中点常见的辅助线(八年级)

中点常见的辅助线(八年级)
中点常见的辅助线(八年级)

中点常见的辅助线

中点经常所在的三角形:

全等三角形

等腰三角形:三线合一

直角三角形:斜边上的中线、

三角形的中位线:

一、一个中点常见的辅助线

(1)利用中点构建全等形:倍长中线至二倍,构建全等三角形

(2)有中点联想直角三角形的斜边上的中线

(3)由中点联想到等腰三角形的“三线合一”

1、在△ABC中,AD是BC边上的中线,若AB=2,AC=4,则AD的取值范围是________.

2、已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.

3、正方形ABCD中,E为CD的中点,B F⊥AE于F ,连接CF,求证;CF=CB

4.如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN ⊥AC.

5.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD 的中点,AC=6.5,则AB的长度为_________.

6、已知梯形ABCD 中,A D ∥BC,且AD+BC=AB,E 为CD 的中点,连接AE 、BE

求证;(1)AE 平分∠BAD

(2) BE 平分∠ABC

(3)A E ⊥BE

练习:

1、已知正方形ABCD 中,E 为CD 的中点,AE 平分∠BAF .求证:AF=BC+CF

6、在△ABC (AB ≠AC )中,在∠A 的内部任做一条射线,过B 、C 两点做此射线的垂线BE 和CF ,交此射线于E 、F ,M 为BC 的中点,求证:MD=ME .

等腰直角△ABC 和等腰直角△DCE 如图所示放置,M 为AE 的中点,连接DM 、BM ,(1)求证:BM ∥CE

(2)若AB=a ,DE=2a ,求DM 、BM 的长。

A M

E

D C

B

A

二、两个或多个中点常见的辅助线:

当图中有多个中点时,我们要细致分析图形特点,是否有直角三角形,等腰三角形,等边三角形,有时,要利用中点的性质分析,同时还要考虑中位线,

(一)直接连接中点构建中位线:

1.已知:在四边形ABCD中,E、F、G、H分别是BC、AD、BD、AC的中点.

①求证:EF与GH互相平分;

②当四边形ABCD的边满足_________条件时,EF⊥GH.

(二)取三角形一边的中点,构建中位线:

2、如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.

(三)添加三角形的第三边,构建中位线:

如图,已知E、F分别为△ABC的边AB、BC的中点,G、H为AC边上的两个三等分点,连EG、FH,且延长后交于点D,

求证:四边形ABCD是平行四边形

四、添加三角形的另一边并取中点,构建中位线:

在四边形ABCD中,E、F、M分别是AB、CD、BD的中点,AD=BC.

求证:∠EFM=∠FEM.

如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连接MN.则AB与MN的关系是()

A.AB=MN B.AB>MN C.AB<MN D.上述三种情况均可能出现

已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

五、条件中无中点时,完善图形得中位线:

如图,△ABC 边长分别为AB=14,BC=16,AC=26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,则PM 的值是_______.

11.如图,自△ABC 顶点A 向∠C 与∠B 的角平分线CE 、BD 作垂线AM 、AN ,垂足分别是M 、N ,已知△ABC 三边长为a 、b 、c ,则MN=_______.

在△ABC 中,∠B=2∠A ,C D ⊥AB 于D ,E 为AB 的中点,求证:DE=2

1BC

多个中点

中点经常所在的三角形:

等腰三角形:三线合一

直角三角形:斜边上的中线、

三角形的中位线:

已知如图:在△ABC 中,AB 、BC 、CA 的中点分别是E 、F 、G ,AD 是高.求证:∠EDG=∠EFG .

(2015?广东模拟)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

(1)如图1所示在等腰△ABC 中,AB=AC ,分别以AB 、AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连结MD 和ME ,求证:

①AF=AG =2

1AB ; ②MD=ME .

(2)在任意△ABC 中,仍分别以AB 、AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图2所示,M 是BC 的中点,连结MD 和ME ,试判断△MDE 的形状.(直接写答案,不需要写证明过程).

(3)在任意△ABC 中,分别以AB 、AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图3所示,M 是BC 的中点,连结MD 和ME ,则MD 与ME 有怎样的数量关系?

6、△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做正△ABD 和△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点,

(1)求证:PM=PN

(2)试求∠MPN 的度数

变式一:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰直角△ABD 和等腰直角△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点, 求证:PM=PN 变式二:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰△ABD 和等腰△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点, 求证:PM=PN

变式三:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰△ABD 和等腰△ACE ,M 为BD 的中点,N 为CE 的中点,P 为BC 的中点, 求证:PM=PN

2.如图,点P 为△ABC 的边BC 的中点,分别以AB ,AC 为斜边作Rt △ABD 和Rt △ACE ,且∠BAD=∠CAE ,求证:PD=PE .

2.如图,点O 为△ABC 内的一点,OD ⊥AB,OE ⊥AC,∠1=∠2,F 为BC 的中点,链接FD 、FE ,求证:FD=FE .

A B C D E

M

N P A B C D

E

M N

P A F D

E O

C

B 1 2

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助! 1 三角形中常见辅助线的添加 1. 与角平分线有关的?? (1)可向两边作垂线。?? (2)可作平行线,构造等腰三角形?? (3)在角的两边截取相等的线段,构造全等三角形?? 2. 与线段长度相关的?? (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可?? (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可?? (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。?? (4)遇到中点,考虑中位线或等腰等边中的三线合一。? 3. 与等腰等边三角形相关的??

(1)考虑三线合一?? (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60?° 2 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法? ???? 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。? (1)利用一组对边平行且相等构造平行四边形? (2)利用两组对边平行构造平行四边形? (3)利用对角线互相平分构造平行四边形?? 2. 与矩形有辅助线作法? ? (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题? (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3. 和菱形有关的辅助线的作法? ??? ? ?

三角形中的常用辅助线方法总结(1)

典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

初二数学图形辅助线常见做法

八年级数学培优训练题 补形法的应用 班级_________ 姓名_______________________________ 分数_______________________ 一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,使原问题顺利获解。这种方法,我们称之为补形法,它能培养思维能力和解题技巧。我们学过的三角形、特殊四边形、圆等都可以作为“补形”的对象。现就常见的添补的图形举例如下,以供参考。 一、补成三角形 1. 补成三角形 例1.如图1,已知E为梯形ABCD勺腰CD的中点; 证明:△ ABE的面积等于梯形ABCD面积的一半。 分析:过一顶点和一腰中点作直线,交底的延长线于一点,构造等面积的三角形。这也是梯形中常用的辅助线添法之一。 略证: 2. 补成等腰三角形 例2 如图2.已知/ A= 90°,AB= AC, / 1 = / 2, CEL BD 求证:BD= 2CE 分析:因为角是轴对称图形,角平分线是对称轴,故根据对称 性作出辅助线,不难发现CF= 2CE,再证BD= CF即可。 略证: 3. 补成直角三角形 例3.如图3,在梯形ABCD中, AD// BC, / B+Z C= 90° F、G分别是AD BC的中点,若BC= 18, AD= 8,求FG的长 分析:从Z B、Z C互余,考虑将它们变为直角三角形的角, 故延长BA、CD要求FG 需求PF、PG 略解: 4. 补成等边三角形 例4.图4,A ABC是等边三角形,延长BC至D,延长BA至E,使AE= BD 连结CE ED 证明:EC= ED 分析:要证明EC= ED,通常要证Z ECD=Z EDC但难以实现。这样可采用补形法即延长BD到F,使BF= BE,连结EF。 略证:

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE, DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG//FD交AB于G) 例3:如图,△ABC中,AB

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

四边形辅助线常用做法

四边形常用的辅助线做法 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 五:面积找底高,多边变三边。 如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。 如遇多边形,想法割补成三角形;反之,亦成立。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 添加辅助线解特殊四边形题 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等.

中考数学压轴题常见辅助线

一、添辅助线有二种情况: 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

相似三角形常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) G F E D C B A G F E D C B A CD BD AC AB

例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的比 值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长. 变式:如图,21==DE AE CD BD ,求BF AF 。(试用多种方法解) 说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结: (1)遇燕尾,作平行,构造 字一般行。 (2)引平行线应注意以下几点: 1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。 2)引平行线时尽量使较多已知线段、求证线段成比例。

初中数学常见辅助线的添加方法

初中数学常见辅助线的 添加方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: ADBC 中AB ∥CD ,底角∠ABC=450 AC 、BD 交于点O ,且∠BOC=1200 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE =

DE ⊥BC a CE DE == a AD CF )13(-== ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= PQ 是线段AB 的中垂线, OD ⊥BC OD 的中点 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

初中数学证明题常见辅助线作法规律35069精编版

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

遇到中点常加的辅助线

第四讲遇到中点常加的辅助线 等腰底三合一 解题方法技巧:等腰三角形中有底边中点或要证是底边中点时,常连底边中线,利用等要三角形“三线合一”的性质证题 口诀:三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关 性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法 例题1、已知,在矩形ABCD中,E为CB延长线上一点且AC=CE,F为AE的中点,求证:BF⊥FD 例题2、如图、AB=AE,∠ABC=∠AED,BC=ED,点F是CD 的中点 求证:(1)AF⊥CD (2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明) 跟踪训练1、如下图、在△ABC中,AB=AC=5,BC=6,点M为BC的中点,ME⊥AC于点N,求MN的长为多少?(自己画图) 2、如图、等腰△ABC中,AB=AC,D是BC的中点,过A 的直线MN∥BC,在直线MN上点A的两侧分别取E、F 且AE=AF,求证: DE=DF

3、如下图△ABC 中,AB=AC=10cm.BC=8cm,点D 为AB 的中点 (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动。 ①若点Q 的运动速度与点P 的运动速度相等时,经过1秒后,△BPD 与△CQP 是否全等?,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时能够使△BPD 与△CQP 全等? (2)若点Q 以上的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

中点常见的辅助线(八年级)

中点常见的辅助线 中点经常所在的三角形: 全等三角形 等腰三角形:三线合一 直角三角形:斜边上的中线、 三角形的中位线: 一、一个中点常见的辅助线 (1)利用中点构建全等形:倍长中线至二倍,构建全等三角形 (2)有中点联想直角三角形的斜边上的中线 (3)由中点联想到等腰三角形的“三线合一” 1、在△ABC中,AD是BC边上的中线,若AB=2,AC=4,则AD的取值范围是________. 2、已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC. 3、正方形ABCD中,E为CD的中点,B F⊥AE于F ,连接CF,求证;CF=CB 4.如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN ⊥AC. 5.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD 的中点,AC=6.5,则AB的长度为_________.

6、已知梯形ABCD 中,A D ∥BC,且AD+BC=AB,E 为CD 的中点,连接AE 、BE 求证;(1)AE 平分∠BAD (2) BE 平分∠ABC (3)A E ⊥BE 练习: 1、已知正方形ABCD 中,E 为CD 的中点,AE 平分∠BAF .求证:AF=BC+CF 6、在△ABC (AB ≠AC )中,在∠A 的内部任做一条射线,过B 、C 两点做此射线的垂线BE 和CF ,交此射线于E 、F ,M 为BC 的中点,求证:MD=ME . 等腰直角△ABC 和等腰直角△DCE 如图所示放置,M 为AE 的中点,连接DM 、BM ,(1)求证:BM ∥CE (2)若AB=a ,DE=2a ,求DM 、BM 的长。 A M E D C B A

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF , 则有△OED ≌△OFD ,从而为我们证明线段、角相等创造 了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分 ∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠C AD ,D A=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD 图1-2 D B C

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。 作法图形

平移腰,转化为三角形、平行四边形。 A B C D E 平移对角线。转化为三角形、平行四边形。 A B C D E 延长两腰,转化为三角形。 A B C D E 作高,转化为直角三角形和矩形。 A B C D E F 中位线与腰中点连线。 A B C D E F

三角形常见辅助线练习题

三角形常见辅助线作法练习题 1如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 2如图:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。 3如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 4如图:AD 为 △ABC 的中线,求证:AB +AC >2AD A B C D E A B C D E F G A C D E F 123 4 A B C D

5已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形, 求证EF =2AD 。 6如图:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。求证:AB -AC >PB -PC 。 7如图:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 8已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 9已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A B C D E F A B C D P 1 2D A E 1 2 A D B C

B A C D F 2 1 E 10已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 12已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF C D B A

常见三角形辅助线口诀

初二几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线 一、截取构全等

如图, AB//CD, BE平分/ ABC CE平分/ BCD点E在AD上,求证:BC=AB+C。 分析:在此题中可在长线段BC上截取BF=AB再证明CF=CD从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, / BAC K FAC,CD=B C求证:/ ADC# B=180 分析:可由C向/BAD的两边作垂线。近而证/ ADC与Z B之和为平角 三、三线合一构造等腰三角形 如图,AB=AC Z BAC=90, AD为Z ABC的平分线,CEL BE.求证:BD=2CE 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 女口图,AB>AC, Z 1 = Z2,求证:AB-AC>BD-CD c

相关文档
最新文档