超声波测车速练习

超声波测车速练习
超声波测车速练习

超声波测车速

1如图(a),停在公路旁的公安巡逻车利用超声波可以监测车速:巡逻车上测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,就能测出车速.在图(b)中,P1、P2是测速仪先后发出的超声波信号,

n1?n2分别是测速仪检测到的P1、P2经反射后的信号.设

测速仪匀速扫描,P1与P2之间的时间间隔为0.9秒,超

声波在空气中传播的速度为340米/秒,假设被测汽车沿

直线匀速行驶.

(1)图b中每小格表示的时间是s.

(2)测速仪第一次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少?

(3)测速仪第二次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少?

(4)汽车的速度是多少m/s?

4.(2013?绍兴)交通部门常用测速仪检测车速。测速原理是测速仪前后两次发出并接受到被测车反射回的超声波信号,再根据两次信号的时间差,测出车速,如图甲。某次测速中,测速仪发出与接收超声波的情况如图乙所示,x表示超声波与测速仪之间的距离。则该被测汽车速度是(假设超声波的速度为340米/秒,且保持不变)(??)D

A.28.33米/秒B.13.60米/秒C.14.78米/秒D.14.17米/秒

5.测量员是这样利用回声测距离的:他站在峭壁之前某一位置鸣枪,经过1.00s听到回声,已知声速为340m/s,则测量员能测出他与峭壁间的距离为170m.与此类似,如图所示是在高速公路上用超声波测速仪测量车速的示意图,测速仪指向车辆发出超声波脉冲信号,并接收经车辆反射的超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度.在某次测速过程中,超声波测速仪对某一汽车共发射两次信号,接收两次信号,数据如下:

解:本题首先要看懂B图中标尺所记录的时间每一小格相当于多少:由于P1,P2?之间时间间隔为1.0s,标尺记录有30小格,故每小格为1/30s其次应看出汽车两次接收(并反射)超声波的时间间隔:P1发出后经12/30s 接收到汽车反射的超声波,故在P1发出后经6/30s车接收,

发出P1后,经1s发射P2,可知汽车接到P1后,经t1=1-6/30=24/30s发出P2,而从发出P2到汽车接收到P2并反射所历时间为t2=4.5/30s,故汽车两次接收到超声波的时间间隔为t=t1+t2=28.5/30s,求出汽车两次接收超声波的位置之间间隔:s=(6/30-4.5/30)v声=17m,故可算出v汽=s/t=17÷(28.5/30s)=17.9m/s.

超声波传感器测距原理

芀一、超声波测距原理 肅超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的 同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S , 即: 膂S = v·△t /2 ① 芀这就是所谓的时间差测距法。 蝿由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: 螅V = 331.45 + 0.607T ② 芄 声 速 确 定

后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 薂二、系统硬件电路设计 腿图2 超声波测距仪系统框图 蒆基于单片机的超声波测距仪框图如图 2 所示。该系统由单片机定时器产生 40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机 是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单 片机复位,然后控制程序使单片机输出载波为40kHz 的10 个脉冲信号加到超声 波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后, 单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数, 这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 莅1 、超声波发射电路 螀超声波发射电路如图3所示,89C51 通过外部引脚P1.0 输出脉冲宽度为250 μ s , 40kHz 的10 个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发 射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远, 可对振荡信号进行功率放大后再加在超声波传感器上。 薈图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应 将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它 上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声 波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接

超声波测距

超声波测距 超声波测距原理: 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码

管,断码用74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m的时间里,超声波发出到遇到返射物返回的距离, 超声波测距器的系统框图如下图所示:

超声波测距传感器(硬件件篇)

自制一个由你掌控的 —— 超声波测距传感器(硬件篇) 一、背景 四年多前,我曾尝试自己制作一个超声波测距传感器。 当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。 为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。 前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。 本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。 现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。 二、需求分析 ?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外; ?可以提供给大学生和爱好者 DIY,具有学习功能; ?方便自己随时修改程序,使学习的作用得以充分发挥; ?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 三、概要设计 总体设计参照 SensComp公司(https://www.360docs.net/doc/be1020649.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。 TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。 TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。 如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。 所以,本次设计的主要改变就是用单片机替换6500模块的TL851。 单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

超声波传感器及其测距原理

安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转 化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的

声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。 2.1 Polaroid 600系列传感器 此超声波传感器是集发送与接收一体的一种传感器。传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。 Polaroid 600超声传感器发送的超声波具有角度为30度的波束角[3],如图1所示:

实验4.2 测量超声波在空气中的传播速度

测量超声波在空气中的传播速度 【实验简介】 声波是一种在弹性介质中传播的机械波,它能在气体、液体和固体中传播,但在各种介质中的传播速度是不同的。声波的振动频率在20Hz~20KHz时,可以被人听见;频率低于20Hz的声波称为次声波;频率高于20KHz的声波称为超声波。对于声波特性(如频率、波长、波速、相位等)的测量是声学技术的重要内容。声速的测量在声波定位、探伤、测距中有广泛的应有。本实验分别采用驻波法和相位法测量超声波在空气中的传播速度。 【实验目的】 1. 学会使用驻波法和相位法测定超声波在空气中的传播速度。 2. 深刻理解驻波的特性,以及相位的物理含义。 3. 了解产生和接收超声波的原理。 【预习思考题】 1. 什么是驻波以及驻波的特点是什么? 2. 什么是共振?如何判断测量系统是否处于共振状态? 3. 如何确定最佳工作频率? 4.相位法中比较的相位是哪两个相位? 【实验仪器】 示波器,声速测试仪,信号发生器。 【实验原理】 1. 声速的测量 声波在空气中是以纵波传播的,其传播速度v和声源的振动频率f以及波长λ有如下关系: 测出声波波长和声源的振动频率就可以由式(4.2.1)求出声波的传播速度。声波波长的测量通常用驻波法和相位法来测量。 1.1 驻波法测声速 驻波法就是利用入射波和反射波在一定条件下干涉形成驻波进行测量的。 由波动理论可知:声源产生的声波信号经媒质垂直入射到某一刚性反射面上,就会被反射回来,形成反射波,在声源和反射界面之间,入射波和反射波发生干涉形成驻波。改变声

源和刚性反射面之间的距离l ,驻波场中各质点振动的振幅也在发生变化,当声源到刚性反射面之间的距离满足 2λ n l = (4.2.2) 时,各质点振动的振幅最大,这时在声源和刚性反射面之间各质点处于驻波共振状态。保持声源位置不变,沿波的传播方向上,改变刚性反射面的位置x ,在满足式(4.2.2)的位置上可以观察到驻波共振状态。由式(4.2.2)可知:相邻两次出现驻波共振状态对应的刚性反射面移动的距离x ?为2 λ,即 2λ =?x ( 4.2.3) 只要测出相邻两次出现驻波共振状态对应刚性反射面之间的距离x ?,就可以求出声波的波长,从而由式( 4.2.1 )计算出声速。这种测量声速的方法又称为驻波共振法。 实验中,通过用示波器观测反射端处的振动状态来判断质点是否处于驻波共振状态。 1.2 相位法测声速 相位法又称为行波法,是通过比较同一列波上两质点的相位差来进行测量的。 由声源发出的声波在沿其传播方向上,相位差为π的两质点之间的距离为半个波长2λ,因此,只要测出相位差为π的两质点之间的距离d ?,就可由 2λ =?d ( 4.2.4) 计算出波长,从而由波长及声源振动频率计算出声速。 实验中保持声源的位置不变,改变反射面的位置,用示波器测声源和反射面处两质点的相位差,记下相位差每变化π时反射面的位置d ,求出相位差变化π时反射面位置的变化d ?。 示波器测两信号的相位差有两种方法:双踪示波法和李萨如图形法,本实验用李萨如图形测两点的相位差。将声源和反射面处的信号分别输入至示波器的两个偏转板上,在示波器上观察到的李萨如图形是一椭圆,当改变反射面的位置时,两信号的相位差发生变化,李萨如图形由椭圆→直线→椭圆→直线发生周期性变化,如图4.2.1所示,其中相邻两次出现直线时反射面位置的变化就是相位差为π时两质点的距离d ?。

测量物体速度的几种方法

1 测量物体速度的几种方法 测量物体速度的方法很多,不仅可以利用电磁打点计时器和电流表,还可以利用多种脉冲信号(如:超声波脉冲、电磁脉冲、光电脉冲或激光扫描信号),还可以利用共振、干涉原理、多普勒效应等九种方法进行测量,现介绍如下. 一、 利用电磁打点计时器或电流表测量物体速度 利用电磁打点计时器测量物体速度是中学物理中最常见的,本文不再介绍;但利用电流表测量物体速度很多同学还比较陌生,现举例说明. 例1 如图1所示,变阻器滑动触头P 与某一运动的物体相连,当P 匀速滑动时,电流表就有一定的示数,从电流表的读数可得运动物体的速度.已知电源电动势E=6V ,内阻r=10Ω,AB 为粗细均匀的电阻丝,阻值R=50Ω,长度L=50cm,电容器的电容C=100F μ.某次测量电流表的读数为I=0.10mA ,方向由M 流向N ,求运动物体的速度v . [解析]由分压原理得AB 两端电压AB U = R E R r +,① AB 单位长度上的电压为AB U U L ?=,② 设t ?(极短)时间内,电容器两极板间电压的变化量和 极板上电荷的变化量分别为Uc ?和Q ?,则 Uc U v t ?=????,③ 图1 Q ?=Uc ?·C ,④ 电容器上充(放)电的电流为Q I t ?= ?.⑤ 解①-⑤得()R r L v I REC +=.⑥ 将已知数据代入⑥得v =0.1m/s.根据题目“电流表中的电流方向由M 流向N ”可知,该过程为电容器充电过程,则物体由B 向A 运动. 从⑥可以看出()R r L v I REC +=∝I ,可见电流表的读数与物体的速度成正比.当电流表用做测速时,它的刻度是均匀的. 二、 利用多种脉冲信号(如:超声波脉冲、电磁脉冲或光电脉冲信号)测量物体速度 1、利用超声波脉冲信号测量物体速度(例如:超声波测速仪、水声测位仪(声纳)) 例2(2001·上海) 如图2所示,图A 是高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号.根据发出和接收的信号间的时间差,测出被测物体的速度.图B 中P 1、P 2是测速仪发出的超声波信号,n 1、n 2分别是P 1、P 2由汽车反射回来的信号.设测速仪匀速扫描,P 1、P 2之间的时间间隔Δt 0=1.0s,超声波在空气中传播速度是v 0=340m/s,若汽车是匀速行驶的,则根据图B 可知,汽车在接收到P 1、P 2两个信号之间的时间内前进的距离是__m,汽车的速度是__m/s.

关于超声波测车速练习.doc

精心整理 超声波测车速 1如图( a ),停在公路旁的公安巡逻车利用超声波可以监测车速:巡逻车上测速仪发出并接收超声 波脉冲信号,根据发出和接收到的信号间的时间差,就能测出车速.在图(b)中, P1、P2是测速仪先后发出的超声波信号,n1?n 2分别是测速仪检 测到的 P1、P2经反射后的信号.设测速仪匀速扫 描, P1与 P2之间的时间间隔为0.9 秒,超声波在 空气中传播的速度为340 米/秒,假设被测汽车沿 直线匀速行驶. (1)图 b 中每小格表示的时间是s. (2)测速仪第一次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少? (3)测速仪第二次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少? (4)汽车的速度是多少m/s ? 2.高速公路上常用超声波测速仪来测量汽车速度。某次检测时,第一次发出信号到接收到超声波返回信号,用 时 0.4s ,如图所示。第二次发出到接收到返回信号用时0.3s ,两次发出信号时间间隔是1s 。(假设超声波的速度为 340m/s ,且保持不变)求:( 1 )题目中被测汽车第一次接收到超声波时,汽车到超声波测速仪的距离S1 是多少?( 2)被测汽车两次接收到超声波的距离差S3 是多少?( 3)被测汽车的速度是多大? 3.如图( a)所示,停在公路旁的公安巡逻车利用超声波可以监测车速:巡逻车上测速仪发出并接 收超声波脉冲信号,根据发出和接收到的信号间的时间差,就能测出车速.在图(b)中, P1、P2 是测速仪先后发出的超声波信号, n1 ?n2分别是测速仪检测到的 P1、P2经反射后的信号.设测速 仪匀速扫描, P1与 P2之间的时间间隔为 0.9 秒,超声波在空气中传播的速度为340 米/秒,则被测车的车速为() A.20 米/秒 B. 25 米 /秒 C.30 米/秒 D.40 米/秒 4.( 2013? 绍兴)交通部门常用测速仪检测车速。测速原理是测速仪前后两次发出并接受到被测车反射回的超 声波信号,再根据两次信号的时间差,测出车速,如图甲。某次测速中,测速仪发出与接收超声波的情况如图 乙所示, x 表示超声波与测速仪之间的距离。则该被测汽车速度是(假设超声波的速度为340 米 /秒,且保持不变)( ??) D A.28.33 米/秒 B.13.60 米/秒 C. 14.78 米/秒 D. 14.17 米 /秒 5.测量员是这样利用回声测距离的:他站在峭壁之前某一位置鸣枪,经过 1.00s 听到回声,已知声速 为 340m/s ,则测量员能测出他与峭壁间的距离为 170m .与此类似,如图所示是在高速公路

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

超声波测车速练习(供参考)

超声波测车速 1如图(a),停在公路旁的公安巡逻车利用超声波可以监测车速:巡逻车上测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,就能测出车速.在图(b)中,P1、P2是测速仪先后发出的超声波信号,n1 n2分别是测速仪检测到的P1、P2经反射后的信号.设 测速仪匀速扫描,P1与P2之间的时间间隔为0.9秒,超 声波在空气中传播的速度为340米/秒,假设被测汽车沿 直线匀速行驶. (1)图b中每小格表示的时间是s. (2)测速仪第一次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少? (3)测速仪第二次发出的信号到被测汽车收到时,汽车距测速仪的距离是多少? (4)汽车的速度是多少m/s? 2.高速公路上常用超声波测速仪来测量汽车速度。某次检测时,第一次发出信号到接收到超声波返回信号,用时0.4s,如图所示。第二次发出到接收到返回信号用时0.3s,两次发出信号时间间隔是1s。(假设超声波的速度为340m/s,且保持不变)求:(1)题目中被测汽车第一次接收到超声波时,汽车到超声波测速仪的距离S1是多少?(2)被测汽车两次接收到超声波的距离差S3是多少?(3)被测汽车的速度是多大? 3.如图(a)所示,停在公路旁的公安巡逻车利用超声波可以监测车速:巡逻车上测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,就能测出车速.在图(b)中,P1、P2是测速仪先后发出的超声波信号,n1 n2分别是测速仪检测到的P1、P2经反射后的信号.设测速仪匀速扫描,P1与P2之间的时间间隔为0.9秒,超声波在空气中传播的速度为340米/秒,则被测车的车速为() A.20米/秒B.25米/秒C.30米/秒D.40米/秒 4.(2013?绍兴)交通部门常用测速仪检测车速。测速原理是测速仪前后两次发出并接受到被测车反射回的超声波信号,再根据两次信号的时间差,测出车速,如图甲。某次测速中,测速仪发出与接收超声波的情况如图乙所示,x表示超声波与测速仪之间的距离。则该被测汽车速度是(假设超声波的速度为340米/秒,且保持不变)()D A.28.33米/秒B.13.60米/秒C.14.78米/秒D.14.17米/秒 5.测量员是这样利用回声测距离的:他站在峭壁之前某一位置鸣枪,经过1.00s听到回声,已知声速为340m/s,则测量员能测出他与峭壁间的距离为170m.与此类似,如图所示是在高速公路上用超声波测速仪测量车速的示意图,测速仪指向车辆发出超声波脉冲信号,并接收经车辆反射的超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度.在某次测速过程中,超声波测速仪对某一汽车共发射两次信号,接收两次信号,

超声波测距

总体方案 本设计主要是进行距离的测量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来。而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的。 超声波测距仪 超声波是一种超出人类听觉极限的声波即其振动频率高于20 kHz的机械波。超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片。超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传播等优点,而且超声波传感器的能量消耗缓慢有利于测距。在中、长距离测量时,超声波传感器的精度和方向性都要大大优于红外线传感器,但价格也稍贵。从安全性,成本、方向性等方面综合考虑,超声波传感器更适合设计要求。 综合上述三种测距仪的对比,本实验选着超声波测距仪。 系统方案 本系统选择52单片机作为控制系统核心,所测得的距离数值由4位共阴极数码管显示,与障碍物之间的不同距离利用蜂鸣器频率的不同报警声提示,超声波发射信号由52单片机的P1.0口送出到超声波发射电路,将超声波发送出去,报警系统由蜂鸣器电路构成。本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能避免干扰,可以很好的提高系统的可靠性。系统框图如下:

硬件设计 超声波测距模块 模块功能 该模块利用超声波测距仪,测试小车与障碍物之间的距离,当距离小于某一给定值时,利用程序,将信号传递给单片机的某个引脚。其他控制模块检测该引脚的电平高低,根据电平的高低,控制小车的行驶状态。 基本实现原理 超声波接收器 放大器 检波电路 显示模块 51单片机 放大电路 报警模块 超声波接收器

超声波传感器及超声波测距

超声波传感器及超声波测距 摘要:介绍了一种基于AT89C52单片机的超声波测距系统,由555和运放及比较器配合超声波传感器有效组成了超声波的发射电路和接收电路。同时在数据处理,盲区消隐方面提出了有效解决方法! 从而提高了检测的精度及灵敏度,以及用LCD液晶显示器配合美妙的音乐进行显示。本文主要阐述了超声测距系统的硬件电路构成、工作原理及软件设计方法。该系统硬件结构简单、工作可靠,有良好的测量精度和灵敏度。 [关键字] 超声波测距 LCD液晶

前言 随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。这一设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。由于超声波指向性强,因而常于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人,汽车安全,海洋测量等上得到了广泛的应用。本设计提供一种液晶显示测距装置,该装置利用了发射接收一体化的超声波传感器和微处理器。采用超声波传感器分时工作于发射和接收,利用声波在空气中的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物到超声波测距器之间的距离。 距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。尽管测距有多种方式,比如,激光测距,微波测距,红外线测距和超声波测距等。但是,超声波测距不失为一种简单可行的方法。虽然超声波测距电路多种多样,甚至已有专用超声波测距集成电路。但是,有的电路复杂,技术难度大,有的调试困难,有的元件不易购买。本文介绍的电路,成本低廉,性能可靠,所用元件易购,并且利用测距原理,结合单片机的数据处理,使测量精度提高,电路实现容易,无须调试,工作稳定可靠。

超声波测水流的速度

实验课程名称近代电子学实验 实验项目名称超声波测水流的速度 学院理学院 专业班级电子科学与技术10-1 学生姓名杨晓玲 学号 1007010043 指导老师李良荣 实验时间 2012 年9月10日

一、设计目的和要求 1、设计测量超声波正、反向传输时间及传输时差的电子电路,也可设计成直接测量超声波传输时差的电子电路; 2、设计数码显示电路,实时显示传输时差,也可实时显示可以计算出时间差的数据; 3、给出相关器件的选型、参数整定依据以及它的工作环境要求; 4、分析并提出提高测量精度和分辨率的方法和措施; 6、完成实验仿真、模拟调试、实现主要功能要求; 7、加选项:完成流速的计算。 二、实验方案设计: 1、原理方框图如图1所示: 2.设计思想: 该设计的内容是超声波传输时差的测量。本设计通过超声波换能器的收发信号来控制计数器测出超声波在顺逆流中所记脉冲的个数差,进而计算出时间差。技术要点和成果是通过换能器和计数器来控制计数器实现了不间断测时差。 根据设计要求,系统中必须有计数的模块,实现脉冲个数的计数,我通过

基本计数器的级联实现了大模制的计数功能,刚开始我选择了加减计数器,在超声波逆流过程中进行加计数,在顺流过程中进行减计数,最后显示的数值就是顺逆流的计数差值,虽然也间接实现了差时的测量,但是逆流加计数和顺流减计数是不同步的,所测的数值的准确性不够高,所以我又用两块计数模块来分别同时计顺逆流时间段的脉冲数,在让它们相减得到脉冲差值。但又感觉有点复杂,所以也在一定程度上放弃了。最后确立了另一种较为合适的方案,那就是让两个换能器同时发出超声波并给计数器一个脉冲信号,让计数器清零复位,当接收到顺流信号时换能器发出脉冲信号让计数器加计数,当换能器接收到逆流信号时发出一脉冲信号使计数器处于保持状态,这样计数器显示的数值就是顺逆流两过程的时间差中所计的个数,进而直接计算得到顺逆流过程的时间差。既简化了电路又弥补了测量不同步的缺点,使测量的可靠性得到提高。 本设计中的另一个问题是控制电路的问题,就是怎样把换能器和计数器联系起来,让换能器来直接或间接的控制计数器工作以完成测量过程,尤其是连续的控制。说到连续我想到了移位寄存器和计数器,但想到对计数器较熟悉又容易连成N进制循环计数器,所以我选择了通过换能器发出的脉冲来控制一个中间N进制计数器进而通过该计数器的输出端来控制计数模块。 在本实验中计数脉冲的频率越高,所测的数值越精确,但考虑到器件的上限频率,我用555来模拟了一个10兆赫兹的频率。而在电源的选择方面我为了简化电路选择了五伏电压等级器件,用一个直流稳压电源供电。 3. 系统工作原理 时差法超声波流量计其工作原理任务书所示。他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在截止中的顺流和逆流传播时间差来间接的测量流体的流速,再通过流速来计算流量的一种间接的测量方法。分析计算知流体的流速为V=△T×C×C÷2X,其中△T为超声波顺逆流时差,C为超声波在非流动介质中的声速,X为两个换能器在管线方向上的间距。管道的流量为S=V×S,其中S为管道的横截面积。

超声波测距

编码: 山东省第二届大学生物理科技创新大赛 作品申报书 作品名称:超声波测距 学校全称: 申报者姓名: 指导教师: 类别: □实验方法研究(A类) □自制实验教学仪器(B类) ■物理量智能化测量技术(C类) □实验模拟与仿真(D类) 山东省第二届大学生物理科技创新大赛组委会制 2010年3月

说明 1.申报者应在认真阅读此说明各项内容后按要求如实填写。 2.编码由大赛组委会统一填写。 3.作品的研究报告必须用中文撰写,并附于申报书后,一般不应少于2000字。 4.作品申报书必须按规定时间由各校统一将电子稿件发到大赛组委会E-MAIL邮箱,或者直接送到大赛组委会。 5.竞赛组委会地址:青岛市经济技术开发区前湾港路579号 山东科技大学物理实验中心 邮编: E-MAIL: 联系人: 联系电话: 手机:

申报者情况 申报者情况 姓名性别 出生 年月 学校全称专业 现学历年级学制通讯地址联系电话 合 作 者 情 况 姓名性别年龄学历所在单位 指导教师情况和意见指导教 师情况 姓名性别年龄职称 单位联系电话 对作品 的真实 性以及 作品的 意义、 水平等 评价 该作品为我校等三名同学在老师的耐心指导下,利用课余时间研制而成。采用单片机为主控,显示部分用了1602液晶显示模块,电源 采用6v碳性电池。通过超声波模块反馈回来的时间差,算出待测距离。 另外,用到了一块DS18B20温度采集芯片,实现测量实时温度的目的。 所有的信息,集中显示在12232液晶屏上,功能之间的切换用按键来 实现。作品设计灵感来源于实际生活的需要,实用性较强,在生活中 有着广泛的应用。 申报者所在 学院审核意 见 年月日

超声波传感器测量距离

一、超声波测距原理 超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2 ① 这就是所谓的时间差测距法。 由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: V = 331.45 + 0.607T ② 声 速 确 定 后, 只 要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 二、系统硬件电路设计

图2 超声波测距仪系统框图 基于单片机的超声波测距仪框图如图2所示。该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 1 、超声波发射电路 超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远,可对振荡信号进行功率放大后再加在超声波传感器上。 图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声

超声波测速

12 =12×s=0.4s= =9×s=0.3s=vt -t+t v==17.9m/s. 超声波测速 超声波测速 适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f 与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。 设超声波速度为V两次发出超声波的时间间隔为T第一次用时为T1第二次为T2则车速为V1=V×(T2-T1)/T(以上数据均可测出) 超声波测速仪测量车速,图B中P1、P2是测速仪发出的超声波信号,n1,n2... 如图所示,图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差测出被测物体的速度。图B中P1、P2是测速仪发出的超声波信号,N1、N2分别是P1、P2由汽车反射回来的信号。设测速仪匀速扫描,

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

有关超声波测速的几个典型题

有关超声波测速的几个典型题 1.如图所示,在京昆高速公路266 km 处安装了一台500万像素的固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度.若B 为测速仪,A 为汽车,两者相距355 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹 车,当B 接收到反射回来的超声波信号时,A 恰好停止,且 此时A 、B 相距335 m ,已知声速为340 m/s 。 (1)求汽车刹车过程中的加速度; (2)若该路段汽车正常行驶时速度要求在60km/h~110km/h ,则该汽车刹车前的行驶速 度是否合法? 答案:(1)10m/s 2;(2)v 0 = 72 km/h ,合法。 解析:(1)根据题意,超声波和汽车运动过程的示意图, 如图所示。 设超声波往返的时间为2 t ,汽车在 2 t 时间内,刹车的位移为2221)(t a x = =20m 当超声波与A 车相遇后,A 车继续前进的时间为t ,位移为222 1at x = =5m 则超声波在2 t 内的路程为2×(335+5)m = 680 m , 由声速为340 m/s ,得t = 1 s ,解得汽车的加速度a = 10 m/s 2 (2)由A 车刹车过程中的位移 a v x 220= 解得刹车前的速度 v 0 = 20 m/s = 72 km/h 车速在规定范围内,是合法的。

2.在高速公路上常使用“超声波测速仪”测定车速,从而判断汽车是否超速行驶。“超声波测速仪”其实就是一种传感器,测速仪发出并接收超声波脉冲信号,根据发出和接收到信号的时间差的变化,测出被测物体速度。下图甲中仪器A 和B 通过电缆线连接,B 为超声波发射与接收一体化装置,仪器A 能够将装置B 发出和接收到的超声波以脉冲波形显示在屏幕上。现固定装置B ,并将它对准直线匀速行驶的小车C 的尾部,使其每隔固定时间T 0发射一短促超声波脉冲,下图乙中幅度较大的波形。反射波(图乙中幅度较小的波形)滞后的时间已在图中标出,其中T 0和△T 为已知量,另外还知道该测定条件下超声波在空气中的速度为v 0,求小车的速度大小。 \ 答案:T T Tv ?+?002 解析:超声波两次与汽车相遇时,汽车前进的距离为02v T x ?= ? 前进该距离所用时间为20T T t ?+ =? 所以T T Tv t x v ?+?=??= 002

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

相关文档
最新文档