柯西不等式的取等条件在解题中的妙用

柯西不等式的取等条件在解题中的妙用
柯西不等式的取等条件在解题中的妙用

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

柯西不等式的变形公式的妙用

柯西不等式的变形公式的妙用 柯西不等式晌丝形公式的她用 湖北省襄阳市第一中学王勇龚俊峰441000 柯西不等式具有对称和谐的结构,应用的关键在 于抓住问题的结构特征,找准解题的正确方向,合理 地变形,巧妙地构造.作为新课程的选修内容,柯西不 等式(简记为"方和积不小于积和方")在数学的多个 领域都有着广泛的应用.课堂教学中,笔者与学生共 同探究了柯西不等式的一个变形公式的应用,方便快 捷,妙不可言,达到了化难为易,化繁为简,化陌生为 熟悉的目的. 柯西不等式的变形公式:设a,n,…,a为实 数,b,bz,…,为正数,则等+薏十…+筹≥ b1+62+…+ 等号. , 当且仅当一薏一?一时取 址明:田tⅡJ四个寺瓦,侍 ((22十~t2+…+等)(64.b24.…+) ()+(老)+..?+(老).][c,z +()4-…+()!] ≥(.+老'+...+老.) 一(口l十以2+…+甜). . . .bl,b2,…~b为正数,...bl4"b24-…+>O, .

? . 鲁+譬+…+譬≥. 当且仅当一-...一卿一… 时取等号. 下面分类例析,旨在探索题型规律,揭示解题方法. 1在代数中的妙用 例1设n,b,C均为正数,且不全相等,求证: ++>. 证明:由柯西不等式的变形公式,得 ++一:一 04.b6+f.f+n2(a+6).2(bq-一c) l2 .2(c+a) ,(2+2+2)0 2(n+6)+2(64-c)+2(f+0) 4(a+6+f) 一 —— a4"b4"c' 当且仅当一一,即6 —6+f:f+n,亦即a~b=c时,上述不等式取等号. 因题设a,b,c不全相等,于是9l_+赢9+?) >? ._..I◆ 点评:将十+变形为+

如何进行柯西不等式的教学(含答案)

如何进行柯西不等式的教学 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用,教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用. 在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式接着借助二维形式的柯西不等式证明了三角不等式,在一般形式的柯西不等式的基础上,教科书安排了—个探究栏目,让学生通过探究得出一般形式的三角不等式. 由上可见,教材编写者对这部分内容的要求以便让学生在大学学习打下坚实的基础,但这部分教与学的难度是显而易见的. 柯西不等式∑∑∑===≥n i i i n i i n i i b a b a 1 21 2 1 2 )(是柯西在1931年研究数学分析中的“留数” 问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是它的二阶形式22222)())((bd ac d c b a +≥++,几乎是不证自明的.但是,我们能看出这一平凡无奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.柯西不等式不失为至善至美的重要不等式,以它的对称和谐的结构,简洁明快的解题方法等特点,深受人们的喜爱.而且和物理学中的矢量、高等数学中的内积空间等内在地联系在一起.柯西不等式的几种形式都有较为深刻的背景和广泛的应用,向量形式αβαβ≥?不仅直观地反映了这一不等式的本质,一般形式

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc ≥ =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西不等式的应用技巧修订稿

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中 作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代 换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中 每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因 此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到 时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子 的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

(汇总)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =u r ,(,)n c d =r ,则22||m a b =+u r 22||n c d +r . ∵ m n ac bd ?=+u r r ,且||||cos ,m n m n m n =<>u r r u r r u r r g g g ,则||||||m n m n ≤u r r u r r g g . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 2222||a b c d ac bd +++g 或 2222||||a b c d ac bd +++g 2222a b c d ac bd ++≥+g . ④ 提出定理2:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r g . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(βu r 是零向量,或者,αβu r u r 共线) ⑤ 练习:已知a 、b 、c 、d 222222()()a b c d a c b d ++≥-+- 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈22222211221212()()x y x y x x y y ++≥-+-分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+22222211221212()()x y x y x x y y ++≥-+- 3. 如何利用二维柯西不等式求函数12y x x =--? 要点:利用变式2222||ac bd a b c d +++g . 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数31102y x x =-- 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:31102y x x =-- → 推广:,(,,,,,)y bx c e fx a b c d e f R +=+-∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()[()()][()]22x y x y x y x y x y +=++=++≥…

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

柯西不等式常见题型解法例说

上海中学数学2014年第3期 柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明 柯西不等式≥:d;≥:研≥f≥]ni.6。1‘是基本 百鬲、百7 而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。6,+口:6:+a。63)2揭示了任意两组数组即(n。,n。,n。)、(6,,6。,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。,以。)、(6。,6:,6。),这也是运用柯西不等式解题的基本策略. 1一次与二次 例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2, 可知n。+462+9c。≥婺一12,即最小值为12. 例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——. 解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而. 例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得 [4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2 号25×1≥b+y+z一2)2≥5≥l L r+y+z一2 ≥一5≤z+y+z一2≤5. .‘.一3≤T+y+z≤7. 故T+y+z之最大值为7,最小值为一3. 评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效. 2整式与分式 2.1两组数组对应的数分别为倒数型 例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1]. (1)求m的值; (2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9. 解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m, 由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1), 又,(z+2)≥o的解集为[一1,1],故m一1. (2)由(1)知丢+去+去一1,又&,6,c∈R, 由柯西不等式得 Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐 评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。)与分式类型(署,昙,去)(其中夕,q,,一为常数),其实属于对勾函数的范畴,运用均值不等式也能完成,但不如柯西不等式简洁、方便.2.2分式中分子的次数高于分母型 例5(2009浙江高考)已知正数T,y,2,z+y 忙1.掘彘+毫+彘≥专. V十Z Z z十Z.r.r十二V0证法1:利用柯西不等式 (惫+矗+南)№他川z+ 2.十r)+(z+2v)]≥(.r+v+z)2.

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

柯西不等式及排序不等式及其应用经典例题透析

经典例题透析类型一:利用柯西不等式求最值1.求函数 的最大值.思路点拨:利用不等式解决最值问题,通常设法在不 等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析:法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为法二:∵且, ∴函数的定义域为 由, 得 即,解得∴时函数取最大值,最大值 为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】 (Ⅰ) 当时,. 所以.…………5分

(Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】法一: 由柯西不等式 于 是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 【答案】 根据柯西不等式 , 故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式

利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数:2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序:3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积, ,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1 ∴ 即(3)改变结构:4、若>>,求证: 思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。 ,,∴,∴所证结论改为证

柯西不等式的应用(整理篇).doc

柯西不等式的证明及相关应用 摘要 :柯西不等式是高中数学新课程的一个新增容, 也是高中数学的一个重要知识点, 它不仅历史悠久, 形式优美, 结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词 :柯西不等式 柯西不等式变形式 最值 一、柯西( Cauchy )不等式: a 1 b 1 a 2 b 2 a n b n 2 a 12 a 22 a n 2 b 12 b 22 b n 2 a i ,b i R, i 1,2 n 等号当且仅当 a 1 a 2 a n 0 或 b i ka i 时成立( k 为常数, i 1,2 n ) 现将它的证明介绍如下: 方法 1 证明:构造二次函数 f ( x) a x b 2 a x b 2 a x b 2 1 1 2 2 n n = a 12 a 22 a n 2 x 2 2 a 1 b 1 a 2 b 2 a n b n x b 12 b 22 b n 2 由构造知 f x 0 恒成立 又 Q a 12 a 22 L a n n 4 a 1b 1 a 2 b 2 a n b n 2 4 a 12 a 22 a n 2 b 12 b 22 b n 2 即 a 1b 1 a 2 b 2 a n b n 2 a 12 a 22 a n 2 b 12 b 22 b n 2 当且仅当 a i x b i 0 i 1,2 n 即 a 1 a 2 L a n 时等号成立 b 1 b 2 b n 方法 2 证明 :数学归纳法 ( 1) 当 n 1 时 左式 = a 1b 1 2 2 右式 = a 1 b 1 显然 左式 =右式 当 n 2 时 a 12 a 22 b 12 b 22 a 1 b 1 2 a 2 b 2 2 a 12 b 22 右式 a 22 b 12 2 2 2a a bb 2 左式 a b a b 2 a b a b 1 1 2 2 1 2 1 1 2 2 2 故 n 1,2时 不等式成立 ( 2)假设 n k k, k 2 时,不等式成立 即 a 1b 1 a 2 b 2 a k b k 2 a 12 a 22 a k 2 b 12 b 22 b k 2 当 b i ma i , m 为常数, i 1,2 k 或 a 1 a 2 L a k 0 时等号成立 设 A= a 12 a 22 a k 2 B= b 12 b 22 b k 2 C a 1b 1 a 2b 2 L a k b k AB C 2

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

柯西不等式的应用技巧

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设1212,,,R n n a a a b b b ∈L L ,则 当且仅当1212n n a a a b b b ===L 或120n b b b ====L 时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构造两组数:1212,,n n a a a b b b L L 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设,,R x y z ∈ ,求证:≤≤ 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++ 例7 设,1 21+>>>>n n a a a a K 求证:

练习题 1. (2009年浙江省高考自选模块数学试题)已知实数z y x ,,满足,12=++z y x 设.2222z y x t ++= (1) 求t 的最小值; (2) 当21 =t 时,求z 的取值范围 2 (2010年浙江省第二次五校联考)已知,,a b c R +∈,1a b c ++=。 (1) 求()222149a b c +++的最小值; (2) 2≥ 3 (2010年杭二中高三年级第三次月考)已知正数,,a b c 满足:1=++ca bc ab ,求 的最大值. 4 (浙江省镇海中学高考模拟试题) 已知,,x y z 是正数,且12 1,x y += 求221 2 2x x y y +++的最小值; 5 (金华十校2009年高考模拟考试)若+∈R c b a ,, , 求证:1222≥+++++b a c a c b c b a 6 (2010年宁波市高三模拟测试卷)已知,,a b c 为正实数,且3a b c ++=. 证明:222 2()()()4 ()3a c b a c b a c a b c ---++≥-,并求等号成立时,,a b c 的值. 7 (浙江省镇海中学高考模拟试题) 若0,,1,x y z <<且1xy yz zx ++= ≥ 8(2010年金华十校高考模拟考试) 设正数x ,y ,z 满足1543=++z y x 求x z z y y x +++++1 1 1 值.

柯西不等式各种形式的证明及其应用培训资料

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==??==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

Cauchy不等式的等价形式及其应用【开题报告】

毕业论文开题报告 数学与应用数学 Cauchy 不等式的等价形式及其应用 一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式在数学的各个分支里都有极其广泛的应用,它在不同的领域就有着不同的表现形式,对它的应用可谓灵活多样,无论是初等数学还是高等数学都有着极其不菲的价值,主要都充分体现了数学各领域间的内通性、渗透性和统一性。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 从收集到的文献中发现国内外对柯西不等式的研究进展主要有对柯西不等式的证明,推广,以及对柯西不等式的应用举例。 二、相关研究的最新成果及动态 柯西不等式的证明主要可以从配方法、数学归纳法、?判别法、向量内积法等一些常规的方法加以证明。下面就用其中一种方法加以简单地证明。 柯西不等式:设n n b b b a a a ,,,,,,,2121ΛΛΛΛ均为实数则 ()()()22221222212332211b n n n b b b a a a b a b a b a b a ++++++≤++++ΛΛΛΛΛΛ 当且仅当i i kb a =时(其中k 为常数,n i Λ3,2,1=)等号成立。 证明:利用配方法证明 ,,,A 11212∑∑∑======n i i i n i i n i i b a C b B a 只需证明.2 B C A ≥由均值不等式有 .2;;2;22222222222221121222 1 n n n n b a B C b B C a b a B C B B C a b a B C b B C a ≥+≥+≥+Λn 个式子相加得

相关文档
最新文档