交换机背板带宽

交换机背板带宽
交换机背板带宽

1、交换机:包转发率

包转发线速的衡量标准———是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte 的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488Mpps

*对于万兆以太网,一个线速端口的包转发率为14.88Mpps。

*对于千兆以太网,一个线速端口的包转发率为1.488Mpps。

*对于百兆以太网,一个线速端口的包转发率为0.1488Mpps

如:一台24个千兆端口的桌面交换机(连接电脑),其最大吞吐量应达到24*1.488Mpps=35.712Mpps,才能保证所有端口线速工作时,提供无阻塞的包交换。例:桌面型交换机带20台电脑上网

设备:桌面型交换机

公布包转发率:35.7Mpps

接口:24个10/100/1000Base-TX以太网端口,(就是24个1000M)

计算:1.488Mpps*24 =35.712Mpps

包转发率:结果35.712Mpps =公布包转发率:35.7Mpps,满足全端口“线速转发”。

公布背板带宽:48Gbps

计算:24*1000x 2(Mbit/s) /1024(Mbit/s)= 46.875 (Gbit/s)

背板带宽:结果46.875 (Gbit/s)<公布背板带宽:48Gbps,满足全端口

例:某个公司有300台电脑上网,三层核心怎么选。初步预计要用15个千兆交换机。

通过上面的实验已经证实,每一个交换机的包转发率要达到35.712Mpps,背板带宽要达到46.875 (Gbit/s)。

核心交换机背板带宽:接入交换机数量15X46.875 (Gbit/s)=703.125 Gbit/s

吞吐量包转发率:接入交换机:1.488Mpps*2 =2.976Mpps(解释:一个端口上联到核心,但是有上行和下行。)

核心交换机包转发率:接入交换机数量15X2.976Mpps =44.64Mpps

交换机:背板带宽

交换机的背板带宽也叫背板容量,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。

背板带宽计算方式:每种端口的速率乘以端口数量之和,再乘以2。

背板带宽:接入交换机以24口接入交换机为例(24个千兆口)

24*1000x 2(Mbit/s) /1024(Mbit/s)= 46.875 (Gbit/s)

核心交换机:接入交换机数量乘以46.875 (Gbit/s)

交换带宽:Switch bandwidth,是交换机总收发,所有端口的output和input的总数。转发带宽:Forwarding bandwidth,是交换机得单input或者单output的数量。

转发速率:Forwarding rate,是交换机每单位时间转发所需开销(3层包最小64byte)。

例如某交换机的交换带宽为148G,转发带宽为74G,转发速率为55Mbps。而这台交换机为2层48口交换机,每个端口的交换带宽最高位48G*2=96G(千兆全双工)。多出来的

148-96G=52G则可能用于交换机堆叠使用,也可以空闲,不做多余解释。

转发带宽是交换带宽的一半,转发速率是每个端口发送数据所需要的开销。这些数值纯粹只是将交换机性能统计后得出,这只是个参考数值!毕竟即便是一台48口的交换机,所需要的交换带宽96G足够了,但是随着交换机性能越来越强,功耗越来越低,数值也会随着往上涨,可能你在使用交换机时,使用的性能不超过它总性能的10%。

高清网络视频监控系统中,经常有客户反馈画面延时、卡顿等现象,造成这种现象的原因有很多,但大多数情况下还是交换机的配置不够合理,导致带宽不足造成的。

从网络拓扑结构来讲,一个中大型高清网络视频监控系统需采用三层网络架构:接入层、汇聚层、核心层。

1、接入层交换机的选择

接入层交换机主要下联前端网络高清摄像机,上联汇聚交换机。以720P网络摄像机4M码流计算,一个百兆口接入交换机最大可以接入几路720P网络摄像机呢?

我们常用的交换机的实际带宽是理论值的50%-70%,所以一个百兆口的实际带宽在50M-70M。4M*12=48M,因此建议一台百兆接入交换机最大接入12台720P网络摄像机。同时考虑目前网络监控采用动态编码方式,摄像机码流峰值可能会超过4M带宽,同时考虑带宽冗余设计,因此一台百兆接入交换机控制在8台以内时最好的,超过8台建议采用千兆口。

2、汇聚层交换机的选择

汇聚层交换机主要下联接入层交换机,上联监控中心核心交换机。一般情况下汇聚交换机需选择带千兆上传口的二层交换机。

还是以720P网络摄像机4M码流计算,前端每台接入层交换机上有6台720P网络摄像机,该汇聚交换机下联5台接入层交换机。该汇聚层交换机下总带宽为4M*6*5=120M,因此汇聚交换机与核心交换机级联口应选千兆口。

3、核心层交换机的选择

核心层交换机主要下联汇聚层交换机,上联监控中心视频监控平台,存储服务器,数字矩阵等设备,是整个高清网络监控系统的核心。在选择核心交换机是必须考虑整个系统的带宽容量及如何核心层交换机配置不当,必然导致视频画面无法流畅显示。因此监控中心需选择全千兆口核心交换机。如点位较多,需划分VLAN,还应选择三层全千兆口核心交换机。

附:决定交换机性能的几个参数

背板带宽计算方法:端口数*端口速度*2=背板带宽,以华为S2700-26TP-SI为例,该款交换机有24个百兆口,两个千兆上联口。背板带宽=24*100*2/1000+2*1000*2/1000=8.8Gbps。

包转发率的计算方法:满配置GE端口数×1.488Mpps+满配置百兆端口数×0.1488Mpps=包转发率(1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps,1个百兆端口在包长为64字节时的理论吞吐量为0.1488Mpps)。以华为S2700-26TP-SI为例,该款交换机有24个百兆口,两个千兆上联口。包转发率=24*0.1488Mpps+2*1.488Mpps=6.5472Mpps。

交换机交换容量和包转发率计算方式

[交换路由]交换容量和包转发率之间什么关系[复制链接] 交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。 *对于千兆以太网,一个线速端口的包转发率为。 *对于快速以太网,一个线速端口的包转发率为。 *对于OC-12的POS端口,一个线速端口的包转发率为。 *对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 -------------------------------------------------------------- //背板带宽计算公式: 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但 同时设计成本也会上去。但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。

背板带宽和最大吞吐的数据量的计算方法

背板带宽和最大吞吐的数据量的计算方法 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会上去。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2)满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。 一般是两者都满足的交换机才是合格的交换机。 背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效? ?专用芯片电路设计有问题;背板相对小。吞吐量相对大

的交换机,整体性能比较高。不过背板带宽是可以相信厂家的宣传的,可吞吐量是无法相信厂家的宣传的,因为后者是个设计值,测试很困难的并且意义不是很大。 交换机的背版速率一般是:Mbps,指的是第二层, 对于三层以上的交换才采用Mpps 补充一下1.488的由来: 具体的数据包在传输过程中会在每个包的前面加上64个preamble (前导符),然后在每个包之间会有96个bit的IFG(帧间隙),也就是原本传输一个64个字节的数据包,虽只有512个bit,但在传输过程中实际上会有512+64+96=672bit,也就是说,这时一个数据包的长度实际上是有672bit的。千兆端口线速包转发率=1000Mbps/672=1.488095Mpps,约等于1.4881Mpps,百兆端口线速包转发率=100Mbps/672=0.1488095Mpps,约等于0.14881Mpps。 下面有两个例子 2950G-48 背板=2×1000×2+48×100×2(Mbps)=13.6(Gbps) 相当于13.6/2=6.8个千兆口 吞吐量=6.8×1.488=10.1184Mpps 4506

交换机的端口安全配置

【实验文档】【实验0021】【交换机的端口安全配置】 【实验名称】 交换机的端口安全配置。 【实验目的】 掌握交换机的端口安全功能,控制用户的安全接入。 【背景描述】 你是一个公司的网络管理员,公司要求对网络进行严格控制。为了防止公司内部用户的IP 地址冲突,防止公司内部的网络攻击和破坏行为。为每一位员工分配了固定的IP地址,并且限制只允许公司员工主机可以使用网络,不得随意连接其他主机。例如:某员工分配的IP地址是172.16.1.55/24,主机MAC地址是00-06-1B-DE-13-B4。该主机连接在1台2126G 上边。 【技术原理】 交换机端口安全功能,是指针对交换机的端口进行安全属性的配置,从而控制用户的安全接入。交换机端口安全主要有两种类项:一是限制交换机端口的最大连接数,二是针对交换机端口进行MAC地址、IP地址的绑定。 限制交换机端口的最大连接数可以控制交换机端口下连的主机数,并防止用户进行恶意的ARP欺骗。 交换机端口的地址绑定,可以针对IP地址、MAC地址、IP+MAC进行灵活的绑定。可以实现对用户进行严格的控制。保证用户的安全接入和防止常见的内网的网络攻击。如ARP欺骗、IP、MAC地址欺骗,IP地址攻击等。 配置了交换机的端口安全功能后,当实际应用超出配置的要求,将产生一个安全违例,产生安全违例的处理方式有3种: ? protect 当安全地址个数满后,安全端口将丢弃未知名地址(不是该端口的安全地址中的任何一个)的包。 ? restrict 当违例产生时,将发送一个Trap通知。 ? shutdown 当违例产生时,将关闭端口并发送一个Trap通知。 当端口因为违例而被关闭后,在全局配置模式下使用命令errdisable recovery来将接口从错误状态中恢复过来。 【实现功能】 针对交换机的所有端口,配置最大连接数为1,针对PC1主机的接口进行IP+MAC地址绑定。【实验设备】 S2126G交换机(1台),PC(1台)、直连网线(1条)

交换机的端口配置

实验3 交换机的端口配置 一、实验目的 二、实验条件 三、实验内容 1.配置以太网端口 对端口的配置命令,均在接口配置模式下运行。 1.为端口指定一个描述性文字 在实际配置中,可对端口指定一个描述性的说明文字,对端口的功能和用途等进行说明,以起备忘作用,其配置命令为:description port-description 如果描述文字中包含有空格,则要用引号将描述文字引起来。 若交换机的快速以太网端口1为trunk链路端口,需给该端口添加一个备注说明文字,则配置命令为: student1#config t student1(config)#interface fa0/1 student1(config)#description "-----------trunk port----------------" 2.设置端口通讯速度 配置命令:speed [10|100|1000|auto] 默认情况下,交换机的端口速度设置为auto(自动协商),此时链路的两个端点将交流有关各自能力的信息,从而选择一个双方都支持的

最大速度和单工或双工通讯模式。若链路一端的端口禁用了自动协商功能,则另一端就只能通过电气信号来探测链路的速度,此时无法确定单工或双工通讯模式,此时将使用默认的通讯模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口的通讯速度设置为100Mbit/s,则配置命令为: student1(config)#interface f 0/10 student1(config-if)#speed 100 3.设置端口的单双工模式 配置命令:duplex [full|half|auto] full代表全双工(full-duplex),half代表半双工(half-duplex),auto 代表自动协商单双工模式。 在配置交换机时,应注意端口的单双工模式的匹配,如果链路的一端设置的是全双工,而另一端是半双工,则会造成响应差和高出错率,丢包现像会很严重。通常可设置为自动协商或设置为相同的单双工模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口设置为全双工通讯模式,则配置命令为: student1(config-if)#duplex full 4.控制端口协商 启动链路协商,配置命令:negotiation auto 禁用链路协商,配置命令:no negotiation auto 比如,一台Cisco 3550交换机,通过光纤与远程的华为S3526E通过

交换机交换容量和包转发率计算方式

交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)

交换容量,背板带宽,包转发率含义

交换容量,背板带宽,包转发率含义 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会上去。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2、)满配置吞吐量(Mpps)=满配置GE端口数× 1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为 1.488Mpps。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64× 1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到 261.8Mpps(176x 1.488Mpps= 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。一般是两者都满足的交换机才是合格的交换机。 比如: 2950G-48 背板=2×1000×2+48×100×2(Mbps)= 13.6(Gbps)

相当于个千兆口 吞吐量= 6.8× 1.488= 10.1184Mpps 4506 背板64G 满配置千兆口 4306×5+2(引擎)=32 吞吐量=32× 1.488= 47.616 一般是两者都满足的交换机才是合格的交换机。 背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效率或专用芯片电路设计有问题;背板相对小。吞吐量相对大的交换机,整体性能比较高。不过背板带宽是可以相信厂家的宣传的,可吞吐量是无法相信厂家的宣传的,因为后者是个设计值,测试很困难的并且意义不是很大。(这句话好像说反了) 交换机的背版速率一般是: Mbps,指的是第二层, 对于三层以上的交换才采用Mpps 背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:

背板带宽与端口速率计算

背板带宽与端口速率计算 现在的交换机厂商在技术上到处忽悠我们的中国的用户,提出的技术参数在的不得了,让用户摸不清头脑,希望我们的用户能正确对待参数!!! 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数×相应端口速率×2(全双工模式)如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 (2)第二层包转发线速 第二层包转发率=千兆端口数量× 1.488Mpps+百兆端口数量× 0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 (3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量× 0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 二、端口速率计算

交换机的端口配置

配置以太网端口 对端口的配置命令,均在接口配置模式下运行。 1.为端口指定一个描述性文字 在实际配置中,可对端口指定一个描述性的说明文字,对端口的功能和用途等进行说明,以起备忘作用,其配置命令为: description port-description 如果描述文字中包含有空格,则要用引号将描述文字引起来。 若交换机的快速以太网端口1为trunk链路端口,需给该端口添加一个备注说明文字,则配置命令为: student1#config t student1(config)#interface fa0/1 student1(config)#description "-----------trunk port----------------" 2.设置端口通讯速度 配置命令:speed [10|100|1000|auto] 默认情况下,交换机的端口速度设置为auto(自动协商),此时链路的两个端点将交流有关各自能力的信息,从而选择一个双方都支持的最大速度和单工或双工通讯模式。若链路一端的端口禁用了自动协商功能,则另一端就只能通过电气信号来探测链路的速度,此时无法确定单工或双工通讯模式,此时将使用默认的通讯模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口的通讯速度设置为100Mbit/s,则配置命令为: student1(config)#interface f 0/10 student1(config-if)#speed 100 3.设置端口的单双工模式 配置命令:duplex [full|half|auto] full代表全双工(full-duplex),half代表半双工(half-duplex),auto代表自动协商单双工模式。 在配置交换机时,应注意端口的单双工模式的匹配,如果链路的一端设置的是全双工,而另一端是半双工,则会造成响应差和高出错率,丢包现像会很严重。通常可设置为自动协商或设置为相同的单双工模式。 例如,若要将Cisco Catalyst 2950-24交换机的10号端口设置为全双工通讯模式,则配置命令为: student1(config-if)#duplex full 4.控制端口协商 启动链路协商,配置命令:negotiation auto 禁用链路协商,配置命令:no negotiation auto 比如,一台Cisco 3550交换机,通过光纤与远程的华为S3526E通过千兆光纤接口相连,此时就必须分别在Cisco 3550和华为S3526E的千兆光纤接口上禁用端口自动协商功能,对于Cisco 3550交换机,其配置命令为: C3550#config t C3550(config)#interface g0/1 C3550(config-if)#no negotiation auto C3550(config-if)#exit

带宽计算公式

交换机性能参数学习总结 一、交换机背板是设计值,可以大于等于交换容量(此为达到线速交换机的一个标准)。厂家在设计的时候考虑了将来模块的升级,比如模块从开始的百兆升级到支持千兆、万兆,端口密度增加等。背板带宽一般是指模块化交换机。它决定了各模板与交换引擎间的连接带宽的最高上限。是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽。 二、交换容量(最大转发带宽、吞吐量)是指系统中用户接口之间交换数据的最大能力,用户数据的交换是由交换矩阵实现的。交换机达到线速时,交换容量等于端口数×相应端口速率×2(全双工模式)。 三、包转发率它体现了交换引擎的转发性能。标准的以太网帧尺寸在64字节到1518字节之间,在衡量交换机包转发能力时应当采用最小尺寸的包进行评价。指基于64字节分组,在单位时间内交换机转发的数据总数。当交换机达到线速时包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法 四、转发带宽与包转发速率关系 8*(64+8+12)*2*包转发速率/1024=转发带宽 注:最大传输带宽=交换容量(交换容量用单工计算) 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344 =交换机包转发率*1344 带宽计算公式说明 长空发表于2006-1-15 11:44:00 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下:

迈普交换机端口配置

3.1 MyPower S41xx 100M 1000M MyPower S4112E MyPower S41xx u10/100Base-T MDI- /MDI-X u100M / 100Mbps 100M 1 100M 100M 1 100M u1000M / 1000M 1000M 1 1000M 1000M 1 1000M u1000M MDI- /MDI-X 3.2 port-num. port-list 3.2.1

port slot-num/port-num. slot-num port-num. Switch(config)#port 0/1 Switch(config-port-0/1)# 0/1 0 1 % 3.2.2 port port-list port-list port-list port-num [,|-] port-num port-num. Switch(config)#port0/1,2/1-5/15 Switch(config-port-range)# 0 1 2 1 5 15 %

3.3 u u / u u VLAN u u u u u u u 3.3.1 port port-lis t port-list 3.3.2 / shutdown / no shutdown shutdown no shutdown

3.3.3 accept-frame{all|tagged-only} all All Untagged Tagged tagged-only Tagged-only Tagged Untagged all 3.3.4 VLAN VLAN ID Untagged VLAN pvid pvid pvid VLAN 1 4094 VLAN 1 3.3.5 Tagged Untagged Vid VLAN TAG +VID default-priority priority

部分CISCO交换机的背板带宽

部分CISCO交换机的背板带宽Catalyst Express 500 系列 CE500-24TT 8.8Gbps CE500-24LC 8.8Gbps CE500-24PC 8.8Gbps CE500G-12TC 24Gbps Cisco Catalyst 2940 系列 Catalyst 2940-8TT 3.6Gbps Catalyst 2940-8TF 3.6Gbps Cisco Catalyst 2960 系列 WS-C2960-24TC-L 8.8Gbps WS-C2960-24TT-L 8.8Gbps WS-C2960-48TC-L 13.6Gbps WS-C2960 48TT-L 13.6Gbps Cisco Catalyst 3560 系列 WS-C3560-24TS 8.8Gbps WS-C3560-48TS 17.6Gbps WS-C3560-24PS 8.8Gbps WS-C3560-48PS 17.6Gbps WS-C3560G-24TS 32Gbps WS-C3560G-48TS 32Gbps WS-C3560G-24PS 32Gbps WS-C3560G-48PS 32Gbps Cisco Catalyst 3750 系列 C3750-24TS 32Gbps C3750-48TS 32Gbps

C3750-24PS 32Gbps C3750-48PS 32Gbps C3750-24FS 32Gbps C3750G-24T 32Gbps C3750G-24TS-1U 32Gbps C3750G-48TS 32Gbps C3750G-24PS 32Gbps C3750G-48PS 32Gbps C3750G-12S 32Gbps C3750G-12S-SD 32Gbps C3750G-16TD 32Gbps Cisco Catalyst 4948 系列Catalyst 4948 96Gbps Catalyst 4948-10GE 136 Gbps Cisco Catalyst 4500 系列 WS-C4503 64 Gbps WS-C4506 100 Gbps WS-C4507R 100 Gbps WS-C4510R 136 Gbps WS-X4516-10GE 136Gbps WS-X4516 96Gbps WS-X4515 64Gbps WS-X4013+ 64Gbps WS-X4013+TS 64Gbps WS-X4013+10GE 64Gbps Cisco Catalyst 6500 系列WS-C6503-E 可扩展240Gbps WS-C6504-E 可扩展至320 Gbps WS-C6506-E 可扩展至480 Gbps WS-C6509-E 可扩展至720 Gbps WS-C6513 可扩展至720 Gbps

交换机背板带宽、包转发率计算方法

交换机背板带宽、包转发率的计算方法 1. 计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数×相应端口速率×2(全双工模式),如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 (2)第二层包转发线速 第二层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 (3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞。 背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 2. 端口速率计算 以太网传输最小包长就是64字节、POS口是40字节。包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488Mpps。快速以太网的线速端口包转发率正

背板带宽

背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会上去。 但是,我们如何去考察一个交换机的背板带宽是否够用呢?显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑: 1、)所有端口容量X端口数量之和的2倍应该小于背板带宽,可实现全双工无阻塞交换,证明交换机具有发挥最大数据交换性能的条件。 2、)满配置吞吐量(Mbps)=满配置GE端口数×1.488Mpps其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。例如,一台最多可以提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在所有端口均线速工作时,提供无阻塞的包交换。如果一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。 一般是两者都满足的交换机才是合格的交换机。 背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效率/专用芯片电路设计有问题;背板相对小。吞吐量相对大的交换机,整体性能比较高。不过背板带宽是可以相信厂家的宣传的,可吞吐量是无法相信厂家的宣传的,因为后者是个设计值,测试很困难的并且意义不是很大 监控 前面有一位H3C的高手对我指点过,在这里谢谢他了,他名字叫做 现在有一项目前端采用130万像素的摄像机100台,后端使用解码器1台,NVR一台,管理中心软件一套。 网络的构架是核心+接入 前端的计算方法,前面那位高手已经给出,接入层交换机的背板带宽+包转发率计算方法如下: 前端接入网络流量主要是由前端视频图采集设备所发出的,主要有存储码流与实时码流。使用IP全交换方案,按照每个终端平均向外发送1路存储1路实况,可以估算出单终端所需要的带宽值: 1080P高清编码器/IPC的发送码流=8+8=16Mbps 根据编码速率可以计算包发送速率:实况流8Mbps即每秒发送1M字节,按照宇视编码器/IPC的编码策略1个包内封装1024个字节,可以计算包发送率1Kpps;即编码速率/8/1024即得到包发送速率: 1080P高清编码器/IPC的包发送速率=16Mbps/8/1024=2Kpps 所以: 计算24个高清IPC所需的接入交换机选型: 带宽:24×16×(1+30%)=499.2Mbps

交换机交换容量和包转发率计算方式

交换机交换容量和包转 发率计算方式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

[交换路由]交换容量和包转发率之间什么关系[复制链接] 交换容量和包转发率之间什么关系 有以下两种方法: 第一种方法如下: -------------------------------------------------------------------------------- 我总结一个公式: 转发带宽=包转发速率*8*(64+8+12)=1344*包转发速率 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit为单位。 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344; =交换机包转发率*1344 ---------------------------------------------------------------------------------------------------------------- 第二种计算方法: ----------------------------------------------------------------------------------------------------------------- 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 那么,是怎么得到的呢 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000, 000bps/8bit/(64+8+12)byte=1,488,095pps说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。 *对于千兆以太网,一个线速端口的包转发率为。 *对于快速以太网,一个线速端口的包转发率为。 *对于OC-12的POS端口,一个线速端口的包转发率为。 *对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 -------------------------------------------------------------- //背板带宽计算公式: 背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。一台交换机的背板带宽越高,所能处理数据的能力就越强,但 同时设计成本也会上去。但是,我们如何去考察一个交换机的背板带宽是否够用呢显然,通过估算的方法是没有用的,我认为应该从两个方面来考虑:

H3C交换机的端口配置

H3C交换机的端口配置 一、端口常用配置 1. 实验原理 1.1 交换机端口基础 随着网络技术的不断发展,需要网络互联处理的事务越来越多,为了适应网络需求,以太网技术也完成了一代又一代的技术更新。为了兼容不同的网络标准,端口技术变的尤为重要。端口技术主要包含了端口自协商、网络智能识别、流量控制、端口聚合以及端口镜像等技术,他们很好的解决了各种以太网标准互连互通存在的问题。以太网主要有三种以太网标准:标准以太网、快速以太网和千兆以太网。他们分别有不同的端口速度和工作视图。1.2 端口速率自协商 标准以太网其端口速率为固定10M。快速以太网支持的端口速率有10M、100M和自适应三种方式。千兆以太网支持的端口速率有10M、100M、1000M和自适应方式。以太网交换机支持端口速率的手工配置和自适应。缺省情况下,所有端口都是自适应工作方式,通过相互交换自协商报文进行匹配。 其匹配的结果如下表。 速率一致。其修改端口速率的配置命令为: [H3C-Ethernet0/1] speed {10|100|1000|auto} 如果两端都以固定速率工作,而工作速率不一致时,很容易出现通信故障,这种现象应该尽量避免。 1.3 端口工作视图 交换机端口有半双工和全双工两种端口视图。目前交换机可以手工配置也可以自动协商来决定端口究竟工作在何种视图。修改工作视图的配置命令为: [H3C-Ethernet0/1] duplex {auto|full|half} 1.4 端口的接口类型 目前以太网接口有MDI和MDIX两种类型。MDI称为介质相关接口,MDIX称为介质非相关接口。我们常见的以太网交换机所提供的端口都属于MDIX接口,而路由器和PC提供的都属于MDI接口。有的交换机同时支持上述两种接口,我们可以强制制定交换机端口的接口类型,其配置命令如下: [H3C-Ethernet0/1] mdi {normal| cross| auto} Normal:表示端口为MDIX接口 Cross:表示端口为MDI接口 Auto:表示端口工作在自协商视图 1.5 流量控制 由于标准以太网、快速以太网和千兆以太网混合组网,在某些网络接口不可避免的会出现流量过大的现象而产生端口阻塞。为了减轻和避免端口阻塞的产生,标准协议专门规定了解决这一问题的流量控制技术。在交换机中所有端口缺省情况下都禁用了流量控制功能。开启/关闭流量控制功能的配置命令如下: [H3C-Ethernet0/1]flow-control

交换机转发率计算

2) 设备:S5500-28C-EI 包转发率(整机): 接口:24个10/100/1000Base-T以太网端口,4个复用的1000Base-X千兆SFP端口,2个扩展插槽(每个扩展插槽接口卡最大配置2×10G接口); (也就是24*1000M+2×2*10GE) 计算:*24+*2*2=+= 结果=包转发率(整机):,满足全端口“线速转发”。 通过这样事例,可以清楚交换机厂商所公布的数据是“如何”的了吧! 这是在二层交换上面所能达到的包转发率,但是如果一个路由器在三层路由上面,甚至在开启nat的情况下,其包转发率会有很大降低,而这个值才是值得关心的,所以我们在看到很多商家在一直强调包转发个数148810个包,其实这是二层交换的理论极限值,而不是真正的路由器在三层工作时候的值。 包转发率得计算和背板带宽得计算 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps 不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: 1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数*相应端口速率*2(全双工模式)如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。

2)第二层包转发线速 第二层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 3)第三层包转发线速 第三层包转发率=千兆端口数量×+百兆端口数量*+其余类型端口数*相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 那么,是怎么得到的呢? 包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为。快速以太网的统速端口包转发率正好为千兆以太网的十分之一,为。 *对于万兆以太网,一个线速端口的包转发率为。 *对于千兆以太网,一个线速端口的包转发率为。 *对于快速以太网,一个线速端口的包转发率为。 *对于OC-12的POS端口,一个线速端口的包转发率为。 *对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞 背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 交换容量和包转发率之间什么关系

交换机背板带宽计算方法

交换机背板带宽计算方法 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽 考察交换机上所有端口能提供的总带宽。计算公式为端口数×相应端口速率×2(全双工模式)如果总带宽≤标称背板带宽,那么在背板带宽上是线速的。 (2)第二层包转发线速 第二层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称二层包转发速率,那么交换机在做第二层交换的时候可以做到线速。 (3)第三层包转发线速 第三层包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法,如果这个速率能≤标称三层包转发速率,那么交换机在做第三层交换的时候可以做到线速。 所以说,如果能满足上面三个条件,那么我们就说这款交换机真正做到了线性无阻塞背板带宽资源的利用率与交换机的内部结构息息相关。目前交换机的内部结构主要有以下几种:一是共享内存结构,这种结构依赖中心交换引擎来提供全端口的高性能连接,由核心引擎检查每个输入包以决定路由。这种方法需要很大的内存带宽、很高的管理费用,尤其

是随着交换机端口的增加,中央内存的价格会很高,因而交换机内核成为性能实现的瓶颈;二是交叉总线结构,它可在端口间建立直接的点对点连接,这对于单点传输性能很好,但不适合多点传输;三是混合交叉总线结构,这是一种混合交叉总线实现方式,它的设计思路是,将一体的交叉总线矩阵划分成小的交叉矩阵,中间通过一条高性能的总线连接。其优点是减少了交叉总线数,降低了成本,减少了总线争用;但连接交叉矩阵的总线成为新的性能瓶颈。 二、端口速率计算 以太网传输最小包长就是64字节、POS口是40字节。包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。对于千兆以太网来说,计算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488Mpps。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为148.8kpps。 序号端口类型包转发率 1 万兆以太网14.88Mpps 2 千兆以太网 1.488Mpps 3 百兆以太网0.1488Mpps 4 OC-3 POS 0.29Mpps 5 OC-12 POS 1.17Mpps 6 OC-48 POS 468MppS

相关文档
最新文档