Excel_在建立数学模型的应用

Excel_在建立数学模型的应用
Excel_在建立数学模型的应用

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模在计算机专业的应用

应用一图论算法 图论在计算机处理问题中占有重要地位,现实中的很多问题最终都可以转化成图论问题,或者要借助图结构来存储和处理。但是怎么把一图存入计算机就要涉及到数学建模的知识。 比如下面一图: 如果要求出从节点v1到节点v5的所有路径,就可以借助计算机来很轻松的解决。但前提条件是,必须要把图以一种计算机可以理解的形式存进去,即要把它抽象为数学问题。 在此,我们需要定义一些关于图的概念,以便更好的描述问题。 边与顶点的关系有如下几种典型情况: 简单图:无自回环,无重边的图。

无向图:边没有指向, 1212 e. i i i i i ψ()={v,v}=v v此时称边e i与顶点12 i i v,v关联,称 顶点 1 i v与顶点 2 i v邻接。 有向图:边有指向, 1212 e. i i i i i ψ u u u u u r ()=(v,v)=v v 下面是具体涉及到图如何存储的问题: 1.图G(V,E)的关联矩阵x R=(r) ij n m ,若G(V,E)为无向图, 1 2 i j ij i j j i j j v e r v e e v e e ? ? =? ? ? 与不关联 与关联,为非自回环 与关联,为自回环 若G(V,E)为有向图, 1 2 i j ij i j i j v e r v e v e ? ? =? ? ? 与不关联 是的起点 是的终点 因此该图可以用关联矩阵表示出来,如下所示 1100000 1010100 0101001 0011010 0000111 R ?? ? ? ? = ? ? ? ?? 这样,我们就可以以矩阵的形式将图存入计算机

数学建模方法及其应用

一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.

3. 排序原理 层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对 O 的影响之比,全部比较结果可用成对比较阵 ()1 ,0,ij ij ji n n ij A a a a a ?=>= 表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足: ,ij jk ik a a a ?=,,1,2, ,i j k n = (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质:

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模在工程中的应用

模糊分析法解足球队排名问题 余科(数理学院122112 ) 苏博飞(数理学院122111) 王有元(数理学院122111) 过思甸(公管学院023112) 摘要:本文解答了93年全国大学生数学建模竞赛B题,运用模糊聚类分析法,讨论了足球队比赛的排名问题。首先,我们将数据进行预处理,求出每队的胜,负,平以及总场数,归一化处理后作为建模的影响因子,然后由相似系数构建模糊相似矩阵,最后构建模糊等价矩阵截取进行排名,并将得到的结果从12支队推广到了N支队的情况。本文中所用的方法经过验证,得到的结果合理,可信。 关键词:模糊分析法,相似系数,比赛排名 一问题分析 根据题目所给的表格,我们能得到的数据是残缺和不整齐对称的,这样就给排名造成了困难。例如在图表中,T1队和T2队打了三场比赛,和T5只打了一场比赛,和T11没打比赛。这样如果只是单纯的利用胜利的场数来进行排名,所得到的结果必定是不完善的,同时也是不准确的。因此为了得到较完善的结果,我们可以先将每个队所参加的比赛中,胜,负和平的场数列表如下,得到每个队实力的大概了解。

表一 场数 队T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 胜10 5 8 1 2 2 13 6 7 6 1 2 负 5 4 4 12 5 3 1 8 8 5 6 3 平 4 6 3 6 2 0 3 3 2 6 2 4 总19 15 15 19 9 5 17 17 17 17 9 9 接着,我们分析各队在每场比赛中的平均进球数,失球数和进失球数差数,这些数据也有助于我们进一步了解各队的实力。列表如下: 表二 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 进球数1.41 2 0.8 1.33 3 0.63 2 1 0.6 2.05 9 0.94 1 0.64 7 0.88 2 0.77 8 0.66 7 失球数0.94 1 0.66 7 0.8 1.68 4 1.44 4 1.2 0.58 8 0.82 4 1 1 1.55 6 1 进失球差0.47 1 0.43 3 0.53 3 -1.05 2 -0.44 4 -0.6 1.47 1 0.11 8 -0.35 3 -0.11 8 -0.77 8 -0.33 3 通过表一,二的分析,我们可以确定T7是最好的,T4是最差的,但是对于其他的球队仅以上述数据还是无法得出准确可信的排名。 为了得出合理可信的排名,我们还应该考虑,Ti与其余各队的比赛成绩,由于有的对和其余的对没有比赛,其成绩难以确定。为了解决这个难题,我们准备先制定一个规则,为各队定义一组特征数据,同时计算各队之间的模糊相似度。最后综合表一二,即可得出合理的排名出来。

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

初中数学建模方法及应用

龙源期刊网 https://www.360docs.net/doc/bb12853768.html, 初中数学建模方法及应用 作者:肖永刚 来源:《新课程·中学》2017年第03期 摘要:在新课标中要求培养学生的创新能力,在初中数学教学中培养学生的建模能力, 是培养数学创新能力的重要方法,也能增强学生利用数学知识解决问题的能力。对培养初中生数学建模方法及应用进行了论述。 关键词:初中数学;建模思想;数学应用 利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。 一、数学建模的概念 数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。 二、数学建模的方法步骤 要培养学生的数学建模方法,可按以下方法步骤进行: 1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。 2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。 3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的 建立。 4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学模型的应用

数学建模 数模作业(第一章) P21 第一章 6、利用节药物中毒施救模型确定对于孩子(血液容量为2000ml)以及成人(血液容量为 4000ml)服用氨茶碱能引起严重中毒和致命的最小剂量。 解:设孩子服用氨茶碱能引起严重中毒的最小剂量为1A ,则由节中的药物中毒施救模型可知: 在胃肠道中药物的量为 0.13861()t x t A e -=,而在血液系统中药物的量为 0.11550.13861()6() t t y t A e e --=-,再令0.11550.13861()()/6()t t y t y t A e e --==-再做出()y t 的图像如下: 《 ; 由图可知()y t 具有最大值,设在这个最大值max ()y t 在孩子血液中容量的比例为严重中 毒的比例100/g ml μ以及致命的比例200/g ml μ即为孩子服用氨茶碱的最小剂量。于是可以去求这个最小剂量。由上图可知最大值位于8t h =左右, 利用Mathematics 去找出这个最大值。求得max ()=0.0669y t ,而7.892t h =。于是孩子服用氨茶碱引起严重中毒的最小剂

量1A 有式子1max 6()/2000100/A y t ml g ml μ=,从而得此时1498256.1A g μ=同理可以求的孩子服用氨茶碱致命的最小剂量为996512.2g μ。而成人服用氨茶碱严重中毒与致命的最小剂量分别为996512.21993024.4g g μμ、。 7、对于节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液中药量的变化并作图。 解:由题可算得: t=0:2:20 y=275*exp*t)+*exp*t) plot(t,y,'b:') 第二章 3、根据节中的流量数据(表2)和(2)式作插值的数值积分,按照连续模型考虑均流池的容量(用到微积分的极值条件)。 解:可以将表2中的数据建立散点图以及平均值,如下: h=0:1:23 , y=[,,,,,,,,,,,,,,,279,,,,,,,,] x1=0::23; t=sum(y)/24; plot(h,y,'-',x1,t) hold on 02468101214161820 50100150200250300350 400

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学建模——excel

§10.4 EXCEL在数学建模中的应用 10.4.1 简介 Microsoft Excel是目前应用最为广泛的办公室表格处理软件之一。它在数学统计中也有广泛应用。Excel具有强有力的数据库管理功能、丰富的宏命令和函数、强有力的决策支持工具,具有分析能力强、操作简便、图表能力强等特点。 10.4.2 Excel 中的统计工具简介 1.统计函数 Excel提供78个统计函数。在主菜单中的“插入”中选择“函数”,单击后就可以得到一组常用的统计函数,如均值AVERAGE、方差VAR、中位数 MEDIAN、秩RANK、最大值MAX、最小值MIN、计数COUNT,离散和连续分布的分布函数、概率函数、分位点等,如图10.所示。在选定函数的同时,在命令的下方会出现一条说明,表明命令的意义及每个参数的含义。 图10. 例如正态分布分布函数 NORMDIST,返回给定均值和标准差的正态分布分布函数或正态分布概率密度函数。 语法:NORMDIST(x, mean, standard_dev , cumulative) 说明: x 为需要计算其分布的数值,Mean 为分布的均值,Standard_dev 为分布的标准差,Cumulative 为一逻辑值,指明函数的形式。如果 cumulative 为 TRUE,函数 NORMDIST 返回分布函数;如果为 FALSE,返回概率密度函数。 (1)如果 mean 或 stand_dev 为非数值型,函数 NORMDIST 返回错误值 #VALUE!。(2)如果 standard_dev < 0,函数 NORMDIST 返回错误值 #NUM!。 (3)如果 mean= 0 且 standard_dev = 1,函数 NORMDIST 返回标准正态分布,即函数NORMSDIST。

办公室电话系统模拟(数学建模)

排队论在电话问题中的应用 摘要 本文建立一个模拟办公室电话系统模型,解决由三个电话机占线而可能打不进电话的问题。根据该办公室的电话系统状况得知其服从排队论模型规律,则应用排队论知识建立模型。 用)(t Pn 表示在时刻t ,服务系统的状态为n (系统占线条数为n )的概率。通过输入过程(顾客打进电话),排队规则,和服务机构的具体情况建立关于)(t Pn 的微分差分方程求解。令0)('=t P n 把微分方程变成差分方程,而不再含微分了, 把)(t Pn 转化为与t 无关的稳态解。关于标准的M/M/s 排队模型各种特征的规定于标准的M/M/1模型的规定相同。另外规定各服务器工作是相互独立(不搞协作)且平均服务率相同 .==...==s 21μμμμ于是整个服务机构的平均服务率为μs 。令ρ=λ/su 只有当时λ/su<1时才不会排成无限的队列,成这个系统为服务强度,各顾客服务时间服从相同的负指数分布 ' 通过模型我们可以得到:无占线、一条占线、两条占线、三条占线的概率分别 是%,%,%,%。 · 关键词:泊松分布,指数分布,概率,期望,Little 公式

… 一、问题重述 一个办公室有三条电话线可打进,也就是说在任意时刻最多能接待三个顾客,顾客打电话是随机的,其时间服从上午9点至下午5点的均匀分布,每次电话持续时间是均值为6分钟的随机变量。 经理关心由于三个电话机占线而可能打不进电话的顾客数。他们当中部分人稍后可能重拨电话,而其他人则可能放弃通话,一天中接通的电话平均数是70。 请你建立一个模型模拟办公室电话系统,帮助经理在休息时思考这个问题,用你的模型做下述估计: (1)} (2)无电话占线、有一条、两条占线和三条都占线的时间百分比; (3)未打进电话的顾客所占百分比。 二、问题的分析 这是一个多服务台混合制模型M/M/s/K,顾客的相继到达时间服从参数为的负指数分布(即顾客的到达过程为Poisson流),服务台的个数为s,每个服务台的服务时间相互独立,且服从参数为的负指数分布,系统的空间为K。求平稳分布,考虑系统处的任一状态n。假设记录了一段时间内系统进入状态n和离开状态n的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等要么相差1。但就这两件事件平均发生率来说,可以认为是相等的。 三、基本假设 ①顾客的相继到达时间服从参数为λ的负指数分布; ②服务时间服从参数μ的负指数分布; ③顾客选择打进哪一条线是随机的而且是等可能的; ④, ⑤某条线接通时,其他顾客不能接通,则称为占线 四、符号定义及变量说明 ①:顾客的相继到达时间服从参数为λ的负指数分布,服务时间服从参数μ的负指 数分布; ②:) Pn表示在时刻t服务系统的状态为n(系统中顾客数为n)的概率,(t

数学建模 在医药领域的应用

数学建模在医药卫生领域中的研究与应用 摘要:介绍数学模型及其重要性,讨论了数学建模的一般步骤,包括模型的准备、假设、建立、求解、检验、分析及其应用的全过程;并结合医药卫生领域中不允许缺货的存储模型、机械化传送系统的效率模型、流行病学以及肿瘤生长的数学模型等几个实际问题,探析了数学建模的技巧、分析了模型应用的局限性,对实际工作具有一定的指导意义和较好的借鉴作用。关键词:数学建模;创新思维;医药卫生;应用 1引言 数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。 数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。 2数学建模的过程 数学建模的过程是通过对现实问题的简化、假设、抽象提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。若检验结果符合实际或基本符合,就可以用来指导实践;否则再假设、再抽象、再修改、再求解、再应用。其过程如图1所示。 构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤: 2·1模型准备 在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。 2·2模型假设 在明确目的、掌握资料的基础上,抓住复杂问题的主要矛盾,舍去一些次要因素;对实际问题作出几个适当的假设,使复杂的实际问题得到必要的简化。 2·3建立模型 首先根据主要矛盾确定主要变量;然后利用适当的数学工具刻划变量间的关系,从而形成数学模型。模型要尽量简化、不必复杂,以能获得实际问题的满意解为标准。 2·4模型检验 建模后要对模型进行分析,用各种方法(主要是数学方法,包括解方程、逻辑推理、稳定性讨论等;同时利用计算机技术、计算技巧)求得数学结果;将所求得的答案返回到实际问题中去,检验其合理性;并反复修改模型的有关内容,使其更切合实际,从而更具有实用性。 2·5模型应用 用建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。总之,数学建模是一种创造性劳动,成功的模型往往是科学与艺术的结晶。一个“好”的数学模型应该具有以下特点:①考虑全面,抓住本质;②新颖独特,大胆创新;③善于检验,结果合理。而模型检验一般包括下列几个方面:①稳定性和敏感性分析;②统计检验和误差分析;③新旧模型的比较;④实际可行性检验。 因此,数学建模的分析方法和操作途径不可能用一些条条框框规定得十分死板,下面通过实例探析建模过程与技巧。

数学建模A题系泊系统设计完整版

数学建模A题系泊系统 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

系泊系统的设计 摘要 本题要求观测近海观测网的组成,建立模型对其中系泊系统进行设计,在不同风速和水流的情况下确定锚链,重物球,钢管及浮标等的状态,从而使通讯设备的工作效果最佳。求解的具体流程如下: 针对问题一,分别对系统中的受力物体在水平方向和竖直方向上的力进行分析,找出锚链对锚无拉力时的临界风速,运用力矩平衡求出钢管与钢桶的倾斜角度。对于锚链,将其等效为悬链线模型,根据风速不同判断锚链的状态,从而求出结果。 ?时能够正常工作。为针对问题二,需要调节重物球的质量,使通讯设备在36m m 了确定重物球的质量,首先将实际风速与临界风速进行比较,判断此时系统中各物体的状态,与题目中已知数据进行比较。在钢桶倾斜角度达到临界角度时,计算锚链与海床的夹角并于题中数据进行比较,计算重物球的质量。在浮标完全没入海面时,计算相应条件下重物球的质量,从而确定满足条件的重物球的质量范围。 针对问题三,要求在不同条件下,求出系泊系统中各物体的状态。以型号I锚链为例,当水流方向与风速方向相同时,系统条件最差,分析在不同水深条件下的系泊系统设计。由题中已知条件确定系统设计的限制条件,对系统各物体进行受力分析,以使整体结果最小,即可得出最优的系泊系统设计。 关键词:悬链线多目标非线性规划 一、问题重述 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。 系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

相关文档
最新文档