冰箱冷藏室温度智能控制系统

冰箱冷藏室温度智能控制系统
冰箱冷藏室温度智能控制系统

目录

摘要 (1)

1 引言 (1)

2 设计思路 (2)

2.1 设计任务 (2)

2.2 设计的理论基础 (2)

2.3 冰箱的系统组成 (2)

2.3.1 蒸汽式压缩机电冰箱 (2)

2.3.2 直冷式电冰箱 (3)

2.4 总体设计方案选择 (3)

2.5 方案总体介绍 (4)

3 硬件系统设计 (4)

3.1 系统总体结构 (4)

3.2 温度采集模块 (5)

3.2.1 温度采集模块的选择 (5)

3.2.2 DS18B20测温电路 (6)

3.2.3 测量数据的比较 (7)

3.3 单片机系统及液晶模块 (7)

3.3.1 微处理器(单片机) (7)

3.3.2 显示电路的设计 (8)

3.4 输出控制模块 (9)

4 软件设计 (9)

4.1 主程序流程框图 (10)

4.2 DS18B20工作的流程图 (12)

5 调试与实验 (12)

5.1 使用说明 (12)

5.1.1 Keil单片机模拟仿真 (12)

5.2 功能测试 (14)

5.2.1 温度测量分辨率 (14)

5.3 晶振的选择 (14)

附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统

摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。

关键词:温度采集;液晶显示;温度控制

1 引言

随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。

现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。

现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。

智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度范围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。

传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

他自身温度的大小、还有他们散热性能高低、食物放在冰箱里的充满率大小、环境温度的高低、开启冰箱门的频率等[4]。因此对于这种受到诸多参数要求和很多随机性的温度的控制,如要建立一个相对标准的数学模型是很困难的,同样的也无法用传统的PID来进行调节。

而本次的设计,主要是通过温度传感器DS18B20来对电冰箱冷藏室温度进行采集,通过STC89C51单片机进行数字信号的处理,从而达到冷藏室温度智能控制的目的。

2 设计思路

2.1 设计任务

在此次的设计当中,要设计的是一个冰箱冷藏室温度智能控制系统。控制冰箱冷藏室的温度。使冷藏室的温度控制在1~5℃之间,当冷藏室温度低于1℃时,继电器停止工作;当冷藏室温度高于5℃时,继电器开始工作。

2.2 设计的理论基础

这次冰箱冷藏室温度智能控制系统的设计,主要是通过对于核心芯片单片机的设计,使得冰箱内冷藏室温度的控制更为的方便和准确。一般传统冰箱的温度控制是分别通过调节蒸发器在冷冻室和冷藏室的面积大小来实现的,温度的控制完全依赖于压缩机的开停。但冰箱内部两室温度的控制是受很多因素的影响,比如环境温度、开门的频率或是存放在冰箱内物品的本身散热程度。因为这些不定因素的影响,两室的温度就很难准确的进行控制[4]。

2.3 冰箱的系统组成

2.3.1 蒸汽式压缩机电冰箱

液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来进行制冷的。

蒸气式压缩机电冰箱制冷系统原理图如图2-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入。至此,完成一个循环。压缩机冷循环周而复始的

运行,保证了制冷过程的连续性[5]。

图2-1 蒸汽式压缩机

2.3.2 直冷式电冰箱

直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使冰箱内的温度保持在设定温度范围内。冷冻室用于冷冻食品通常用于冷冻的温度为-3?C~-15?C,冷藏室用于相对于冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,温度一般为0?C~10?C,当测得冷藏室温度高至10?C~13?C是启动压缩机制冷,当测得冷藏室温度低于0?C~-3?C 时停止制冷,关断压缩机。采用单片机控制,可以使控制更为准确、灵活[4]。

2.4 总体设计方案选择

方案一:PID温度控制

利用热电偶来进行温度的采集,而当通过热电偶采集的温度和希望温度的给定值不相同时,PID控制可根据测量的温度信号和希望的温度信号进行比例、

积分、微分的运算[6]。从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。

但该方案实施起来并不稳定,有着很多的不确定的因素,而且运用PID温度控制对精度的要求很难满足,无法使温度的控制达到一个理想的效果,此时就考虑到了运用单片机来进行温度的控制。

方案二:单片机温度控制

运用单片机来进行温度的控制,可以直接运用核心单片机芯片对温度传感器采集来的温度信号进行比较和处理,并通过液晶显示。而且还可以通过温度的比较来决定是否启动继电器,从而启动或停止压缩机,控制压缩机的工作。

运用单片机控制温度相比于PID,对于信号的采集调节更加的精确,而且受其他因素的干扰更加的少。

所以在本设计中我选用第二个方案,即单片机温度的控制。

2.5 方案总体介绍

本设计通过温度传感器,对冰箱内部冷藏室的温度进行一个采集,对采集来的温度数据传递到单片机上。由单片机对采集的温度进行比较,最后通过比较的数据变化来调节其他系统电路的控制,实现一个降温的过程。

此外,采集来的温度数据利用液晶显示在显示屏上,来显示冰箱内的温度,使用户可以了解现在温度变化的过程。

3 硬件系统设计

3.1 系统总体结构

冰箱冷藏室温度智能控制器的研究,主要可分为四个主要部分:温度采集模块、单片机控制模块、显示电路及输出控制模块。

图3-1为电冰箱温度智能控制系统框图。其中单片机为核心控制系统,读取从温度采集模块采集来的温度信号,并进行对比、调节输出到显示电路进行运行,并产生时钟信号使液晶显示出来,最后控制输出控制电路的运行。

图3-1 硬件系统框图 3.2 温度采集模块

3.2.1 温度采集模块的选择

温度采集模块主要是对温度信号进行一个采集,并把采集来的信号传输到

核心芯片即单片机当中去,在单片机中进行信号的分析和处理,这部分是本次

设计的关键。

在传统的远距离模拟信号温度测量系统中,存在着引线误差补偿、多点测

量切换误差和放大电路零点漂移误差等多个技术问题,而这些问题必须要很好

的解决才可能达到一个较高的测量精度[2]。

方案一:热电偶进行温度采集

热电偶是应用测温工作范围最多的温度采集器件。而且热电偶的测温范围

也非常广,在-200℃到2500℃之间,具体取决于所使用的金属线。并且热电

偶的响应快、不会自身发热而且坚固耐用。

但是热电偶采集温度之后信号调理非常复杂,而且处理不当就会引入误差,

导致精度的降低[7]。并且除了这一点之外,热电偶也非常容易受腐蚀,而且其

本身的精度较低,一般都在1℃~2℃之间。

方案二:DS18B20进行温度采集

DS18B20是美国DALLAS 半导体公司生产的的新型数字温度传感器。具

有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数

字测温和控制领域。并且18B20是独特的单线接口方式,在与微处理器连接

时仅需要一条口线即可实现微处理器DS18B20的双向通讯[8]。

虽然在测温范围中,DS18B20无法和热电偶进行比较,测温范围是-55℃

~125℃,但DS18B20的精度却比热电偶高,固有的测温分辨率为0.5℃。并且DS18B20自身就具有A/D转换,使用DS18B20电路比热电偶电路更加的简便。

根据上述两个方案的比较,本次设计选择DS18B20来进行测温。

3.2.2 DS18B20测温电路

DS18B20普遍有两种封装,分别是三脚封装和八脚的封装。在本次设计中我运用的是如同三极管封装的三脚外形,与八脚的贴片封装相比,这种三脚的封装在连接电路的时候更加的方便。其中三个脚分别代表电源端、接地端和信号端,只要分别接入电路中就能正常的工作[9]。然后传出给单片机进行数据的分析和处理,从而再对其他的模块进行控制。图3-2为温度传感器与单片机的接口电路。

图3-2 温度传感器与单片机接口电路

DS18B20高精度测温的理论依据

DS1820正常工作时的测温分辨率是0.5℃,而对于其我采用的方法是直接读出内部暂存存储器的方法,将其测温的分辨率直接提高到0.1℃~0.01℃。当我考虑到误差等问题时,通过分析DS18B20的内部精度来进行实际温度的计算。我设定实际温度为T,那么实际温度T可以用下面这个式子计算得到:T实际=(T整数-0.25℃)+(M每度-M剩余)/M每度(2-1)

其中当应用DS18B20的读暂存寄存器指令(BEH)读出以0.5℃为分辨率的温度测量的结果,然后切去测量结果的最低有效位,得到所测的实际温度的整数部分,然后再用BEH指令读取计数器1的技术剩余值M剩余和每度计

数值M每度,最后再考虑到所测温度的整数部分以0.25℃、0.75℃为进位界限[9]。

3.2.3 测量数据的比较

表3-1为采用直接读取测温结果方法和采用计算方法得到的测温数据比较,通过比较可以看出,计算方法在DS1820测温中不仅是可行的,也可以大大的提高DS1820的测温分辨率。

次数T整数M剩余M每度T实际

1 20 70 81 19.89

2 34 42 82 34.38

3 40 37 83 40.30

4 49 30 83 49.39

5 52 6

6 84 51.96

表3-1 测温分辨率

3.3 单片机系统及液晶模块

这个系统是整个设计的核心部分,是本设计能否正常工作的必要条件,也是几个分别的模块连接在一起的纽带。

3.3.1 微处理器(单片机)

微处理器是本次设计的核心元件,其性能的好坏直接影响了此次设计整个系统的稳定性。由于本次设计是为了实现对温度的控制,而系统中又要对采集来的信号进行比较、分析、调节,故本次设计需要进行大量的运算[10],并且希望能够进行很好的控制作用,所以此次单片机的选择,我选择了性能更为优越的STC89C51。

单片机的最小系统包括了电源电路、时钟电路和复位电路三个部分。其中时钟电路又是振荡电路,振荡电路决定了单片机的执行速度。为了能够更加稳定的给与单片机工作的时钟频率,此次晶振我所选择的是12M的晶振,而具有稳定功能的电容则是选择30pF的瓷片电容。

为了能够更加安全方便的完全本设计,以免当出现了单片机混乱或“死机”现象的时候,本设计就变瘫痪,此次采用混合复位电路来对单片机进行复位[11]。

使得当单片机发生了混乱,可以手动的完成单片机的重启,使单片机重新恢复到初始状态。如图3-3为本次设计中单片机的最小系统。

图3-3 单片机的最小系统

3.3.2 显示电路的设计

在本次设计中,显示电路我采用的是液晶显示,采用的液晶为1620。

1602采用标准的16脚接口,其中VSS为地电源,VDD接5V正电源,V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,可通过一10KΩ的电位器调整对比度。E 端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。D0~D7为8位双向数据线[12]。如图3-4为液晶显示模块。

图3-4 液晶显示模块

3.4 输出控制模块

在输出部分,本次运用继电器来实现输出的控制。继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。因此在电路中起到自动调节、安全保护、转换电路等作用。

电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的[13]。因为继电器这个原理,当温度达到一定值时,通过单片机的编程使继电器吸合。

其中为了更加直观的观察继电器吸合的情况,在继电器外围在连接一个发光二极管。当继电器吸合时,发光二极管工作点亮;当继电器断开时,发光二极管熄灭。图3-5为输出控制电路。

图3-5 输出控制电路

4 软件设计

因为本设计是完全基于单片机设计而成,而单片机也是其他系统的组成纽带,所以软件程序的设计是本设计中最为重要的一部分,也是能否实现本设计

的关键。本系统的软件是由主流程、功能子程序等组成。其中子程序还可以调动其他子程序,至此保证整个设计能够很好的运行。

本系统的温度设置在1℃~5℃。测量温度不仅在液晶上面显示出来并且也设置温度进行比较,如果测量的温度大于5℃,那么程序启动继电器吸合工作,当测量温度小于1℃,同样在液晶上面显示,并且程序继电器停止工作。

4.1 主程序流程框图

主程序由初始化,显示,温度采集,温度控制程序组成,为系统软件的主干部分,其流程图如图4-1所示:

图4-1 程序总流程图

4.2 部分模块的流程图

DS18B20工作的流程图

图4-2 DS18B20工作的流程图

5 调试与实验

在本次的设计中,应用到的调试软件与仪器有Protel99se、Keil、万用表和温度器等。

5.1 使用说明

pretel99se软件的功能模块主要包括电路原理图设计、印制电路板设计、可编程逻辑设计等。它采用数据库的管理方式,是一款非常好用而且实用的电路设计软件。用它来设计电路图,简单方便。为了让电路好看一点还可以对pcb 板进行设计。

单片机开发中除必要的硬件设计外,同样离不开软件,单片机的开发软件也在不断发展,Keil软件是目前最流行开发51系列单片机的软件,Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案[14],掌握这一软件的使用对于我们使用51系列单片机的人来说是十分必要的,其方便易用的集成环境、强大的软件仿真调试工具能够很好的帮助我们。

5.1.1 Keil单片机模拟仿真

首先打开要进行调试的Keil软件,在主页面的时候,在窗口中选择打开Project,然后再逐步点击New Project命令,此时打开建立新工程的对话框,如图5-1所示:

图5-1 建立新工程对话框

在“文件名”中输入工程的名称,然后点击对话框上方的“保存在”,选择将保存的文件夹,将工程保存在相应的文件夹中,单击“保存”按键。

在单击“保存”按键以后除了建立了一个工程以外,而且还打开了单片机芯片型号的选择框。此时根据自己所用的单片机在选择框中进行一个芯片的选择。如图5-2所示。

图5-2 芯片选择对话框

当选择完芯片,点击“确定”按键后,就可以在Keil调试软件中出现一个文本编辑,可以输入自己的源程序。在Keil的集成环境中,点击页面上方的File,并在其下拉菜单中,单击New,此时打开一个新的文本编辑窗口。在新的编辑窗口中输入汇编语言,最后完成源程序向当前工程的添加。如图5-3为文本编

辑窗口。

图5-3 文本编辑窗口

5.2 功能测试

5.2.1 温度测量分辨率

表5-1为采用直接读取测温结果方法和采用计算方法得到的测温数据比较,通过比较可以看出,计算方法在DS1820测温中不仅是可行的,也可以大大的提高DS1820的测温分辨率。

测量结果数据比较

次数T整数M剩余M每度T实际

1 20 70 81 19.89

2 34 42 82 34.38

3 40 37 83 40.30

4 49 30 83 49.39

5 52 6

6 84 51.96

表5-1 测温分辨率

公式:

T实际=(T整数-0.25℃)+(M每度-M剩余)/M每度(5-1)

5.3 晶振的选择

为了能够更加稳定的给与单片机工作的时钟频率,此次晶振所选择的是12M的晶振,而具有稳定功能的电容则是选择30pF的瓷片电容。

附录1 硬件原理图

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

冰箱冷藏室温度智能控制系统(DOC)

目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度范围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

基于单片机的冰箱温度智能控制系统的设计

编号:_______________ 商丘工学院 毕业论文(设计) 题目冰箱温度控制系统设计 系别机电工程学院 专业电气自动化 学生姓名梁子鹏 成绩 指导教师吴德刚 2012年04月

冰箱温度控制系统设计 摘要 单片机即单片微型计算机,是集CPU,RAM,ROM,定时,计数和多种接口于一体的微控制器。其中51单片机是各种单片机中最为典型和最有代表性的一种,广泛应用于各个领域。 本课题设计的电冰箱的电控系统主要应用AT89C51单片机作为核心控制元件进行分析和设计,对各部分的软件编程、硬件电路设计、及调试进行了介绍。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效应明显。 关键词:AT89C51单片机A/DC0809智能仪器

目录 前言 (3) 第一章电冰箱的系统概述 (2) 1.1电冰箱的设计原理 (2) 1.2工作过程的设计.............................................................................错误!未定义书签。 1.3冷冻室冷藏室温度检测采样电路.................................................错误!未定义书签。第二章硬件部分设计 (4) 2.1系统结构 (4) 2.2冷冻室冷藏室温度检测采样原理 (4) 2.2.1主要特性 (4) 2.2.2管脚说明 (5) 2.2.3振荡特性 (6) 2.2.4计算器 (6) 2.3过欠压保护电路 (6) 2.4电压检测装置的设计....................................................................错误!未定义书签。 2.5功能按键的设计 (7) 2.6开门报警点路 (8) 第三章软件部分的设计 (9) 3.1主程序的设计 (9) 3.2始化程序的设计 (9) 3.3关闭压缩机的设计 (10) 结论 (11) 参考文献 (12)

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

智能汽车温度控制系统

Techniques of Automation & Applications | 107 智能汽车温度控制系统 赵 宇 (黑龙江省直属机关老干部活动中心,黑龙江 哈尔滨 150091) 摘 要:采用单片机对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。文 章通过国产某型轿车的空调系统,介绍了汽车内智能温控系统的相关软、硬件设计。 关键词:汽车温度;智能温度控制;89C52单片机 中图分类号:TP29 文献标识码:B 文章编号:1003-7241(2009)05-0107-03 Air Conditioning T emperature Control of a Car ZHAO Yu ( The V eteran Cadre Center of the Heilongjiang Province, Harbin 150091 China ) Abstract: This paper introduces the application of AT89C52 microcomputer in the car’s air conditioning system of the Red Flag automobile. The hardware and software of the system are outlined. Key word: car’s sair conditioning; 89C52 microcomputer; temperature control 收稿日期:2009-02-18 1 引言 随着现代控制技术的发展,在工业控制领域需要对现场数据进行实时采集,在一些重要场合对数据采集的要求更高,例如在电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是其中极为重要的部分,所以,需要一种高精度、低成本的温度采集与控制系统。其中以单片机为核心对温度的控制问题是目前工业生产中经常遇到的控制问题。因此,对单片机温度智能控制系统的设计和应用进行探讨具有十分重要的理论价值和实践意义。而汽车内实现智能温度控制对于具有较好的舒适性和节能性以及方便驾驶员操作等优点将会越来越受到人们喜爱。本文通过国产某型轿车的空调系统,介绍了汽车内智能温控系统的相关软、硬件设计。 2 汽车智能温控系统的硬件设计 汽车智能温控系统是一种用于实现车厢气温自动调节的装置,能够使车厢温度快速准确地达到乘客期望的舒适性要求。智能温控系统的总体框图如图1所示。由图1可知,智能温控系统主要由单片机、温度信号采集电路、人机接口电路、串行存储及系统监控电路、混合风门步进电机驱动电路和串行通信接口电路等几部分组成。 2.1 单片机的选择 汽车智能温度控制系统是通过采用单片机控制,使车内温度能够在设定值及变化范围内变化。采用单片机来实现温度控制不仅具有控制方便、简单、灵活等优点,而且可以大幅度提高被控温度的技术指标[1]。本系统选用ATMEL公司的AT89系列单片机中的AT89C52,AT89C52单片机是一种新型的低功耗、高性能且内含8K字节闪电存储器(Flash Memory)的8位CMOS微控制器,与工业标准MCS-51指令系列和引脚完全兼容,有超强的加密功能,其片内闪电存储器的编程与擦除完全用电实现,数据不易挥发,编程/擦除速度快[2]。 2.1.1 单片机内部基本结构 89C52单片机的内部基本结构包含下列功能部件:(1) 一个8位的微处理器CPU。 图1 汽车温控系统的总体结构

电冰箱自动控制系统的设计

目录 1.引言 (2) 2 设计要求及分析 (3) 2.1电冰箱温度自动调节功能 (3) 2.3电源过欠压保护功能 (3) 2.4压缩机开启延时功能 (3) 2.5故障报警功能 (3) 3. 自动控制系统硬件结构设计 (4) 3.1主要部件选择与功能实现 (4) 3.1.1 单片机选型及功能介绍 (4) 3.1.2 A/D转换器选型及功能介绍 (5) 3.1.3 74LS373简介 (5) 3.2检测及控制电路 (6) 3.2.1 传感器的选择与温度自动调节功能的实现 (6) 3.2.2 电冰箱的过欠压保护电路及功能实现 (8) 3.2.3 电冰箱的开启延时电路及功能的实现 (9) 3.2.4 自动除霜功能的实现 (10) 3.2.5 报警器 (11) 总结 (13) 参考文献 (14)

电冰箱自动控制系统的设计 1.引言 冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。 对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。 要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。 系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。 另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。 属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。 例如电源的过欠压保护,压缩机开启延时,故障自检报警等. 本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。

高频炉智能温度控制系统

高频炉智能温度控制系统 摘要GP15-B型高频炉自动控温系统开发的目的是将高频炉旧有的手动控制系统改造成微机监控的自动控制系统,以提高控制质量、生产效率和减轻人的劳动强度。基于工业PC的高频炉自动控温系统具有实时监测、数据处理、操作指导提示、智能控制等功能。该系统的控制算法采用仿人智能控制算法(SHIC),其最主要的优点是不需要事先知道被控对象的精确模型,就能够实现既快速又高精度的控制。 关键词智能控制控制系统高频感应加热 Abstract Temperature in intelligent control system of GP15-B high frequency induction heating furnace is to replace the old hand-control system by computer-control system, and improve the quality of control, increase the efficiency and reduce labor intensity. The temperature automatic control system has some important function, such as real time monitor, data processing, intelligent control, and etc. This system is adept simulating human intelligent control algorithm (SHIC), the most eminent advantage of SHIC is that it can realize quickly and high precision control without the accurate math model of controlled object. Keywords intelligent control control system high frequency induction heating 1 系统结构简介 GP15-B型高频炉自动控温系统是为满足高熔点材料熔化特性测试目的而开发的,对提高高熔点材料性能测试水平和充分利用原系统具有实用意义。本系统的基本组成如图1所示,控制的基本过程是:用光电高温计读取加热设备的温度,输出一个与温度对应的电压信号,此信号经过放大、滤波处理后送到A/D(模/数)转换器,转换成相应的数字量。微机定时地对A/D进行读取,将所得到的数字电压经过电压-温度转换程序转换成数字温度(即实际温度的数字量),将此温度与用户设定温度相比较,得出温度偏差值E,SHIC仿人智能控制器判断E的大小及E的变化趋势(增大、减小或不变),输出一个合适的控制量,控制量经过D/A(数/模)转换器转换成相应的控制电压,控制电压的大小将决定可控硅移相触发电路的触发相位,从而控制了高频感应加热设备的输入功率,进而调节温度。系统的温度控制范围为800~3000℃。

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

智能温度控制系统课程设计

学号:XX 2010 - 2011学年第1 学期 专业综合设计报告 题目:智能温度控制系统 专业:通信工程 班级:07通信工程 姓名:V5领袖 指导教师:王忠良 成绩: 电气工程系 2010年10月23日

课程设计任务书 学生班级:07通信工程学生姓名:张跃学号:0709131065 设计名称:智能温度控制系统 起止日期:2010.10.17-2010.10.23指导教师:王忠良

题目:温度控制系统 摘要: 本设计以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、超温报警程序。

目录 1引言--------------------------------------------------------------------------------------------1 2 工作原理--------------------------------------------------------------------------------------1 3 方案设计与论证-----------------------------------------------------------------------------2 3.1 主控制部分---------------------------------------------------------------------------------2 3.2 测量部分--------------------------------------------------------------------------------------3 4 各单元的设计---------------------------------------------------------------------------------8 4.1 键盘单元---------------------------------------------------------------------------------------8 4.2 温度控制及超温和超温警报单元-------------------------------------------------------10 4.3 温度控制器件电路-------------------------------------------------11 4.4 温度测试单元-------------------------------------------------------------------------------11 4.5七段数码管显示单元-----------------------------------------------11 4.6 接口通讯单元-----------------------------------------------------13 5 电源输入单元-----------------------------------------------------15 6 程序设计---------------------------------------------------------16 6.1 概述------------------------------------------------------------16 6.2 程序结构分析-----------------------------------------------------17 7. 测设分析---------------------------------------------------------18 结论------------------------------------------------------------------------------------------------19参考文献-------------------------------------------------------------------------------------------20附录使用说明-----------------------------------------------------------------------------------21 8.评语表-------------------------------------------------------------21

温度控制系统研究背景与现状

温度控制系统研究背景与现状 1 研究背景 (1) 2 国内外现状 (1) 定值开关温度控制法 (1) PID线性温度控制法 (2) 智能温度控制法 (3) 国内外实例 (4) 1 研究背景 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密地与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。自18世纪工业革命以来,工业过程离不开温度控制。温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。 2 国内外现状 温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种: 定值开关温度控制法 所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通

智能温度控制系统

摘要 智能温度控制系统 近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。本系统是以单片机的基本语言汇编语言来进行软件设计编程的,其指令的执行速度快,节省存储空间。为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了。使硬件在软件的控制下协调运作。 根据本温度系统的设计要求,该系统是由单片机和温度传感器与一体的综合设计,由于是用单片机采集温度信号,所以在之前必须对温度信号进行放大和转换,就应该选择放大器和A/D转换器,本系统要实现人工智能化,就必须有对温度进行设定,所以还需要设计键盘与单片机系统进行沟通。 关键字:单片机温度传感器键盘 A/D转换器放大器

目录 摘要 ........................................................................................................................... I 第一章绪论.. (1) 第二章设计要求 (2) 2.1 设计课题工艺过程简介 (2) 2.2 控制任务指标及要求: (2) 第三章系统设计思想 (3) 第四章硬件的选择 (4) 4.1 单片机的选择 (4) 4.2 温度传感器的选择 (4) 4.3 显示器的选择 (4) 4.4 键盘的选择 (4) 4.5 温度控制部分 (5) 4.6 自动推舟控制部分 (5) 4.7 实现方案 (5) 第五章硬件设计 (6) 5.1单片机基本系统: (6) 5.1.1 单片机8051 (6) 5.1.2 8155简介 (9) 5.2前向通道 (13) 5.2.3 温度传感器: (13) 5.2.4 运算放大器 (15) 5.2.5 A/D转换器: (18) 5.3 后向通道.................................................................................... 错误!未定义书签。 5.4 人机对话通道 (20) 5.4.1 显示器: (20) 5.4.2 键盘 (23) 5.4.374922引脚说明及功能 (26) 5.5 其他外围器件 (26) 第六章软件设计 (29) 6.1 软件设计思路: (29) 6.2 程序设计流程说明: (29) 6.3 主程序流程图如下: (30) 6.4 键盘输入中断服务程序 (31) 6.5 温度检测子程序流程图 (31) 6.6 程序清单 (32) 结论 (37) 谢辞 (38) 参考文献 (39)

【精品】温度控制系统智能控制器的与仿真

毕业设计[论文] 题目:温度控制系统智能控制器的 设计与仿真 2013年5月12日

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1。1选题背景及其意义 (2) 1。2概述 (2) 1。3温度测控技术的发展与现状 (2) 1。3。1定值开关控温法....................... 错误!未指定书签。 1。3.2PID线性控温法 (3) 1.3。3智能温度控制法 (3) 第二章被控对象及控制策略........................... 错误!未指定书签。 2.1被控对象 .................................... 错误!未指定书签。 2。2控制策略 (4) 第三章PID控制器的设计与仿真 (5)

3.1PID 控制器的模型与设计 (5) 3。2P 、I 、D 控制 (6) 3。2.1比例(P )控制 (6) 3.2.2积分(I)控制 (6) 3.2。3微分(D )控制 (6) 3。3PID 控制器部分Simulink 的模块 (6) 3.4PID 控制器参数的整定 (7) 3。5临界比例度法仿真的步骤 (7) 3.5.1控制对象)(1S G 的参数Kp ,Ti ,Td 的整定 .................. 9 3。5.2控制对象)(2S G 的参数Kp ,Ti ,Td 的整定 . (10) 3.5。3控制对象)(3S G 的参数Kp ,Ti ,Td 的整定 (11) 3.6对PID 控制器的仿真 (11) 3。6。1模型一的仿真 (11)

3.6。2模型二的仿真 (13)

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计 目录 第一章概论..................................... 错误!未定义书签。 一.电冰箱的系统组成 (2) 二.工作原理: (3) 三.本系统采用单片机控制的电冰箱主要功能及要求 (4) 第二章硬件部分 (4) 一.系统结构图 (4) 二.微处理器(单片机) (5) 三.温度传感器 (8) 四.电压检测装置 (8) 五.功能按键 (9) 六.压缩机,风机、电磁阀控制 (9) 七.故障报警电路 (9) 第三章软件部分 (10) 一、主程序:MAIN (10) 二、初始化子程序:INTI1 ......................... 错误!未定义书签。 三、键盘扫描子程序:KEY ......................... 错误!未定义书签。 四.打开压缩机子程序:OPEN (13) 五.关闭压缩机:CLOSE (15) 六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。 七.延时子程序.................................. 错误!未定义书签。第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计 目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃. 传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择. 一.电冰箱的系统组成 液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。 蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

智能冰箱温度控制(最终版)

摘要 (1) 1、智能冰箱温度控制器设计任务要求 (3) 2、冰箱的硬件系统 (3) 2.1、冰箱的硬件组成及工作原理 (3) 2.2、控制芯片 (4) 2.3、温度传感器 (4) 2.4、键盘 (5) 2.5、电源模块 (5) 2.6、电机驱动 (6) 2.7、声音报警 (6) 2.8、显示 (6) 3、PID 简介 (7) 3.1、PID控制的原理和特点 (8) 3.2、数字PID 的实现 (9) 3.3温度控制PID 算法设计 (11) 3.4、温度控制实现 (12) 4、系统程序设计 (13) 4.1、系统流程图 (13) 4.1.1、温度比较处理流程图 (13) 4.1.2、主程序流程图 (14) 4.2、系统关键子程序设计 (15) 4.2.1、获取温度子程序 (15) 4.2.2、PID温度控制子程序 (16) 4.2.3、温度比较处理子程序 (16) 4.2.4、PWM子程序 (18) 4.2.5、LCD显示子程序 (18) 总结 (22) 参考文献 (22) 附录 (23)

摘要 一个优良的电冰箱,应该具有较高的温度控制精度和较好的控制效果。本设计主要从冰箱的硬件电路和PID控制两个方面,以PID控制算法为主线,对冰箱的温度控制过程进行描述。具体分为硬件结构框图及各功能电路的介绍、PID控制算法、软件程序框图、关键子程序等四部分。由于冰箱的温度控制过程离不开控制器的控制算法,因此本报告对温度控制器的PID控制算法进行详细阐述。关键词:温度控制,PID算法,单片机,温度显示,报警

Abstract A good refrigerators, should be high temperature control precision and better control effect. This design is mainly from the hardware circuit and PID control two aspects with PID control algorithm as the main line, the temperature control of the refrigerator to describe the process. Specific hardware structure diagram and divided into each function of the circuit is introduced, PID control algorithm, software program diagram, key procedure and so on four parts. Because of the refrigerator temperature control process cannot leave the controller control algorithm, so the temperature controller reports on PID control algorithm is described in detail. Keywords:temperature control, PID algorithm, a single-chip microcomputer, temperature display, call the police

基于单片机的智能温度控制系统

摘要 温度是生产生活中常见的指标,同时也是生产生活中重要的影响因素,直接关系着生产效率,生产安全,生活质量。因此我们常常通过来控制温度来达到各种目的。让温度在期望值范围波动,对于不同的超温或者差温做出适合的动作。智能控制系统是某些具有仿人智能的工程控制和信息处理系统。智能可定义为:能有效的获取、传递、处理、再生和利用信息,从而在任意给定的环境下成功的达到目的。智能温度控制系统就是在无人的情况下根据设定情况对外界温度信息做出及时的合理的决策并且显示当前温度与设定温度。 本设计介绍了以高性能cmos8位机AT89S51单片机为核心的温度控制系统。温度信号由温度传感器DS18B20采集,并反馈给单片机,然后通过单片机发出信号控制之流电机转向转速。文中介绍了该控制系统的硬件部分包括:温度检测电路、PWM控制电路、LCD显示电路和一些接口电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:LCD显示程序、键盘扫描及按键处理程序、驱动控制电机程序。 关键词:AT89C51 温度传感器智能控制直流电机

Abstract The temperature is a common index in production and living, meanwhile it also has a important influence on production and living, directly impacts the production efficiency, production safety and quality of life. To achieve different aims, we often do it by controlling the temperature to achieve. Let the temperature fluctuate around expectations, appropriate action will be taken when it is beyond or below the set value. Intelligent control system is a certain engineering of human-simulated intelligent control and information processing systems. Intelligence can be defined as: effective acquisition, transmission, processing, regeneration, and the use of information, so as to succeed in any given environment achieving goals. Intelligent temperature control system will make timely and reasonable decision and display the current temperature and setting temperature according to the outside and set temperature, in the absence of person This design introduces a kind of temperature control system based on high performance cmos8 SCM AT89S51. Temperature signal will be acquisited by temperature sensor DS18B20, and feedback to the SCM, then the SCM will send a signal to control the motor speed and direction. This paper introduces the hardware part of the control system,including: temperature detection circuit, PWM control circuit, LCD display circuit and etc.SCM the is going to achieve the purpose of temperature control through processing signal. The paper also introduces the software design part, here using the modular structure, main modules include: LCD display program, keyboard scanning and processing program, drive motor control. Key words:AT89C51 Temperatue sensor Intelligent control DC-motor

相关文档
最新文档