=(1.1- 1.2)S/U 1==1.15×56/220=0.293(A) A c1=0.293/2.5=0.117 mm

0.095mm I 75.10mm j

I 13.1j I 4d ====

π

同理:A c2=0.06 mm 2 d 2=0.277mm

A c3=0.04 mm 2 d 3=0.226 mm

5.结论

通过这次的设计我知道了小型变压器质量可以从他的空载损耗和短路损耗判断出来,越小越好,同时工作温度也会低,并有很好的负载,通过空载电流的测定,铁损较大的变压器,发热量大,安培匝数设计要是不合理,空载电流会大增,就会造成温升增大,有损寿命。电压变化;若以高压侧绕组为一次侧绕组,低压侧绕组为二次绕组。则变压器起降压作用,反之起升压作用。电流变换;变压器在工作时二次侧电流的大小取决于负载阻抗模的大小,一次侧电流大小取决于二次绕组。

本次设计制作还是达到了理想的要求,不仅变压器可以正常工作,而且变压器的效率也是较高的。

6.主要参考文献

1. 李海发编著《电机学》。北京:科学出版社,2001年

2. 唐介编著《电机与拖动》。北京:高等教育出版社,2003年

3. 顾绳谷主编《电机及拖动基础》(第2版)。北京:L机械工业出版社,2000年

4. 汤蕴璆等编《电机学》。西安:西安交通大学出版社,1993年

5. 彭鸿才编《电机原理及拖动》。北京:L机械工业出版社,2001年

单相变压器毕业设计

单相变压器毕业设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录 单相变压器的设计 摘要:本次设计的课题是单相变压器,基本要求是输入电压范围在24V到60V,功率为100W的单相升压变压器。首先要了解变压器的工作原理、结构和分类,

其次是变压器的设计步骤包括额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的确定。 关键词:变压器基本原理设计步骤 前言 随着科学技术进步,电工电子新技术的不断发展,新型电气设备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。 输电线路将几万伏或几十万伏高电压的电能输送到负荷区后,由于用电设备绝缘及安全的限制,必需经过降压变压器将高电压降低到适合于用电设备使用的低电压。当输送一定功率的电能时,电压越低,则电流越大,电能有可能大部分消耗在输电线路的电阻上。为此需采用高压输电,即用升压变压器把电压升高输电电压,这样能经济的传输电能。 它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。如果按变压器的用途来分类,几种应用最广泛的变压器为:电力变压器、仪用互感器和其他特殊用途的变压器;如果按相数可以分为单相和三相变压器。不管如何进行分类,其工作原理及性能都是一样的。变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合

中小型变压器设计

中小型变压器设计 一,小型单相变压器的设计 变压器容量大小与其铁心大小有一定的比例关系,计算公式有三,先说小的,后边再说其它两种。早年采用热轧硅钢片时使用的铁心计算公式,与现在相比同容量它计算的铁心面积就偏大。早年的变压器烧毁翻修就得用这个公式,它计算的容量在1KVA左右的日子型和口子型铁心。 铁心截面St=K√P,K为系数,P=0~10VA时K=2。10~50,2~1.75,50~500,1.5~1.4, 500~1000, 1.4~1.2,1000VA 以上为1。 例如:100VA计算,St=1.5√100=15cm2。 1.旧设备上一台能耗制动变压器烧毁返修实例: 把铁心拔掉,用手摇绕线机把一二次侧的匝数记一下,再用卡尺或千分尺记下两导线带绝缘和不带绝缘的直径大小,用平均匝长乘匝数或直接称得重量,到商店买不到合适导线,可根据铁窗余量大小用大一号或小一号导线代用,所以在买导线之前开始计算每层能绕几匝,多少层能绕完。层与层垫什么绝缘,垫多厚,一二次之间绝缘垫几层,与铁心柱之间采用什么绝缘骨架等,它们总厚度是多少,可得知窗口面积的余量。他们能绕下你当然也能绕下,但限于你手头材料有限,绝缘材料厚度及导线截面大小就得灵活掌控。 绕完后用铁心片试插一下,看有不合适可修正,觉得无问题可在烘箱内干燥,浸漆再烘干,线包插上铁心应通电试验一下,是否经得起考验,并把铁心夹紧后铁心四周刷漆烘干,使铁心粘紧通电不发声,到此变压器返修完毕,可以放心安放到设备上运行。 2.新设计一台能耗制动变压器: (1).已知条件:采用磁密为10000高斯的热轧硅钢片,制动对象为7KW交流异步电动机,直流电流Id=4Io(7KW 电机空载电流为6A)=4×6=24A,直流电压Ud=Id×Rd(电机线圈直流电阻1Ω)=24×1=24V。(2).按电感负载单相桥式整流有关系数计算:交流电压U=24÷0.9=27V,交流功率P=27V×24A=648VA(也可以交流功率P=24V×24A ×1.11=640VA。经常启动制动但不是连续工作,暂载率可取50%,不太经常取30%,取一半功率P=640VA÷2=320VA,采用前面的铁心计算公式,St=1.4√320=1.4×17.9=25cm2,每匝电压=25mm2×10÷450=0.557V/匝(10为10000高斯,450为50HZ时的系数)。热轧硅钢片磁密可取14000左右,冷轧硅钢片取16000~17500高斯,磁密变动后每匝电压=25×15÷450=0.833V/匝,当f=60HZ时,每匝电压Et=25mm2×15÷375=1.0V/匝,当f=50KHZ时,Et=25mm 2×15×50k×10ˉ3/22500也可Et=25mm2×15×1000÷450=834V/匝(故频率越高铁心越小)。380V÷0.57=682匝,27V÷0.57=49匝,320VA÷27V=11.85A,320VA÷380V=0.842A。 (3).电流密度及导线选取: 在空气中自冷的漆包铜导线电密取2~2.5A/mm2。 在油中自冷的纸包铜导线电密取3.5~4.5A/mm2。 在空气中自冷的双玻璃丝包线电密取3.5~4.5A/mm2 高压导线截面选取=0.842A÷2.5A/mm2=0.337mm2,QQ铜漆包导线Φ0.67/Φ0.75(实有面积0.3526mm2)。 低压导线截面选取=11.85A÷2.5A/mm2=4.74mm2,QQ铜漆包导线Φ2.44/Φ2.74(实有面积4.676mm2)。(4).导线及绝缘在窗口内的排布: 第一步:铁心选宽150mm高125mm中柱宽50mm窗口高75mm宽25mm,铁心有效面积25cm2,实际面积=25÷0.95=26.3mm2铁心厚度=26.3÷5cm=53mm。 第二步:预计绕组骨架,用2mm玻璃布板,这样窗口面积由75×25变成71×23,高压导线排列=71÷Φ0.75×1.05(余量系数)=90根,682匝÷90=7.6≈8层。低压导线排列=71÷Φ2.74×1.05=24匝,49匝÷24匝=2.04≈3层(当然遇到这种情况还可以调整铁心尺寸)。 第三步:计算高低压绕组幅向宽度,高压幅向=8层×Φ0.75×1.05=6.5mm,低压幅向=3层×Φ2.74×1.05=9mm,层间绝缘用0.12mm厚电缆纸,绝缘厚度=(11×2层+5层)×0.12=3.5mm,总幅向=6.5+3.5+9=19mm。 以上设计不是最佳方案,如是一台还可以,是批量生产得反复调整直到最佳,也就是用料最省,成本最小,线包绕好后的工序同返修变压器一样。 (5)绕制时的其它注意事项:在绕制较小变压器时,原线直接引出容易折断,这时引出头用粗导线引出。需要电磁干扰屏蔽的变压器在高低压绕组之间放上一层铜或铝箔,由于它引出接地,它与高压绕组之间的绝缘厚度等于高低压之间绝缘厚度,它与低压之间绝缘厚度相应薄一些。金属箔首尾不留间隙但必须用绝缘隔开,不得形成短路回路。 二,焊机类变压器设计 1,点焊、对焊等低压只有一匝的变压器设计 它与磷铜焊机一样具有输出电流大阻抗低的特性,所不同的磷铜焊机低压为3~5匝,它们铁心外形尺寸是高≥宽的日字形,如果宽≥高为高阻抗特性,输出电流小不好用或用不成。 点焊机、对焊机为了焊接不同厚度的铁皮和对焊不同粗细的钢筋,它的低压电压要在较大的范围内变化,因低压只有一匝,只能在高压匝数上变化。高压绕组分成几个单元,通过不同的串并连来改变低压电压,无论那种串并连,高压每个单元绕组全都得利用。 点焊、对焊机还有一个特点就是不连续工作,存在一个暂载率问题,所以在铁心截面计算及导线截面计算上都得乘上一个暂载率系数。下面设计一台25KVA的点焊对焊机,暂载率取40%,冷轧硅钢片磁密取17500高斯。

电气工程--小型单相变压器设计原理

东北石油大学 课程报告

2011年7 月15 日

目录 1、小型单相变压器 (1) 2、变压器的工作原理 (1) 2.1 电压变换 (1) 2.2 电流变换 (2) 3、变压器的基本结构 (2) 4、设计内容 (3) 4.1 额定容量的确定 (3) 4.2 铁心尺寸的选定 (4) 4.3 绕组的匝数与导线直径 (6) 4.4 绕组(线圈)排列及铁心尺寸的最后确定 (7) 5、实例计算 (8) 6、结论 (10) 7、心得体会 (10) 参考文献 (12) 附录 (13)

1、小型单相变压器 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数[1] 。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备 [2-4] 。 文献[5]所述,变压器的主要部件是一个铁心和套在铁心上的两个绕组。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1 N ,副绕组匝数为2N 。 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 2.1 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通 φ。 (1) (2) (3) (4)

电机与变压器教 案2 (小型单相变压器的制作)

教案正页序号2

教案附页 2、小型变压器的设计 四、课题 所需的相 (一)自耦变压器 1、单相自耦变压器 2、三相自耦变压器自 压 仅 降压,只要 入、输出对 下,就变成 压 器。

入低压侧,这是很不安全的,所以低压侧应有防止过电压的保护措施。 2)如果在自耦变压器的输入端把相线和零线接反,虽然二次侧输出电压大小不变,仍可正常工作,但这时输出“零线”已经为“高电位”,是非常危险的。 (3). 自耦变压器输出功率 S2=U2I2=U2(I+I1)=U2 I +U2I1=S’2+S’’2 S’2为绕组之间电磁感应传递的能量,而S’’2为电路直接从一次侧传递的能量。 从U2I1= S’’2可导出:S’’2=S2/K 通常,自耦变压器变比K=1.2~2的状态下,优点明显。(二)仪用互感器 1、电流互感器工作原理 电流互感器结构上与普通双绕组变压器相似,也有铁心和一次侧、二次侧绕组,但它的一次侧绕组匝数很少,只有一匝到几匝,导线都很粗。电流互感器的二次侧绕组匝数较多,它与电流表或功率表的电流线圈串联成为闭合电路,由于这些线圈的阻抗都很小,所以二次侧近似于短路状态。由于二次侧近似于短路,所以互感器的一次侧的电压也几乎为零,因为主磁通正比于一次侧输入电压,总磁势为零。 2、电压互感器工作原理路中,流电流,被

电压互感器的原理和普通降压变压器是完全一样的,不同的是它的变压比更准确;电压互感器的一次侧接有高电压,而二次侧接有电压表或其他仪表(如功率表、电能表等)的电压线圈。因为这些负载的阻抗都很大,电压互感器近似运行在二次侧开路的空载状态, U2为二次侧电压表上的读数,只要乘变比K就是一次侧的高压电压值。 仪用互感器的结构和使用注意事项比较 比较 内容 电流互感器电压互感器 结构一次绕组匝数很少,只 有一匝到几匝,导线都 很粗,串联在被测的电 路中; 二次绕组匝数 较多,二次侧近似于短 路状态。运行中二次侧 不得开路。一次侧接有高电压,而二次侧近似开路状态,运行中,二次侧不能短路。

单相变压器毕业设计

目錄 摘要 (2) 前言 (2) 1.变压器的工作原理及分类 (3) 1.1变压器的基本工作原理 (3) 1.2变压器的分类 (4) 2.变压器的基本结构 (4) 2.1铁芯 (4) 2.2绕组 (5) 2.3其他 (5) 3.设计的内容 (5) 3.1 额定容量的确定 (5) 3.1.1 二次侧总容量 (5) 3.1.2一次绕组的容量 (6) 3.1.3变压器的额定容量 (6) 3.1.4一次电流的确定 (6) 3.2铁芯尺寸的选定 (7) 3.2.1计算铁芯截面积A (7) 3.3 绕组的匝数与导线直径 (9) 3.3.1绕组的匝数计算 (9) 3.3.2导线直径的计算 (9) 3.4 绕组(线圈)排列及铁心尺寸的最后确定 (11) 4.结论 (12) 参考文献 (13)

單相變壓器的設計 摘要:本次設計的課題是單相變壓器,基本要求是輸入電壓範圍在24V到60V,功率為100W 的單相升壓變壓器。首先要瞭解變壓器的工作原理、結構和分類,其次是變壓器的設計步驟包括額定容量的確定;鐵芯尺寸的選定;繞組的匝數與導線直徑;繞組(線圈)排列及鐵芯尺寸的確定。 關鍵字:變壓器基本原理設計步驟 前言 隨著科學技術進步,電工電子新技術的不斷發展,新型電氣設備不斷湧現,人們使用電的頻率越來越高,人與電的關係也日益緊密,對於電性能和電氣產品的瞭解,已成為人們必需的生活常識。 變壓器是一種靜止的電氣設備,它是利用電磁感應原理把一種電壓的交流電能轉變成同頻率的另一種電壓的交流電能,以滿足不同負載的需要。在電力系統中,變壓器是一個重要的電氣設備,它對電能的經濟傳輸,靈活分配和安全使用具有重要的作用,此外,也使人們能夠方便地解決輸電和用電這一矛盾。 輸電線路將幾萬伏或幾十萬伏高電壓的電能輸送到負荷區後,由於用電設備絕緣及安全的限制,必需經過降壓變壓器將高電壓降低到適合於用電設備使用的低電壓。當輸送一定功率的電能時,電壓越低,則電流越大,電能有可能大部分消耗在輸電線路的電阻上。為此需採用高壓輸電,即用升壓變壓器把電壓升高輸電電壓,這樣能經濟的傳輸電能。 它的種類很多,容量小的只有幾伏安,大的可達到數十萬千伏安;電壓低的只有幾伏,高的可達幾十萬伏。如果按變壓器的用途來分類,幾種應用最廣泛的變壓器為:電力變壓器、儀用互感器和其他特殊用途的變壓器;如果按相數可以分為單相和三相變壓器。不管如何進行分類,其工作原理及性能都是一樣的。變壓器是通過電磁耦合關係傳遞電能的設備,用途可綜述為:經濟的輸送電能、合理的分配電能、安全的使用電能。實際上,它在變壓的同時還能改變電流,還可改變阻抗和相數。小型變壓器指的是容量1000V.A以下的變壓器。最簡單的小型

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛. 1。1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等. 1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

最佳低频变压器设计方法

最佳低频变压器设计方法 热轧硅钢片选铁心型号和叠厚:比如E I型的,中部舌宽,叠厚每伏匝数:N0=4、510^5/BmQ0=4、510^5/(11000Q0) Bm:磁通密度极大值,10000~12000Gs一次匝数:N1=N0U1二次匝数:N2=N0U 21、0 61、06为补偿负载时的电压下降一次导线截面积: S1=I1/δ=P1/U1δ,δ:电流密度,可选2~3A/mm^2二次导线截面积:S2=I2/δ=P2/U2δ舌口32MM,厚34MM,E宽96MM,问功率,初级220,多少匝,线粗多少,次级51V 双组的,最大功率使用要多粗的线,告口是指<EI型变压器铁芯截面积是指E片中间那一横(插入变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽叠厚=截面积,单位:C㎡>,第一种方法:计算方法:(1)变压器矽钢片截面:3、2CM*3、4CM*0、9=9、792CM^2(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9、79/1、25)^2= 61、34瓦(取60瓦)(3)根据截面计算线圈每伏几匝: W=4、5*10^5/BmS=4、5*10^5/(10000*9、79)=4、6匝/伏(4)初级线圈匝数:220*4、6=1012匝(5)初级线圈电流: 60W/220V=0、273A(6)初级线圈线径:d=0、715根号0、273=0、

37(MM)(7)次级线圈匝数:2*(51*4、6*1、03)=2*242(匝)(1、03是降压系素,双级51V=2*242匝)(8)次级线圈电流:60W/(2*51V)=0、59A(9)次级线径:d=0、715根号0、59=0、55(MM)第二种方法:计算方法:E形铁芯以中间舌为计算舌宽的。计算公式:输出功率:P2=UI考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0、7~0、9,一般功率大的取大值)每伏匝数计算公式:N(每伏匝数)=4、510(的5次方)/BS(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。S=铁芯舌的面积,单位是平方CM)如硅钢片质量一般可选取10000高斯,那么可简化为:N=45/S计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。初级不用加余量。由电流求线径:I=P/U (I=A,P=W,U=V)以线径每平方 MM≈2、5~2、6A选取。第三种方法:计算方法首先要说明的是变压器的截面积是线圈所套住位置的截面积、如果你的铁心面积(线圈所套住位置)为32*34=1088mm2= 10、88cm2 我没有时间给你计算、你自己算、呵呵!给你个参考,希望对你有帮助:小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,你的铁心截面=3、5╳1、6=5、6平方厘米故,每伏匝数=55/5、6=9、8匝2,求线圈匝数初级线圈 n1=220╳9、8=2156匝次级线圈n2=8╳9、8╳1、05= 82、32 可取为82匝次级线圈匝数计算中的1、05是考虑有负荷时的压降3,求导线直径你未说明你要求输出多少伏的电流是

小型单相变压器的绕制资料

实训八、小型单相变压器的绕制 小型单相变压器的绕制分设计制作和重绕修理制作两种,无论那种,其绕制工艺都是相同的。设计制作是将使用者的要求作为依据,以满足要求进行设计计算后再绕制;而重绕修理制作是以原物参数作为依据,进行恢复性的绕制。下面先学习设计制作方式的变压器绕制。 一、小型单相变压器的设计制作 小型单相变压器的设计制作思路是:由负载的大小确定其容量;从负载侧所需电压的高低计算出两侧电压;根据用户的使用要求及环境决定其材质和尺寸。经过一系列的设计计算,为制作提供足够的技术数据,即可做出满足需要的小型单相变压器。 (一)设计计算 1、计算变压器输出容量2S 输出容量的大小受变压器二次侧供给负载量的限制,多个负载则需要多个二次侧绕组,各绕组的电压、电流分别为22I U 、,33I U 、,44I U 、,..,则2S 为 ++=33222I U I U S (VA ) 2、估算变压器输入容量1S 和输入电流1I 对小型变压器,考虑负载运行时的功率损耗(铜耗及铁耗)后,其输入容量1S 的计算式为 η2 1S S = (VA ) 式中:η——变压器效率,始终小于1,kVA 1以下的变压器9.0~8.0=η。 输入电流I 1的计算式为 11 1) 2.11.1(U S I -= (A ) 式中:U 1——一次侧电压的有效值,V 。 3.变压器铁心截面积的计算及硅钢片尺寸的选用 (a)截面积的计算 小型单相变压器的铁心多采用壳式,铁心中柱放置绕组。铁心的几何形状如图1-11-1所示。它的中柱横截面 Fe A 的大小与变压器输出容量S 2的关系为 2S k A Fe =(cm 2) 式中:k ——经验系数,大小与S 2有关,可参考表1-11-1

变压器的设计

目录 目录_________________________________________________________________________ 1摘要_____________________________________________________________________ 2 一、变压器的基本结构 ________________________________________________________ 3 二、变压器的工作原理________________________________________________________ 4 1.电压变换_______________________________________________________________ 4 2.电流变换_______________________________________________________________ 5 三、设计内容________________________________________________________________ 5 1、额定容量的确定 _______________________________________________________ 5 2、铁心尺寸的选定_______________________________________________________ 6 3、计算绕组线圈匝数______________________________________________________ 8 4、计算各绕组导线的直径并选择导线________________________________________ 9 5、计算绕组的总尺寸,核算铁芯窗口的面积_________________________________ 10四设计实例________________________________________________________________ 11 4.1 设计要求 ____________________________________________________________ 11 4.2计算变压器参数_______________________________________________________ 12五总结_____________________________________________________________________ 15参考文献____________________________________________________________________ 15附录

单相变压器设计

物理与电子工程学院 《XXXXXXX》课程设计报告书 设计题目:位置随动系统串联校正 专业:电子信息科学与技术 班级: 09电科本1 学生姓名: 学号: 指导教师: 年月日

物理与电子工程学院课程设计任务书专业:班级:

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。 本次课程设计以位置随动系统为例,研究控制系统的串联校正方法,并对位置随动系统校正前后的性能进行分析。 关键词:随动系统;串联校正;相角裕度;

目录 1 位置随动系统.............................................. 1.1 位置随动系统工作原理...................................... 1.2 各部分传递函数............................................ 1.3 位置随动系统结构.......................................... 1.4系统MATLAB建模............................................ 1.5校正前系统仿真............................................. 2 系统校正.................................................. 2.1 校正网络设计.............................................. 2.2 校正后系统仿真............................................ 3 校正前后性能比较.......................................... 3.1 频域分析.................................................. 3.2 时域分析.................................................. 4 总结及体会................................................ 参考文献.....................................................

课题为小型变压器的设计

课题为小型变压器的设计 应为小型变压器主要面向对象为大众人群,工业需求较少,且主要是降压作用,所以以下课题以单相变压器为对象。 小型变压器是指2kVA以下的电源变压器及音频变压器。而对于小型变压器设计原则与技巧,根据所查资料及询问老师傅,应有如下几点。 1:变压器截面积的确定铁芯截面积A是根据变压器总功率P确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即A= 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。 2:每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35W电源变压器,通常计算(中夕片取8500高斯)每伏应绕72匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25mA左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。 3:漆包线的线径确定线径应根据负载电流确定,于漆包线在不同环境

下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2A/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度25A/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样的漆包线取电流密度3~/mm2(线径)。音频变压器的漆包线电流密度可取~4A/mm2(线径)。这样因时制宜取材既可保证质量又可大大降低成本。 4:并且对于容量在2KVA,一次侧电压48V,二次侧电压220V,频率为50Hz的升压变压器市场价格在700至1000不等,所以对于小型变压器设计也应考虑实际价位。 综上所述要想设计出性价比较高的变压器,铁芯的截面积只能大不能小;适当减少每伏的匝数;详细分析负载情况;合理选用漆包线的规格。只有通过反复实践细心推敲,才能真正掌握变压器的设计原则与技巧。 变压器的工作原理及基本结构 1.基本结构图 图基本结构图 2基本原理 根据法拉第电磁感应定律及楞次定律,当一次侧绕组两侧对其施加电压时,绕组会产生电流,于法拉第电磁感应定律,一次侧电流感应出磁,感应磁经主磁路向二次侧方向通过,当感应磁经二次侧绕组时,于法拉第电磁感应定律,二

单项变压器的设计说明

1. 变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换等,变压器常用的铁心形状一般有E型和C型铁心。 变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的 能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。当交流变压器U 1 加到一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中产生感应 电动势。这时如果二次侧与外电路的负载接通,便有交流I 2流出,负载端电压即为U 2 。原 绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为N 1,副绕组匝数为N 1 。 图(1)变压器结构示意图 图(2)变压器简化电路图1.1电压变换 当一次绕组两端加上交流电压U 1时,绕组中通过交流电流I 1 ,在铁心中将产生既与一 次绕组交链,又与二次绕组交链的主磁通Φ,主磁通在一次绕组中产生感应电动势e1。u1、i1、e1等的参考方向的设定与交流铁心线圈电路相同。 E1=-j4.44N1fΦ(1-1)

dt d 1 11N -e u Φ == (1-2) dt d 222N e u Φ =-= (1-3) 变压器一、二次绕组的电动势之比称为变压器的电压比,K 为变比。 K N N E E U U 2 1 2121=== (1-4) K U U 1 2= (1-5) 说明只要改变原、副绕组的匝数比,也就是改变N1、N2,就能按要求改变电压。 1.2电流变换 变压器在工作时,二次电流I 2的大小主要取决于负载阻抗模|Z 1|的大小,而一次电流I 1的大小则取决于I 2的大小。 又因 2211I U I U = (1-6) 所以 21 2 1I I U U = (1-7) 说明变压器在改变电压的同时,亦能改变电流。 小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。

小型单相变压器的设计

电机学课程设计 总结报告 课题名称:小型变压器的设计 学生姓名: 学号: 专业:电气工程及其自动化班级: 指导老师:

目录 目录_____________________________________________________ 1 摘要_________________________________________________ 2 一、变压器的基本结构_____________________________________ 3 二、变压器的工作原理____________________________________ 4 1.电压变换 ___________________________________________ 4 2.电流变换 ___________________________________________ 5 三、设计内容____________________________________________ 5 1、额定容量的确定_____________________________________ 5 2、铁心尺寸的选定____________________________________ 6 3、计算绕组线圈匝数___________________________________ 8 4、计算各绕组导线的直径并选择导线_____________________ 9 5、计算绕组的总尺寸,核算铁芯窗口的面积 _____________ 100 四设计实例____________________________________________ 11 4.1 设计要求_________________________________________ 11 4.2计算变压器参数____________________________________ 12 五总结_________________________________________________ 15 参考文献________________________________________________ 15 附录

《电机与拖动》课程设计_小型单相变压器设计

小型單相變壓器的設計和繞制 班級: 08機電3班 姓名: ***** 學號: 04040803034 指導教師: ***** 日期: 6月25日

目錄 一、小型單相變壓器簡介 二、變壓器的工作原理 三、變壓器的基本結構 四、設計內容 五、實例計算 六、結論 七、心得體會

一、小型單相變壓器簡介 變壓器是通過電磁耦合關係傳遞電能的設備,用途可綜述為:經濟的輸送電能、合理的分配電能、安全的使用電能。實際上,它在變壓的同時還能改變電流,還可改變阻抗和相數。小型變壓器指的是容量1000V.A 以下的變壓器。最簡單的小型單相變壓器由一個閉合的鐵心(構成磁路)和繞在鐵心上的兩個匝數不同、 彼此絕緣的繞組(構成電路)構成。這類變壓器在生活中的應用非常廣泛。 二、變壓器的工作原理 變壓器的功能主要有:電壓變換;阻抗變換;隔離;穩壓(磁飽和變壓器)等,變壓器常用的鐵心形狀一般有E 型和C 型鐵心。變壓器是利用電磁感應原理將某一電壓的交流換成頻率相同的另一電壓的交流電的能量的變換裝備。變壓器的主要部件是一個鐵心和套在鐵心上的兩個繞組,如圖(1)所示。一個繞組接電源,稱為原繞組(一次繞組、初級),另一個接負載,稱為副繞組(二次繞組、次級)。原繞組各量用下標1表示,副繞組各量用下標2表示。原繞組匝數為1N ,副繞組匝數為2N 。 圖(1)變壓器結構示意圖 理想狀況如下(不計電阻、鐵耗和漏磁),原繞組加電壓1u ,產生電流1i ,建立磁通 ,沿鐵心閉合,分別在原副繞組中感應電動勢21e e 和。

(1) 電壓變換 當一次繞組兩端加上交流電壓1u 時,繞組中通過交流電流1i ,在鐵心中將 產生既與一次繞組交鏈,又與二次繞組交鏈的主磁通φ。 (1-1) (1-2) (1-3) (1-4) 說明只要改變原、副繞組的匝數比,就能按要求改變電壓。 (2)電流變換 變壓器在工作時,二次電流2I 的大小主要取決於負載阻抗模|1Z |的大小,而一次電流1I 的大小則取決於2I 的大小。 2211I U I U = 又 (1-5) K I I U U I 22121== ∴ (1-6) 說明變壓器在改變電壓的同時,亦能改變電流。小型變壓器的原理:小型單相變壓器一般是指工頻小容量單相變壓器。 三、 變壓器的基本結構 1、鐵心:鐵心是變壓器磁路部分。為減少鐵心內磁滯損耗渦流損耗,通常鐵心用含矽量較高的、厚度為0.35或0.5mm 、表面 塗有絕漆的熱軋或冷軋矽鋼片疊裝而成。鐵心分為鐵柱和鐵軛兩部分,鐵柱上套裝有繞組線圈,鐵軛

单相变压器毕业设计

目录 摘要 (2) 前言 (2) 1.变压器的工作原理及分类 (3) 1.1变压器的基本工作原理 (3) 1.2变压器的分类 (4) 2.变压器的基本结构 (4) 2.1铁芯 (4) 2.2绕组 (5) 2.3其他 (5) 3.设计的内容 (5) 3.1 额定容量的确定 (5) 3.1.1 二次侧总容量 (5) 3.1.2一次绕组的容量 (6) 3.1.3变压器的额定容量 (6) 3.1.4一次电流的确定 (6) 3.2铁芯尺寸的选定 (7) 3.2.1计算铁芯截面积A (7) 3.3 绕组的匝数与导线直径 (9) 3.3.1绕组的匝数计算 (9) 3.3.2导线直径的计算 (9) 3.4 绕组(线圈)排列及铁心尺寸的最后确定 (11) 4.结论 (12) 参考文献 (13)

单相变压器的设计 摘要:本次设计的课题是单相变压器,基本要求是输入电压范围在24V到60V,功率为100W 的单相升压变压器。首先要了解变压器的工作原理、结构和分类,其次是变压器的设计步骤包括额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的确定。 关键词:变压器基本原理设计步骤 前言 随着科学技术进步,电工电子新技术的不断发展,新型电气设备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。 输电线路将几万伏或几十万伏高电压的电能输送到负荷区后,由于用电设备绝缘及安全的限制,必需经过降压变压器将高电压降低到适合于用电设备使用的低电压。当输送一定功率的电能时,电压越低,则电流越大,电能有可能大部分消耗在输电线路的电阻上。为此需采用高压输电,即用升压变压器把电压升高输电电压,这样能经济的传输电能。 它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。如果按变压器的用途来分类,几种应用最广泛的变压器为:电力变压器、仪用互感器和其他特殊用途的变压器;如果按相数可以分为单相和三相变压器。不管如何进行分类,其工作原理及性能都是一样的。变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。小型变压器指的是容量1000V.A以下的变压器。最简单的小型

小型变压器课程设计

辽宁工程技术大学 《电机学》课程设计 设计题目:小型单相变压器设计 院(系、部): 专业班级: 姓名: 学号: 指导教师: 日期: 2013-6-28

电气工程系课程设计标准评分模板

摘要 电,现今社会已经近乎于主导地位的洁净能源,还在继续提高着自己的位置。围绕着它所展开的学术研究也一天天的多了起来,针对着世界能源紧缺这个不可回避的问题,人们把希望寄托到了电的身上。它的产生方式很多,这就为它能多方式的产生打下了基础,如水能、风能等不好利用的能源,都能被合理的转化成电能,可见电的发展前景是很广阔的。发电、变电、用电,很多课题都已经大规模的展开,变压器也是其中一门很重要的学科。 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。

目录 一﹑变压器的工作原理 (6) 二﹑变压器的组成 (6) (三)﹑其他部分 (8) 三﹑变压器主要参数的计算 (9) (一)、容量的确定 (9) (二)、铁心尺寸的选定 (10) (三)、绕组的计算 (12) (四)、绕组排列 (13) (五)、安全性和稳定性 (14) 四、例题 (15) 五、结论 (17) 参考文献 (18)

一﹑变压器的工作原理 当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁芯穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁芯中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁芯里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。 二﹑变压器的组成 (一)﹑铁心 1﹑铁心的作用和形式铁心是变压器的基本部件,由磁导体和夹紧装置组成,所以它有两个作用。 在原理上,铁心的磁导体是变压器的磁路。它把一次电路的电能转为磁能,又由自己的磁能转变为二次电路的电能,是能量转换的媒介,磁导体是铁心的主体。在结构上,铁心的夹紧装置不仅使磁导体成为一个机械上完整的结构,而且在其上面套有带绝缘的线圈,支持着引线,几乎安装了变压器内部的所有部件,所以它又是变压器的骨架。 铁心的重量在变压器各部件中占有绝对的优势,在干式变压器中占总重量的60%左右,在油浸式变压器中由于有变压器油和油箱,重量的比例才下降约占40%。 变压器的铁心(即磁导体)是框形闭合结构。其中,套线圈的部分称心柱,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,壳式铁心和心式铁心。铁扼包围了线圈的称为壳式铁心,否则称心式铁心,由带状硅钢片卷绕而成的称卷铁心。 壳式铁心一般是水平放置的,心柱截面为矩形,每相有两个旁扼,壳式铁心的优点是铁心片规格少,心柱截面大而长度短,夹紧和固定方便,漏磁通有闭合回路,附加损耗小,易于油对流散热。缺点是线圈为矩形,工艺特殊,绝缘结构复杂,短路能力差,尤其是硅钢片用量多。 心式铁心的优缺点正好与壳式相反,壳式和心式两种结构各有特色,很难断定其劣式。但由其绝缘所决定的制造工艺则大有区别,一旦选定了某一种结构,就很难转而生产另一种结构。正由于这个原因,国内都采用心式铁心,只有在小容量的单相变压器及特殊用途的变压器中采用壳式铁心。

相关文档
最新文档