函数极限与连续

函数极限与连续
函数极限与连续

. . ..

.资

第1章 函数的极限与连续

极限是现代数学的最基本的概念,是学习微积分学的重要基础.在后面的几章学习中可以看到,微积分中的重要概念都是通过极限来定义的.本章将介绍极限的概念、性质及运算法则,在此基础上建立函数连续的概念,并讨论连续函数的性质.

1.1 初等函数

1.1.1 函数

1.函数的定义

设D 是一个数集,如果对属于D 中的每一个数x ,依照某个对应关系f ,y 都有确定的数值和它对应,那么y 就叫做定义在数集D 上的x 的函数,记作)(x f y =.x 叫做函数的自变量,数集D 叫做函数的定义域.函数y 的取值围M 叫做函数的值域.

由定义可知,对应关系和定义域构成函数的二要素. 2.函数的定义域

在实际问题中,根据所考察问题的实际意义来确定其定义域.对于不具有实际意义的抽象函数,其定义域是使得函数有意义的全体自变量的集合.常见的有:

(1) 在分式函数中,分母不能为零;

(2) 在根式函数中,负数不能开偶次方; (3) 在对数函数中,真数大于零;

(4) 在三角函数和反三角函数中,要符合它们的定义域; (5) 在含有多种式子的函数中,应取各部分定义域的交集. 例1 求下列函数的定义域:

(1)2

41

2x

x y -+

+=

; (2)1

1

lg

-+=x x y . 3.反函数

在研究函数的同时,有时函数和自变量的地位会相互转换,于是就出现了反函数的概念.

例如,在函数2

1

+=

x y 中,定义域和值域都是R ,按照x 和y 的对应关系,任意给出一个y ∈R ,都有唯一确定的21x y =-与之对应.

一般地,设函数)(x f y =,定义域为D ,值域为M .如果对于M 中的每一个y 值,都可由)(x f y =确定唯一的x 值与之对应,这样就确定一个以y 为自变量的函数x ,该函数称为函数)(x f y =的反函数,记作)(1

y f

x -=.显然,函数)(1

y f

x -=的定义域为M ,

值域为D .

习惯上常用x 表示自变量,y 表示函数,故常把)(x f y =的反函数记为

)(1

x f

y -=.若把函数)(x f y =与其反函数)(1x f y -=的图形画在同一个平面直角坐标

系,则这两个图形关于直线y =x 对称.

因此,函数21x y =-是函数21

+=x y 的反函数,其定义域为R ,值域为R .将函

数改为y ,自变量改为x ,则函数2

1

+=x y 的反函数为21y x =-(图1-1).

图1-1

例2 求23

+=x y 的反函数. 4.分段函数

在自然科学及工程技术中,用公式表示函数时,经常会遇到一个函数在不同的围用不同的式子表示的情况.如函数

0,() 0.

x f x x x ≥=-

是定义在区间(, )-∞+∞的一个函数.当0x ≥

时,()f x =;当0x <时,()f x x =-.

在不同的区间用不同的式子来表示的函数叫分段函数.

分段函数是用几个解析式子来表示的一个函数,而不是表示几个函数.求分段函数值时,应把自变量的值代入相应取值围的表达式中进行计算.

如在上面的分段函数中,

(4)2f ==;(4)(4)4f -=--=.

5.函数的几种特性

1

2x + x =

(1)奇偶性

如果函数()y f x =的定义域D 关于原点对称,且对于任意的x D ∈,都有

()()f x f x -=-,那么()y f x =叫做奇函数;如果函数()y f x =的定义域D 关于原点对称,且对于任意的x D ∈,都有()()f x f x -=,那么()y f x =叫做偶函数;如果函数()y f x =既不是奇函数也不是偶函数,则称()y f x =为非奇非偶函数.

如3x y =是奇函数,2

x y =是偶函数.

奇函数的图象关于原点对称(如图1-2);偶函数的图象关于

轴对称(如图1-3).

图1-2 图1-3

例3 判断下列函数的奇偶性 (1) x x x f cos )(2

=; (2) x

x x f 1)(+=; (3) x x x f -=2

)(. (2)单调性

如果函数)(x f 在区间(, )a b 随着x 的增大而增大,即对于(, )a b 任意两点1x 与2x ,当12x x <时,有12()()f x f x <,那么称函数)(x f 在区间(, )a b 是单调增加的,区间

(, )a b 叫做函数)(x f 的单调增加区间.

如果函数)(x f 在区间(, )a b 随着x 的增大而减小,即对于(, )a b 任意两点1x 与2x ,当12x x <时,有)()(21x f x f >,那么称函数)(x f 在区间(, )a b 是单调减少的,区间(, )a b 叫做函数)(x f 的单调减少区间.

显然,单调增加函数的图象沿x 轴正向是逐渐上升的;单调减少函数的图象是沿x 轴

正向是逐渐下降的.

如图1-4为单调增加函数,图1-5为单调减少函数.

图1-4 在整个区间上单调增加(减少)的函数,称为这区间上的单调增(减)函数,这个区间称为这个函数的单调区间.

例如,指数函数x

e y =在其定义域R 是单调增加的.而幂函数2

x y =在(0, )+∞是

单调增加的,在(, 0)-∞是单调减少的,所以在(, )-∞+∞不是单调函数.

例4 判断函数12)(2

+=x x f 的单调性. (3)周期性

对于函数)(x f ,如果存在一个非零常数T ,使得对于其定义域的每一个x ,都有

)()(x f T x f =+

成立,则称)(x f 是周期函数,T 称为其周期.

显然,如果T 是)(x f 的周期,则nT (n 是整数)均为其周期.一般提到的周期均指最小正周期.

我们常见的三角函数sin , cos y x y x ==都是以π2为周期;tan , cot y x y x ==都是以π为周期.

(4)有界性

设函数)(x f 在区间)(b a ,有定义,如果存在一个正数M ,使得对于任意x ∈

)(b a ,,恒有|()|f x M ≤,那么称)(x f 在)(b a ,有界;如果不存在这样的数M ,那么称)(x f 在)(b a ,无界.

例如,函数x y sin =,存在正数1M =,使得对于任意的x R ∈,均有1|sin |≤x ,所以函数x y sin =在其定义域R 是有界的.

1.1.2 基本初等函数

我们学过的幂函数α

x y = (α为实数)、指数函数x

y a = (0a >且1)a ≠、对数函数

log a y x = (0a >且1)a ≠、三角函数和反三角函数统称为基本初等函数.

1.幂函数α

x y =(α为实数)

(1) 当0α>时,函数经过两定点(0, 0)和(1, 1),图象在第Ⅰ象限单调增加且无界(如图1-6(1)).

(2) 当0α<时,函数经过定点(1, 1),图象在第Ⅰ象限单调减少且无界(如图1-6(2)).

图1-6

2.指数函数 (0x

y a a =>且1)a ≠

它的定义域为(, )-∞+∞,值域为(0, )+∞,图象经过定点(0, 1). (1) 当01a <<时,函数单调减少且无界(如图1-7(1)). (2) 当1a >时,函数单调增加且无界(如图1-7(2)).

(1) (2)

图1-7

3.对数函数log (0a y x a =>且1)a ≠

它的定义域为(0, )+∞,值域为(, )-∞+∞,图象经过定点(1, 0). (1) 当01a <<时,函数单调递减且无界(如图1-8(1)); (2) 当1a >时,函数单调递增且无界(如图1-8(2)).

1)

2-

(1,1)

x = =23

(1,1)

(1,0)

(1,0)

图1-8

4.三角函数

(1) 正弦函数x y sin =

定义域为(, )

-∞+∞,值域为[1, 1]-,奇函数,周期为2π的周期函数,有界(如图1-9).

图1-9

(2) 余弦函数x y cos =

定义域为(, )-∞+∞,值域为[1, 1]-,偶函数,周期为2π的周期函数,有界(如图1-10).

图1-10

(3) 正切函数x y tan =

定义域为{|, , }2

x x R x k k Z π

π∈≠+

∈,值域为(, )-∞+∞,奇函数,周期为π的

图1-11 图1-12

(4)

余切函数x y cot =

定义域为{|, , }x x R x k k Z π∈≠∈,值域为(, )-∞+∞,奇函数,周期为π的周期函数,无界(如图1-12).

5.反三角函数

(1)反正弦函数x y arcsin =

定义域为[1, 1]-,值域为, 22ππ??

-????

,奇函数,单调增加,有界(图1-13). (2)反余弦函数x y arccos =,

定义域为[1, 1]-,值域为[0, ]π,非奇非偶函数,单调减少,有界(图1-14). (3)反正切函数x y arctan =

定义域为(, )-∞+∞,值域为, 22ππ??

-

???

,奇函数,单调增加,且有界(图1-15). (4)反余切函数

定义域为(, )-∞+∞,值域为(0, )π,非奇非偶函数,单调减少,有界(图1-16).

图1-13 图1-14

图1-15 图1-16

1.1.3 复合函数、初等函数

1.复合函数 在同一问题中,两个变量的联系有时不是直接的,而是通过另一变量间接联系起来的. 例如:某汽车每公里油耗为a 公升,行驶速度为v 公里/小时.汽车行驶的里程是其行驶时间的函数:vt s =,而汽车的油耗量又是其行驶里程的函数:as y =.于是,汽车的油耗量与汽车行驶时间之间就建立了函数关系:avt y =.这时我们称函数avt y =是由as y =与vt s =复合而成的复合函数.

一般地,设)(u f y =是u 的函数,)(x u ?=是x 的函数,如果)(x u ?=值域与

)(u f y =定义域的交集非空,则y 通过中间变量u 成为x 的函数,我们称y 为x 的复合函数.记作)]([x f y ?=. 其中u 称为中间变量.

例5 指出下列函数的复合过程和定义域:

(1) )1(log 2

x y a +=;

(2) x y 2

sin =.

x

x

x

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

01函数极限与连续

1. ..sin 12lim 1.4/1/0 +++→x x e e x x x 求=+∞-∞+=-∞→,0)(lim ,),()(2.a x f e a x x f x bx 、则常数且内连续在设函数00数一考研题 ???>≤=1(B)0(A)). ( )]}([{, 1, 0, 1, 1)(3.x f f f x x x f 等于则设01数二考研题 b 满足00数二考研题 ). ( <≥>≤>><<0,0)(0,0)(0,0)(0,0)(b a D b a C b a B b a A [ ] ;; . ;;; 考研真题一 . ,}{),,2,1()3(,307.). (,00,,0,2arcsin 1)(6.112tan 并求此极限的极限存 证明数列设则处连续在设函数n n n n x x x n x x x x a x x ae x x e x f =-=<<==?? ?? ???≤>-=+02数二考研题 02数二考研题 8., lim ,1lim ,0lim }{},{},{9.则必有均为非负数列设n n n n n n n n n c b a c b a ∞ →∞ →∞ →===且,03数一考研题 )(. (D)(C)(B)(A);成立对任意n n n b a <;成立对任意n n n c b <; lim 不存在极限n n n c a ∞ →. lim 不存在极限n n n c b ∞ →. _____sin 1)1(,04 12=-- →a x x ax x 是等价无穷小与时若则,03数二考研题 . 4)(3)(2)(1)(,)1(sin ,sin )1ln )cos 1(,05.2 13lim 4.221 2等于 则正整数高阶的无穷小是比而高阶的无穷小是比时设当x n n x D C B A n e x x x x x x x x x x x -+-→=-++--→(01数二考研题 01数二考研题 ; ; ; 在__________.∞>≤>≤.1 , 11 ,0(D)1 ,01,1(C)x x ???x x ?? ?;

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经 过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若 f (x ) 在 x 0 点连续,则 f (x ) 在 x → x 0 点必有极限 2)若 f (x )在x → x 0点有极限,则 f (x )在x 0点必连续 3)若 f (x )在x → x 0点无极限,则 f (x )在x = x 0点一定不连续 (4)若 f (x ) 在 x = x 0 点不连续,则 f (x ) 在 x → x 0 点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若 lim f ( x ) = a ,则下列说法正确的是( C ) x →x 0 A 、 f (x )在x =x 0处有意义 B 、 f (x 0)=a C 、 f (x )在x = x 0处可以无意义 D 、x 可以只从一侧无限趋近于x 0 3、下列命题错误的是( D ) A 、函数在点x 0 处连续的充要条件是在点x 0 左、右连续 B 、函数 f (x )在点x 0处连续,则lim f (x )= f (lim x ) 0 x →x 0 x → x 0 C 、初等函数在其定义区间上是连续的 D 、对于函数 f (x )有lim f (x ) = f (x 0) x → x 0 0 4、已知f (x )= 1 ,则lim f (x +x )- f (x )的值是( C ) x x →0 x 11 A 、 B 、 x C 、 - D 、 - x x 2 x 2 5、下列式子中,正确的是( B ) x 2 + ax + b 6、lim x +ax +b =5,则a 、b 的值分别为( A ) x →1 1 - x A 、- 7和6 B 、7和- 6 C 、- 7和- 6 D 、7和6 7、已知f (3) = 2, f (3) = -2,则lim 2x - 3 f (x )的值是( C ) x →3 x - 3 8、l x i →m a 3 x x --3a a =( D ) A 、lim x = 1 B 、lim x -1 = 1 C 、lim x -1=1 x →0 x x →1 2(x -1) x →-1 x - 1 lim x x → 0 x =0 A 、-4 B 、0 C 、8 D 、不存在 D 、

函数极限与连续知识梳理

知识梳理函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难

一、函数极限的概念 1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数极限与连续习题加答案(供参考)

第一章 函数、极限与连续 第一讲:函数 一、是非题 1.2x y = 与x y =相同; ( ) 2.)1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. )0(2 >=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( ) 6.实数域上的周期函数的周期有无穷多个; ( ) 7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( ) 8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。 ( ) 二、填空题 1.函数)(x f y =与其反函数)(x y ?=的图形关于 对称; 2.若)(x f 的定义域是]1,0[,则)1(2 +x f 的定义域是 ; 3.1 22+=x x y 的反函数是 ; 4.1)(+=x x f ,2 11 )(x x += ?,则]1)([+x f ?= , ]1)([+x f ?= ; 5.)2(sin log 2+=x y 是由简单函数 和 复合而成; 6.1)(2 +=x x f ,x x 2sin )(=?,则)0(f = ,___________)1(=a f , ___________)]([=x f ?。 三、选择题 1.下列函数中既是奇函数又是单调增加的函数是( )

A 、x 3sin B 、13+x C 、x x +3 D 、x x -3 2.设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( ) A 、1 B 、-1 C 、2 D 、-2 3.)sin()(2x x x f -=是( ) A 、有界函数 B 、周期函数 C 、奇函数 D 、偶函数 四、计算下列各题 1.求定义域5 23arcsin 3x x y -+-= 2.求下列函数的定义域 (1)342+-=x x y (2)1 142++ -=x x y (3)1)2lg(++=x y (4)x y sin lg = 3.设2 )(x x f =,x e x g =)(,求)]([)],([)],([)],([x g g x f f x f g x g f ;

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

第一讲 函数极限连续1003

第一讲 函数、极限与连续 一、考试要求 1. 理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2.了解函数的奇偶性、单调性、周期性和有界性。 3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。 5. 理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极 限存 在与左、右极限之间的关系。 6. 掌握(了解)极限的性质,掌握四则运算法则。 7. 掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极 限求极限的方法。 8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷 小量求极限。 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质 (有界性、最大值和最小值定理、介值定理),并会应用这些性质。 11. 掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数 (1)函数的概念: y=f(x),重点:要求会建立函数关系. (2)复合函数: y=f(u), u=??()[()]x y f x ?=,重点:确定复合关系并会求复合函数的定义域. (3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。 (5)函数的特性:单调性、有界性、奇偶性和周期性 * 注:1、可导奇(偶)函数的导函数为偶(奇)函数。 特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则?x dt t f 0)(为奇函数; 若)(x f 为奇函数,则?x a dt t f )(为偶函数; 3、可导周期函数的导函数为周期函数。 特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。 4、若f(x+T)=f(x), 且0 )(0 =? T dt t f ,则?x dt t f 0 )(仍为以T 为周期的周期函数. 5、设)(x f 是以T 为周期的连续函数,则

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

2015函数、极限与连续习题加答案

2015函数、极限与连续习题加答案

制题人: 兰 星 第一章 函数、极限与连续 2 第一章 函数、极限与连续 第一讲:函数 一、是非题 1 . 2 x y =与 x y =相同; 2. ) 1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. ) 0(2>=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( ) 6.实数域上的周期函数的周期有无穷多个;

制题人: 兰 星 第一章 函数、极限与连续 3 ( ) 7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( ) 8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。 ( ) 二、填空题 1.函数)(x f y =与其反函数)(x y ?=的图形关于 对称; 2.若)(x f 的定义域是]1,0[,则) 1(2 +x f 的定义域 是 ; 3. 1 22+=x x y 的反函数是 ; 4.1)(+=x x f ,2 11)(x x +=?,则]1)([+x f ?= , ]1)([+x f ?= ; 5.) 2(sin log 2 +=x y 是由简单函数 和 复合而成; 6.1 )(2 +=x x f ,x x 2sin )(=?,则)0(f = , ___________)1 (=a f , _ __________)]([=x f ?。

制题人: 兰 星 第一章 函数、极限与连续 4 三、选择题 1.下列函数中既是奇函数又是单调增加的函数是( ) A 、 x 3 sin B 、1 3 +x C 、 x x +3 D 、 x x -3 2.设5 4)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为 ( ) A 、1 B 、-1 C 、2 D 、-2 3.) sin()(2 x x x f -=是( ) A 、有界函数 B 、周期函数 C 、奇函数 D 、偶函数 四、计算下列各题 1.求定义域5 23arcsin 3x x y -+-= 2.求下列函数的定义域

第一讲函数极限连续(学生用).docx

高等数学 第一讲函数、极限、连续 I ?考试要求 1.理解函数概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限Z间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数I'可断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最人值和最小值定理、介值定理),并会应用这些性质. H.考试内容 —.函数 (-)函数的概念对应关系,定义域 (二)函数的性质 1?有界性3M>0, 均有\f(x)\ M2有下界 /(兀)有界o /(兀)有上界II有下界 2.单调性Xfx i .f (兀2)),单调增加(减

少).

3.周期性3r>0,Vx€(-oo,+oo),均有/(x + T) = /(x)侧称/⑴为周期函数 4.奇偶性 VXG (-/,/),均有/(-%) = f(x) ( -/(X )),则于(兀)为偶(奇)函数. 【例1】设F\x) = f(x),则下列结论正确的是( )? (A) 若/'(X )为奇函数,则尸(兀)为偶函数. (B) 若/⑴ 为偶函数,则F ⑴为奇函数. (C) 若/(兀)为周期函数,则F(x)为周期函数. (D) 若/(X )为单调函数,则F(x)为单调函数. (三)函数的类型 1. 基本初等函数 y = C, y - x ,u , y - a x , y = y = sinx , y = cos , y = arcsinx f y = arccos . 2. 复合函数 名合一 y 二 /(w), u =(p{x)「:〉y 二 /(0(x)) 一拆多 3?反函数),=/(兀),x= 4. 初等函数 5. 隐函数 F(x, y) = 0 (x+y = 0, y = sinxy ). 6?幕指函数 f(xY (x) = ^(x),n/(v),/(x) >0. 隐含的分段函数 ①,y=|/(兀)|,② y =[/(兀)],③ y = sgn /(%) ④y = max {/(x),g(x)}=心巴心网, _ \x = rcos3 9?极坐标方程r = 询,\ .八 [y =厂 sm& 二.极限 (一) 极限定义 7.分段函数: /;(%),%< x 0 f (x\x>x y = mm{f(x\g(x)} = /(兀)+ g(x)-|/(x)-gCr)| 2 &参数方程(数一.二要求) x =(p(t) y = 0(/)

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数极限和连续试题及答案

极限和连续试题(A 卷) 1.选择题(正确答案可能不止一个)。 (1)下列数列收敛的是( )。 A . n n x n n 1)1(--= B . n x n n 1)1(-= C . 2 sin πn x n = D . n n x 2= (2)下列极限存在的有( )。 A . x x sin lim ∞ → B . x x x sin 1 lim ∞→ C . 121lim 0-→x x D . 1 21 lim 2+∞→n n (3)下列极限不正确的是( )。 A . 2)1(lim 1 =+-→x x B . 11 1 lim =+→x x C . ∞=-→2 12 4 lim x x D . +∞=+→x x e 20 lim (4)下列变量在给定的变化过程中,是无穷小量的有( )。 A . )0(12 →--x x B . )0(sin →x x x C . )(+∞→-x e x D . )0()1 sin 2(12→-+x x x x (5)如果函数.0;0;0,1sin ,,sin 1 )(>=

函数极限连续概念解析

函数、极限、连续概念解析 1、下列各函数对中,( )中的两个函数相等。 A. x x g x x f ==)(, )()(2 B. 1)(, 1 1)(2 +=--= x x g x x x f C. x x g x x f ln 2)(,ln )(2== D. 1)(, cos sin )(2 2 =+=x g x x x f 分析:从函数的两个要素可知,两个函数相等,当且仅当他们的定义域相同,对应规则相同,而与自变量或因变量所用的字母无关。 正确答案:D 2、下列结论中正确的是( )。 A. 周期函数都是有界函数 B. 基本初等函数都是单调函数 C. 奇函数的图形关于坐标原点对称 D. 偶函数的图形关于坐标原点对称 分析:首先要清楚函数的有界性、单调性、奇偶性和周期性的定义,还要知道奇偶函数的图形特点。 正确答案:C 3、周期函数是否一定有最小正周期? 答:不一定有最小正周期.尽管我们所学的周期函数函数一般都有最小正周期,但周期函数不一定有最小正周期.例如常值函数()f x C =是一个以任意正数为周期的周期函数,它没有最小正周期。 4、判断下列数列的极限:(1)(1)n n ??-????, (2)1n e ???? ???? ?????? ?。 分析:本题只要求对数列的极限作出判断,根据数列极限的定义,利用观察法,看在n →∞的过程中数列通项n x 的变化趋势。 解:(1)因为n →∞时虽然(1)n n x n -= 的符号时正时负,但 (1)10n n n -= →,

所以数列(1)n n ?? -???? 的极限为0。 (2)因为数列的通项11n n n x e e ?? == ??? ,当n →∞时分母n e →∞,所以 10 n e →, 故该数列的极限是0。 5、无界数列必发散吗? 分析:已知性质:收敛数列必有界.用反证法。 正确答案:无界数列必发散。 6、发散数列一定无界吗?有界数列必收敛吗? 分析:发散数列除了lim n n x →∞ =∞的情况外,还有其它情况。例如:数列(1)n n x =-发散,但有界。 正确答案:发散数列不一定无界,有界数列也不一定收敛。 7、无穷小量是很小的数,对吗?零是无穷小量吗? 分析:无穷小量是指趋于零的变量。 正确答案:无穷小量不是很小的数,但零是无穷小量。 8、连续函数的三个要求缺一不可吗? 分析:连续函数的三个要求为:①()f x 在0x 点有定义;②0 lim ()x x f x →存在; ③0 0lim ()()x x f x f x →=。三者如缺一,则为间断(不连续)。例如:①1()sin f x x =在 x =点无定义,故间断;② 1sin ,0()1,0x f x x x ?≠? =??=? 在0x =点虽然有定义, 1lim sin x x →不存在,故也间断;③ 1sin ,0 ()1,0x x f x x x ? ≠?=??=? 在0x =点虽然有定义,且 1lim sin 0x x x →=,但0 1lim sin 01(0)x x f x →=≠=,故间断。

高数王博+第一讲+函数极限连续

第一讲 函数 极限与连续 【题型一】分段函数的复合函数[()]f g x 【例1】设???≥<=0,10 ,0)(x x x f ,? ??≤-<-=x x x x x g 1,21,2)(2 试求)]([x g f ,)]([x f g . 【详解】?? ?><<≤=21,12 1,0)]([x x x x g f 或?? ?≥-<=0 ,10 ,2)]([x x x f g 【例2】设1,1, ()0,1,x f x x ?≤?=?>?? 则[]{}()f f f x 等于 ( ) (A)0 (B)1 (C)1,1,0,1,x x ?≤??>?? (D)0,1, 1,1, x x ?≤??>?? 【答案】(B) 【详解】因为1,1 ()0,1x f x x ?≤?=? >?? ,所以在整个定义域内()0()1f x f x ==或,所以()1f x ≤,于是[]()1f f x =,从而[]{}()()11f f f x f == 【例3】设函数???<-≥=. 1,12,1,ln )(x x x x x f ,[]()y f f x =,则 d d x e y x ==______ . 【答案】应填 e 1 . 【分析】本题主要考查抽象函数的复合,必须分段分层讨论. 【详解】由???<-≥=. 1,12, 1,ln )(x x x x x f 得 []()y f f x =()1,2()1, () 1.f x f x f x ?≥?=? -

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与 ()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

部分函数极限连续

第一部分 函数、极限、连续 [选择题] 容易题 1—47,中等题48—113,难题114—154。 1.设f x ()的定义域是[0,4],则f x ()2的定义域是( ) A. [,]04 B. [-2,2] C. [0,16] D. [0,2] 2.设函数y f x =()的定义域为[0,2],a >0,则y f x a f x a =++-()() 的定义域为( ) A.[,][,]--?+a a a a 22 B. ? C. 当a ≤1时,定义域:a x a ≤≤-2;当a >1 时,?; D. [,][,]--?+a a a a 22 3.若Z y f x = +-()31,且已知当y =1时,z x =.则f x ()=( ) A.()x +-113 B.x -1 C.()t +-113 D.t -1 4. 下列不正确的是( ) A.f g ,在(,)-∞+∞上都为单调增(减)函数,则f g f g f g f g g +-?≠,,,()0都 为单调增(减)函数 B.f g ,在(,)-∞+∞上都为单调增(减)函数,则f g f g f g ,max(,),min(,)都 为单调增(减)函数 C.若f x g x x (),(),()?在其公共定义域上均为单调增函数,且满足: g x x f x ()()()≤≤?,又设 g g x x f f x [()],[()],[()]??均有意义, 则必有:g g x x f f x [()][()][()]≤≤?? D.若函数f x ()在(-∞,+∞)上为奇函数,且在[0,+∞)上是严格单调增加的, 则f x ()在(-∞,+∞)上一定是严格单调增加的。 5.设f x ()的定义域为(-∞,+∞),则g x f x f x ()()()=--是( ) A. 偶函数 B. g x ()≡0 C. 非奇非偶函数 D. 奇函数 6.反函数保持原来函数的( )性质。 A. 单调性 B. 奇偶性 C. 周期性 D. 有界性 7.设f x ()为奇函数,g x ()为偶函数,则( )为奇函数。( )

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

相关文档
最新文档