《全等三角形》培优题型全集

《全等三角形》培优题型全集
《全等三角形》培优题型全集

《全等三角形》培优题型全集

题型一:倍长中线(线段)造全等

1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且

AE=EF ,求证:

AC=BF

C

2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.

D

C

B

A

3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1

C 、5

D 、9

4、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD ,

求证:AE=2

1

AC

C

E

5、已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,

且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠

A

B

F

D

E

C

题型二:截长补短

1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。

求证:BC =AB +CD 。

2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.

3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数

D C

B

A

4、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和

.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD

、BC 的数量

关系,并加以证明.

D

C

B

A 12

D

O

E

C

B

A

题型三:角平分线上的点向角两边引垂线段

1、如图,在四边形ABCD中,BC>BA,AD=CD,

求证:∠BAD+∠C=180°

D

C

B

A

2、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,则∠B与∠ADC互补,为什么

3、如图,△ABD和△ACD,BD=CD,∠ABD=∠ACD,求证AD平分∠BAC.

4、已知,AB>AD,∠1=∠2,CD=BC。

求证:∠ADC+∠B=180°。

图九

2

1

C

B

A

D

5、如图,在△ABC中∠ABC,∠ACB的外角平分线相交于点P,

求证:AP是∠BAC的角平分线

图十一

4

3

2

1

B

C

A

B C

D

6、如图,∠B=∠C=90°,AM 平分∠DAB ,DM 平分∠ADC 。 求证:点M 为BC 的中点

题型四:连接法(构造全等三角形)

1、已知:如图,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

2、如图,直线AD 与BC 相交于点O ,且AC=BD ,AD=BC . 求证:CO=DO .

A

O

D

C B

3、已知:如图,AB=AE ,BC=ED ,点F 是CD 的中点,AF ⊥CD .

求证:∠B=∠E .

A

F D

C B

E

4、在等边ABC ?内取一点D ,使DA DB =,在ABC ?外取一点

E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.

题型五:全等+角平分线性质

1、如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,

求证:EB=FC

D

B

A

F

E

D

E

C

B

A

2、已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,?PN ⊥CD 于N ,求证:PM= PN

P D A

C

B

M N

题型六:全等+等腰三角形的性质

1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于

点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .

O

C

E

B

D

A

2、.已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,

BE =CF ,∠B =∠C .求证:OA =OD .

题型七:两次全等

1、如图,AB=AC ,DB=DC ,F 是AD 的延长线上的一点。求证:BF=CF

F

D

C

B

A

2、如图,D 、E 、F 、B 在一条直线上AB=CD, ∠B=∠D ,BF=DE. 求证:(1)AE=CF; (2)AE ∥CF (3)∠AFE=∠CEF

3、如图:A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,

AC=BD 。求证:△ACF ≌△BDE

A

C

E

F

4、如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,

求证: ∠5=∠6.

654

32

1

E D

C

A

5、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:

AC 与BD 互相平分

A

B

E

O F

D

C

A

D

F

E

C

B

6、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG

题型八:直角三角形全等(余角性质)

1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,

AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G .求证:BD =CG .

2、如图,将等腰Rt △ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.

3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F ,求证:EF =CF -AE

题型九:延长角平分线的垂线段

1、如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .

求证:∠ACE=∠B+∠ECD .

A

F D

C

B

E

2、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,

BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD=2CE .

F

E D

C

B A

3、已知,如图34,△ABC 中,∠ABC=90o ,AB=BC ,AE 是∠A 的平分

线,CD ⊥AE 于D .求证:CD=

2

1

AE . A

B C

F

D E A

F

C

B

D

E

G

C E B

A

D

题型十:面积法

1、如图,在△ABC中,∠BAC的角平分线AD平分底边BC,

求证AB=AC.

2、如图,在△ABC中,∠A=90°,D 是AC上的一点,BD=DC,P是BC上的任一点,PE⊥BD,PF⊥AC,E、F为垂足.

求证:PE+PF=AB.

3、己知,△ABC中,AB=AC,CD⊥AB,垂足为D,P是线段BC上任一点,PE⊥AB,PF⊥AC垂足分别为E、F,求证: PE+PF=CD.

4、己知,△ABC中,AB=AC,CD⊥AB,垂足为D,P是射线BC上任一点,PE⊥AB,PF⊥AC垂足分别为E、F,求证: PE – P F=CD.

题型十一:旋转型

1、如图,正方形ABCD的边长为1,G为CD边上一动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于H。

求证:①△BCG≌△DCE,② BH⊥DE

2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.

F

E

D

C

A

B

G

P

F

E

D

C

A

B

G

P

F

E

D

C

A

B

G

H

《全等三角形》培优题型全集

《全等三角形》培优题型全集

2 《全等三角形》培优题型全集 题型一:倍长中线(线段)造全等 1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于 F ,且 AE=EF ,求证:AC=BF A C E F 2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______. D C B A 3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1

2012中考数学复习(48):正多边形和圆

中考数学复习(48):正多边形和圆 知识考点: 1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算; 2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长; 3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积; 4、掌握圆柱、圆锥的侧面展开图的有关计算。 精典例题: 【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。 分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。 解:设正三角形外接圆⊙O 1的半径为3R ,正六边形外接圆⊙O 2的半径 为6R ,由题意得:AB R 3 3 3=,AB R =6,∴3R ∶6R =3∶3; ∴⊙O 1的面积∶⊙O 2的面积=1∶3。 【例2】已知扇形的圆心角为1500,弧长为π20,求扇形的面积。 分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 2 1 3602=π= 扇形,由条件n =1500,π20=l 看到,不管是用前者还是用后者都必须求出扇形的半径,怎么求?由条件想到利用弧长公式不难求出扇形半径。 解:设扇形的半径为R ,则180 R n l π=,n =1500,π20=l ∴18015020R ππ= ,24=R ∴ππ24024202 1 21=??=lR S =扇形。 【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600,求阴影部 分的周长。 分析:此题欲求阴影部分的周长,须求PA 、PB 和? AB 的长,连结OA 、OB ,根据切线长定理得PA =PB ,∠PAO =∠PBO =Rt ∠,∠APO =∠BPO =300,在Rt △PAO 中可求出PA 的长,根据四边形内角和定理可得∠AOB =1200 ,因此可求出? AB 的长,从而能求出阴影部分的周长。 解:连结OA 、OB ∵PA 、PB 是⊙O 的切线,A 、B 为切点 ∴PA =PB ,∠PAO =∠PBO =Rt ∠ 2 O 1O ?? 例1图 B A 例3图

《全等三角形》数学培优作业

A B C D E 固始三中八年级上期《全等三角形》数学培优作业 (考查内容:边角边) 命题人:吴全胜1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证:△ABE≌△ACF。 2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF. 3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE 4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。 A B D C 5、已知:如图,AD∥BC,CB AD=。求证:CBA ADC? ? ?。 6、已知:如图,AD∥BC,CB AD=,CF AE=。求证:CEB AFD? ? ?。 7、已知:如图,点A、B、C、D在同一条直线上,DB AC=,DF AE=,AD EA⊥,AD FD⊥,垂足分别是A、D。求证:FDC EAB? ? ?

8、已知:如图,AC AB=,AE AD=,2 1∠ = ∠。求证:ACE ABD? ? ?。 9、如图,在ABC ?中,D是AB上一点,DF交AC于点E,FE DE=,CE AE=, AB与CF有什么位置关系?说明你判断的理由。 10、已知:如图,DBA CAB∠ = ∠,BD AC=。求证∠C=∠D 11、已知:如图,AC和BD相交于点O,OC OA=,OD OB=。 求证:DC∥AB。 12、已知:如图,AC和BD相交于点O,DC AB=,DB AC=。求证:C B∠ = ∠。 13、已知:如图,D、E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE. 求证:(1)BD=FC (2)AB∥CF 14、已知: 如图 , AB=AC , EB=EC , AE的延长线交BC于D.求证:BD=CD. 15、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证: BE=AD D C A B E

2019中考全等三角形经典培优题(教师版)

2017中考全等三角形经典培优题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

3已知:∠1=∠2,CD=DE,EF ? = ∠90 ACB BC AC=MN C MN AD⊥D MN BE⊥E1)当直线MN绕点C旋转到图1的位置时, 求证:①ADC ?≌CEB ?;②BE AD DE+ =; (2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立, 请给出证明;若不成立,说明理由. 15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证: (1)EC=BF;(2)EC⊥BF C D B A B C D P D A C B F A E D C B A P E D C B A D C B M F E C B A C B D E F A E B M C F B A C D F 2 1 E

16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由 17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE . A B C D E F 图9

全等三角形证明经典(答案) 1. 延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE

《正多边形和圆》练习题

思路解析:如图,设正三角形的边长为a ,则高 AD= 3 思路解析:因为正 n 边形的中心角为 360? 3 4 24.3 正多边形和圆 5 分钟训练(预习类训练,可用于课前) 1.圆的半径扩大一倍,则它的相应的圆内接正 n 边形的边长与半径之比( ) A.扩大了一倍 B.扩大了两倍 C.扩大了四倍 D.没有变化 思路解析:由题意知 圆的半径扩大一倍,则相应的圆内接正 n 边形的边长也扩大一倍,所 以相应的圆内接正 n 边形的边长与半径之比没有变化. 答案:D 2.正三角形的高、外接圆半径、边心距之比为( ) A.3∶2∶1 B.4∶3∶2 C.4∶2∶1 D.6∶4∶3 3 a ,外接圆半径 OA= a ,边心距 2 3 OD= 3 6 a , 所以 AD ∶OA ∶OD=3∶2∶1. 答案:A 3.正 五边形共有__________条对称轴,正六边形共有__________条对称轴. 思路解析:正 n 边形的对称轴与它的边数相同. 答案:5 6 4.中心角是 45°的正多边形的边数是__________. 360? ,所以 45°= ,所以 n=8. n n 答案:8 5.(2010 上海静安检测△)已知 ABC 的周长为 20,△ABC 的内切圆与边 AB 相切于点 D,AD=4, 那么 BC=__________. 思路解析:由切线长定理及三角形周长可得. 答案:6 10 分钟训练(强化类训练,可用于课中) 1.若正 n 边形的一个外角是一个内角的 2 3 时,此时该正 n 边形有_________条对称轴. 360? (n - 2) ? 180? 思路解析:因为正 n 边形的外角为 ,一个内角为 , n n 360? 2 (n - 2) ? 180? 所以由题意得 = · ,解这个方程得 n=5. n 3 n 答案:5 2.同圆的内接正三角 形与内接正方形的边长的比是( ) A. 6 6 B. C. D. 2 3 4 3 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选 A. 答案:A 3.周长相等的正三角形、正四边形、正六边形的面积 S 3、S 4、S 6 之间的大小关系是( )

全等三角形经典培优题型(含答案解析)

全等三角形的提高拓展训练 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 全等三角形证明经典题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

最新正多边形和圆知识点整理+典型例题+课后练习

个性化辅导教案 1 2 学生姓名:授课教师:所授科目: 3 学生年级: 上课时间: 2016 年月日时分至时分共4 小时

分析:要求正六边形的周长,只要求AB 的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM?中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形 面积组成的。 例2:已知⊙O 和⊙O 上的一点A(如图). (1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ; (2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边. F D E C B A O M

例3(中考): 如图,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少? 课堂练习: 选择题 1.一个正多边形的一个内角为120°,则这个正多边形的边数为( ) A.9 B.8 C.7 D.6

2.如图所示,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( ) A. cm B. cm C.cm D.1 cm 第2题图第3题图第4题图 3.如图所示,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 ( ) A.7 B.8 C.9 D.10 4.如图4所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是(). A.60° B.45° C.30° D.22.5° 5.若半径为5cm的一段弧长等于半径为2cm的圆的周长,?则这段弧所对的圆心角为() A.18° B.36° C.72° D.144° 6.正六边形的周长为12,则同半径的正三角形的面积为________,同半径的正方形的周长为________. 7. 正六边形的外接圆的半径与内切圆的半径之比为 . 8.如图所示,正△ABC的外接圆的圆心为O,半径为2,求△ABC的边长a,周长P,边心距r,面积S.

全等三角形证明题培优提高经典例题练习题

全等三角形证明题专练 1、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 3、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 A E D C B A B C D E F O

4、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 5、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。 (1) 请你再添加一个条件,使得△BEA≌△BDC,并给出证明。 你添加的条件是:________ ___ (2)根据你添加的条件,再写出图中的一对全等三角形: ______________(不再添加其他线段,不再标注或使用 其他字母,不必写出证明过程) 6、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 F E D C A B G H A B C D E F

7、已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A’B’C’。 8、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥CD 于F 。求证:OE=OF 。 A B C D E F O 9、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。 O B A C D E A B C D A' B' C' D' 1 2 3 4

正多边形和圆练习题及答案

正多边形和圆练习 一、课前预习(5分钟训练) 2?圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( 有变化 2?正三角形的商、外接圆半径、边心距之比为( C.4 : 2 ; 1 4?中心角是45。的正多边形的边数是 5?已知△ABC 的周K 为20,A ABC 的内切圆与边AB 相切于点D,AD=4,那么 BC= 二、课中强化(10分钟训练) i. 若正n 边形的一个外角是一个内角的彳时,此时该正n 边形有 称轴. 2?同圆的内接正三角?形与内接正方形的边长的比是( 3?周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关 系 是( 4?已知OO 和OO 上的一点A (如图24-3-1). (1)作OO 的内接正方形ABCD 和内接正六边形AEFCGH ; ⑵在⑴题的作图中,如果点E 在弧AD 上,求证:DE 是OO 内接正十二边形 的一边. A ?扩大了一倍 B ?扩大了两倍 C ?扩大了四倍 D ?没 3?正?五边形共有 条对称轴,正六边形共有 条对称轴. 条对 >S4>S6 >S4>3 C>S3>S4 >S6>S3

图 24-3-1 三、课后巩固(30分钟训练) 1 ■正六边形的两条平行边之间的距离为1,则它的边长为( 二边形 3?已知正六边形的半径为3 cm,则这个正六边形的周长为 4?正多边形的一个中?心角为36度,那么这个正多边形的一个内角等于 度. 5?如图24-3-2.两相交圆的公共弦AB 为2? 在OOi 中为内接正三角形的一边, 在002中为内接正六边形的一边,求这两圆的面积之比. 6?某正多边形的每个内角比其外角大100\求这个正多边形的边数. 2.已知正多边形的边心距与边长的比%,则此正多边形为( B.正方形 A ?正三角形 C ?正六边形 D ?正十 cm.

三角形培优训练 题集锦

E D F C B A 三角形培优训练专题【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

《集合的全集与补集》教学设计(精品)

集合的全集与补集 (一)教学目标 1.知识与技能 (1)了解全集的意义. (2)理解补集的含义,会求给定子集的补集. 2.过程与方法 通过示例认识全集,类比实数的减法运算认识补集,加深对补集概念的理解,完善集合运算体系,提高思维能力. 3.情感、态度与价值观 通过补集概念的形成与发展、理解与掌握,感知事物具有相对性,渗透相对的辨证观点. (二)教学重点与难点 重点:补集概念的理解;难点:有关补集的综合运算. (三)教学方法 通过示例,尝试发现式学习法;通过示例的分析、探究,培养发现探索一般性规律的能力. (四)教学过程 .

. = {1, 2, 7, 8}.

= . = . = . .师生合作分析例题. 例2(1):主要是比较A及的区别,从而求eS A.

备选例题 例1 已知A = {0,2,4,6},eS A = {–1,–3,1,3},eS B = {–1,0,2},用列举

法写出集合B. 【解析】∵A = {0,2,4,6},eS A = {–1,–3,1,3}, ∴S = {–3,–1,0,1,2,3,4,6} 而eS B = {–1,0,2},∴B =eS (eS B) = {–3,1,3,4,6}. 例2 已知全集S = {1,3,x3 + 3x2 + 2x},A = {1,|2x– 1|},如果eS A = {0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由. 【解析】∵eS A = {0},∴0∈S,但0?A,∴x3 + 3x2 + 2x = 0,x(x + 1) (x + 2) = 0,即x1 = 0,x2 = –1,x3 = –2. 当x = 0时,|2x– 1| = 1,A中已有元素1,不满足集合的性质; 当x= –1时,|2x– 1| = 3,3∈S;当x = –2时,|2x– 1| = 5,但5?S. ∴实数x的值存在,它只能是–1. 例3 已知集合S = {x | 1<x≤7},A = {x | 2≤x<5},B = {x | 3≤x<7}. 求:(1)(eS A)∩(eS B);(2)eS (A∪B);(3)(eS A)∪(eS B);(4)eS (A∩B). 【解析】如图所示,可得 A∩B = {x | 3≤x<5},A∪B = {x | 2≤x<7}, eS A = {x | 1<x<2,或5≤x≤7},eS B = {x | 1<x<3}∪{7}. 由此可得:(1)(eS A)∩(eS B) = {x | 1<x<2}∪{7}; (2)eS (A∪B) = {x | 1<x<2}∪{7}; (3)(eS A)∪(eS B) = {x | 1<x<3}∪{x |5≤x≤7} = {x | 1<x<3,或5≤x≤7}; (4)eS (A∩B) = {x | 1<x<3}∪{x | 5≤x≤7} = {x | 1<x<3,或5≤x≤7}. 例4 若集合S= {小于10的正整数},A S ?,且(eS A)∩B= {1,9},A∩B= {2}, ?,B S (eS A)∩(eS B) = {4,6,8},求A和B. 【解析】由(eS A)∩B = {1,9}可知1,9?A,但1,9∈B, 由A∩B = {2}知,2∈A,2∈B. 由(eS A)∩(eS B) = {4,6,8}知4,6,8?A,且4,6,8?B 下列考虑3,5,7是否在A,B中: 若3∈B,则因3?A∩B,得3?A. 于是3∈eS A,所以3∈(eS A)∩B,

41【基础】正多边形和圆(基础课程讲义例题练习含答案)

正多边形和圆—知识讲解(基础) 【学习目标】 1.了解正多边形和圆的有关概念及对称性; 2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正 多边形; 3.会进行正多边形的有关计算. 【要点梳理】 知识点一、正多边形的概念 各边相等,各角也相等的多边形是正多边形. 要点诠释: 判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形). 知识点二、正多边形的重要元素 1.正多边形的外接圆和圆的内接正多边形 正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 2.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距. 3.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是. 要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形. 知识点三、正多边形的性质 1.正多边形都只有一个外接圆,圆有无数个内接正多边形. 2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形. 3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.

全等三角形培优经典题

全等三角形培优经典题

全等三角形培优习题 1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)直接写出线段EG与CG的数量关系; (2)将图1中△BEF绕B点逆时针旋转45o,如图2所示,取DF中点G,连接EG,CG. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? A D E G 图1 F A D C G 图2 F A E 图3 D

2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E是边BC的中点.90 AEF ∠=o,且EF交正方 形外角DCG ∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的 中点M,连接ME,则AM=EC,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E 图A D F C G E 图 A D F C G E B 图

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

2018沪科版数学九年级下册246《正多边形和圆》练习题1

24、6 正多边形与圆 第1课时 正多边形的概念及正多边形与圆的关系 1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( ) (1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形 A.(1)(2) B 。(2)(3) C.(1)(3) D 。(1)(4) 2.以下说法正确的是 A 。每个内角都是120°的六边形一定是正六边形。 B.正n 边形的对称轴不一定有n 条。 C.正n 边形的每一个外角度数等于它的中心角度数。 D.正多边形一定既是轴对称图形,又是中心对称图形. 3、若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( ) A 。1:2:3 B 。3:2:1 C.1:2:3 D. 3:2:1 4、如图,若正方形A 1B 1 C 1 D 1内接于正方形ABCD 的内接圆,则 AB B A 1 1的值为( ) A. 2 1 B 。22 C 。 4 1 D.42 5。 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为 ______________________. 第5题图 第6题图 6.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= 。 7.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于 底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度. 8。从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 。 O B C D A E F E D C B A O O D E C A

全等三角形培优题型含答案解析

全等三角形培优题型含 答案解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

全等三角形的提高拓展训练 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 全等三角形证明经典题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

集合的运算:全集和补集

1、3、3 全集与补集 第一部分 走进预习 【 预 习 】阅读教材第 页,试回答下列问题 1、全集(universal set )的概念 2、补集的概念: ①自然语言 ②符号语言 ③图形语言 第二部分 走进课堂 【复习检测】 交集、并集的定义 ①自然语言 ②符号语言 ③图形语言 指出:这一节课我们研究集合间的另一种运算。 【探索新知】 全集的概念 阅读下列一段材料: 在研究集合间的关系和运算时,我们所研究的集合常常是某一特定集合的子集,这个特定的集合叫做全集,记作U. 例如:1、研究{}1|≥=x x A , {}31|<≤-=x x B 等集合时,A 、B 都是R 的子集 , R 就是全集。 2、在研究

①{}Z n n x x A ∈==,2| , {}Z n n x x B ∈-==,12| ②{}Z n n x n A ∈==,3|,{}Z n n x x B ∈+==,13|,{}Z n n x x C ∈+==,23| 等集合时,A 、B 、C 都是Z 的子集,Z 就叫做全集。 3、在研究质数集A 与合数集B 时,质数集合A 与合数集合B 都是{}2|≥∈=n Z n U 的子集,U 就是全集。 4、在研究有理数集Q 合无理数集时,有理数集Q 和无理数集都是实数集R 的子集,U=R 就是全集。 5、在研究{} 是斜三角形x x A |= , {}是直角三角形x |x B =等集合时,A 、B 都是 {}是三角形 x U |x =的子集,U 就是全集。 补集的定义 指出:有时全集也可以规定: 例如:{ }5,4,3,2,1=U ,{}3,2,1=A 问题:集合{}5,4与U 、A 有什么关系? 结论:{}5,4是由全集U 中所有不属于A 的元素组成的集合,记作{}5,4=A C U ,A C U 叫做A 在U 中的补集。 {}A x |?∈=且U x x A C U 在上面五个例子中,求集合A 、B 的补集。 指出:我们也可以用Venn 图表示补集 显然:A A C C U U =)(,U C U =φ, φ=U C U φ=A A C U )(, U A A C U = )( 【例题剖析】

(完整版)正多边形与圆-练习题 含答案

正多边形与圆 副标题 题号一二总分 得分 一、选择题(本大题共5小题,共15.0分) 1.有一边长为4的正n边形,它的一个内角为,则其外接圆的半径为 A. B. 4 C. D. 2 【答案】B 【解析】解:经过正n边形的中心O作边AB的垂线OC, 则度,度, 在直角中,根据三角函数得到. 故选B. 根据正n边形的特点,构造直角三角形,利用三角函数解决. 正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点 构造直角三角形,把正多边形的计算转化为解直角三角形. 2.如图,的外切正六边形ABCDEF的边长为2,则图中 阴影部分的面积为 A. B. C. D. 【答案】A 【解析】解:六边形ABCDEF是正六边形, , 是等边三角形,, 设点G为AB与的切点,连接OG,则, , . 故选A. 由于六边形ABCDEF是正六边形,所以,故是等边三角形, ,设点G为AB与的切点,连接OG,则, ,再根据,进而可得出结论. 本题考查的是正多边形和圆,根据正六边形的性质求出是等边三角形是解答此题的关键.

3.如图,是等边三角形ABC的外接圆,的半径为2,则等 边的边长为 A. 1 B. C. D. 【答案】D 【解析】解:作于D,连接OB,如图所示: 则, 是等边三角形ABC的外接圆, , , , , 即等边的边长为; 故选:D. 作于D,连接OB,由垂径定理得出,由等边三角形的性质和已知条件得出,求出OD,再由三角函数求出BD,即可得出BC 的长. 本题考查了等边三角形的性质、垂径定理、含角的直角三角形的性质、三角函数;熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键. 4.如图,正六边形ABCDEF内接于,半径为4,则这 个正六边形的边心距OM和的长分别为 A. 2, B. , C. , D. , 【答案】D 【解析】解:连接OB, , , , , 故选:D. 正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可. 本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版含解析) 一、八年级数学轴对称三角形填空题(难) 1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm. - 【答案】10310 【解析】 解:连接BD,在菱形ABCD中, ∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论: ①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10; ②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP -; 最小,最小值为10310 ③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在; -(cm). 综上所述,PA的最小值为10310 -. 故答案为:10310 点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

2.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1 2 BC,则△ABC的顶角的度数为 _____. 【答案】30°或150°或90° 【解析】 试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可. 解:①BC为腰, ∵AD⊥BC于点D,AD=1 2 BC, ∴∠ACD=30°, 如图1,AD在△ABC内部时,顶角∠C=30°, 如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°, ②BC为底,如图3, ∵AD⊥BC于点D,AD=1 2 BC, ∴AD=BD=CD, ∴∠B=∠BAD,∠C=∠CAD,

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算 一、知识梳理: 1、正多边形和圆 各边相等,各角也相等的多边形叫正多边形。 定理:把圆分成n (n >3)等分: (l )依次连结各分点所得的多边形是这个圆的内按正多边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。 正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。 正n 边形的每个中心角等于n 360 正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。 若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心。 边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。 2、正多边形的有关计算 正n 边形的每个内角都等于n n 180)2(- 定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。正多边形的有关计算都归结为解直角三角形的计算。 3、画正多边形 (1)用量角器等分圆 (2)用尺规等分圆 正三、正六、正八、正四及其倍数(正多边形)。 正五边形的近似作法(等分圆心角) 4、圆周长、弧长 (1)圆周长C =2πR ;(2)弧长180R n L π= 5、圆扇形,弓形的面积 (l )圆面积:2R S π=; (2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。 在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形 注意:因为扇形的弧长180 R n L π=。所以扇形的面积公式又可写为LR S 21=扇形 (3)弓形的面积 由弦及其所对的弧组成的圆形叫做弓形。 弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三

全等三角形培优经典题

全等三角形培优习题 1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)直接写出线段EG 与CG 的数量关系; (2)将图1中△BEF 绕B 点逆时针旋转45o ,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? 2 1 E 是边BC 的 EF DCG ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除 B , C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖 的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. F B D 图1 B D 图2 B 图3 D

1.下列命题中正确的是() A.全等三角形的高相等 B.全等三角形的中线相等 C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等 2.下列说法正确的是() A.周长相等的两个三角形全等 B.有两边和其中一边的对角对应相等的两个三角形 AB=BE,BC=DB。 CE=DE 求证:EDC EBC∠ = ∠。 7.已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分. 8.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.猜想线段AC与EF的关系,并证明你的结论. 9如图ABD ?和ACE ?均为等边三角形,求证: A D F C G E B 图1 A D F C G E B 图2 A D F C G E B 图3 A B E O F D C

相关文档
最新文档