多类感知器算法判别函数的推导实例

多类感知器算法判别函数的推导实例
多类感知器算法判别函数的推导实例

感知器算法判别函数的推导实例

给出三类模式的训练样本:

ω1:{(0 0)T },ω2:{(1 1)T },ω3:{(-1 1)T } 将模式样本写成增广形式:

x ①=(0 0 1)T , x ②=(1 1 1)T , x ③=(-1 1 1)T 取初始值w 1(1)=w 2(1)=w 3(1)=(0 0 0)T ,C=1。

第一轮迭代(k=1):以x ①=(0 0 1)T 作为训练样本

d 1(1)=)1(1T w x ①=(0 0 0)(0 0 1)T =0

d 2(1)=)1(2T w x ①=(0 0 0)(0 0 1)T =0

d 3(1)=)1(3T w x ①=(0 0 0)(0 0 1)T =0

因d 1(1)≯d 2(1),d 1(1)≯d 3(1),故

w 1(2)=w 1(1)+x ①=(0 0 1)T

w 2(2)=w 2(1)-x ①=(0 0 -1)T

w 3(2)=w 3(1)-x ①=(0 0 -1)T

第二轮迭代(k=2):以x ②=(1 1 1)T 作为训练样本

d 1(2)=)2(1T w x ②=(0 0 1)(1 1 1)T =1

d 2(2)=)2(2T w x ②=(0 0 -1)(1 1 1)T =-1

d 3(2)=)2(3T w x ②=(0 0 -1)(1 1 1)T =-1

因d 2(2)≯d 1(2),d 2(2)≯d 3(2),故

w 1(3)=w 1(2)-x ②=(-1 -1 0)T

w 2(3)=w 2(2)+x ②=(1 1 0)T

w 3(3)=w 3(2)-x ②=(-1 -1 -2)T

第三轮迭代(k=3):以x ③=(-1 1 1)T 作为训练样本

d 1(3)=)3(1T w x ③=(-1 -1 0)(-1 1 1)T =0

d 2(3)=)3(2T w x ③=(1 1 0)(-1 1 1)T =0

d 3(3)=)3(3T w x ③=(-1 -1 -2)(-1 1 1)T =-2

因d 3(3)≯d 1(3),d 3(3)≯d 2(3),故

w 1(4)=w 1(3)-x ③=(0 -2 -1)T

w 2(4)=w 2(3)-x ③=(2 0 -1)T

w 3(4)=w 3(3)+x ③=(-2 0 -1)T

第四轮迭代(k=4):以x ①=(0 0 1)T 作为训练样本

d 1(4)=)4(1T w x ①=(0 -2 -1)(0 0 1)T =-1

d 2(4)=)4(2T w x ①=(2 0 -1)(0 0 1)T =-1

d 3(4)=)4(3T w x ①=(-2 0 -1)(0 0 1)T =-1

因d 1(4)≯d 2(4),d 1(4)≯d 3(4),故

w 1(5)=w 1(4)+x ①=(0 -2 0)T

w 2(5)=w 2(4)-x ①=(2 0 -2)T

w 3(5)=w 3(4)-x ①=(-2 0 -2)T

第五轮迭代(k=5):以x ②=(1 1 1)T 作为训练样本

d 1(5)=)5(1T w x ②=(0 -2 0)(1 1 1)T =-2

d 2(5)=)5(2T w x ②=(2 0 -2)(1 1 1)T =0

d 3(5)=)5(3T w x ②=-(-2 0 -2)(1 1 1)T =-4

因d 2(5)>d 1(5),d 2(5)>d 3(5),故

w 1(6)=w 1(5)

w 2(6)=w 2(5)

w 3(6)=w 3(5)

第六轮迭代(k=6):以x ③=(-1 1 1)T 作为训练样本

d 1(6)=)6(1T w x ③=(0 -2 0)(-1 1 1)T =-2

d 2(6)=)6(2T w x ③=(2 0 -2)(-1 1 1)T =-4

d 3(6)=)6(3T w x ③=(-2 0 -2)(-1 1 1)T =0

因d 3(6)>d 1(6),d 3(6)>d 2(6),故

w 1(7)=w 1(6)

w 2(7)=w 2(6)

w 3(7)=w 3(6)

第七轮迭代(k=7):以x ①=(0 0 1)T 作为训练样本

d 1(7)=)7(1T w x ①=(0 -2 0)(0 0 1)T =0

d 2(7)=)7(2T w x ①=(2 0 -2)(0 0 1)T =-2

d 3(7)=)7(3T w x ①=(-2 0 -2)(0 0 1)T =-2

因d 1(7)>d 2(7),d 1(7)>d 3(7),分类结果正确,故权向量不变。

由于第五、六、七次迭代中x①、x②、x③均已正确分类,所以权向量的解为:

w1=(0 -2 0)T

w2=(2 0 -2)T

w3=(-2 0 -2)T

三个判别函数:

d1(x)=-2x2

d2(x)=2x1-2

d3(x)=-2x1-2

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

使用遗传算法求解函数最大值

使用遗传算法求解函数最大值 题目 使用遗传算法求解函数 在及y的最大值。 解答 算法 使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。 定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。 设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。 然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。 一选择操作 首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。 二交叉操作 首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。 三变异操作 首先是根据变异概率probMutation选择要变异的个体。 变异时先随机生成变异的位置,然后把改位的01值翻转。

各种优化算法求解函数优化问题

各种优化算法求解函数优化问题 1.遗传算法的简单介绍及流程 1.1遗传算法的基本原理 遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。群体中的每个个体是问题的一个解 ,称为染色体。这些染色体在后续迭代中不断进化 , 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体,称为后 代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个 体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。 1.2遗传算法的流程 第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间; 第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型; 第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜 索空间。 第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法; 第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则; 第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法; 第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。1.3 遗传算法求解函数优化问题中的参数分析 目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范 例。对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

神经网络基于BP网络的多层感知器实验报告

神经网络基于BP网络的多层感知器实验报告 二、基于BP网络的多层感知器一:实验目的: 1、理解多层感知器的工作原理 2、通过调节算法参数了解参数的变化对于感知器训练的影响 3、了解多层感知器局限性二:实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。 –误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。 1、基本BP算法的多层感知器模型: 2、BP学习算法的推导:当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤> 1、用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小

的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,Emin 设置为0、1)程序如下:function dyb %单样本程序 clc; close all; clear; x0=[1:;-4:0、08:4];%样本个 x0(1,:)=-1; x=x0'; yuzhi=0、1;%阈值 j=input('请输入隐层节点数 j = ');%隐层节点数 n=input('请输入学习效率 n = ');%学习效率 w=rand(1,j); w=[yuzhi,w]; %输出层阈值 v=rand(2,j); v(1,:)=yuzhi;%隐层阈值 err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声erro=[]; ERRO=[];%误差,为画收敛曲线准备 Emin=0、1; d=zeros(1,); for m=1: d(m)=hermit(x(m,2));%期望 end; o=zeros(1,); j=zeros(1,j); =zeros(1,j); p=1; q=1; azc=0; acs=0; for z=1:5 while q<30000 Erme=0; for p=1: y=zeros(1,j); for i=1:j j(1,i)=x(p,:)*v(:,i); y(1,i)=1/(1+exp(-j(1,i))); end; y=[-1 y]; o(p)=w*y'+zhaosheng(p);%噪声 wucha = d(p)-o(p); err(1,p)=1/2*wucha^2; erro=[erro,wucha]; for m=1:j+1 w(1,m)=w(1,m)+n*wucha*y(1,m); end; for m=1:j v(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)'; end q=q+1; end; for t=1:; Erme=Erme+err(1,t); end; err=zeros(1,); Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

多层感知器的训练算法

多层感知器的训练算法 齐平 辽宁工程技术大学土木建筑工程学院,辽宁阜新 (123000) E-mail: qipingws@https://www.360docs.net/doc/bf14845914.html, 摘要:本文着重介绍的在人工智能中的多层感知器(MLP)是什么,是怎样构建的。多层感知器和单层感知器一样,是一种人工神经网络。单层感知器只能处理线形问题,对复杂的问题只能粗略进行近似表示。多层感知器是建立在单层感知器的基础上的,它的结构基本类似于一套级联的感知器,对输入层和输出层之间的关系进行研究。 本文侧重描述多层感知器(MLP)的逆向传递和训练过程,并给出了相应的公式和训练算法。以便了解在人工智能中,它的训练学习过程。为了简单起见用,本文中的算法是以伪代码的方式加以描述,这样,就可以用几乎任何一门语言实现它们。 关键词:神经网络,多层感知器,算法 中图分类号:tp18 1.引言 多层感知器(MLP)是一种人工神经网络,它使用输入与输出之间的多层加权连接.MLP的结构基本类似于一套级联的感知器,其中每一格处理单元都有一格相对复杂的输出函数,从而增强网络的性能. [1] 多层感知器是建立在单层感知器的基础上的. 单层感知器只能处理线形问题,而对复杂的问题只能粗略进行近似表示.多层感知器与单层感知器有两个主要的区别: 1.明确区别:多层感知器存在中间层,它们增加了感知器近似表示的能力. 2.不明确区别:对于中间层在系统中发挥的作用是必不可少的,这涉及到使用更加复杂的激 励函数. 2.多层感知器(MLP) 2.1拓扑结构 拓扑就是神经网络中处理单元的拓扑,以及它们之间如何连接在一起。一个MLP的拓扑被称为前馈(如图1),由于不存在后向的连接——也叫做回归连接。通常信息直接从输入流向输出,而MLP 的重要结构就是改善中间层。

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

机器学习入门 - 感知器

机器学习入门- 感知器(PERCEPTRON) POSTED IN 学术_STUDY, 机器学习 本文是基于马里兰大学教授Hal Dame III(Blogger)课程内容的笔记。 感知器(Perceptron)这个词会成为Machine Learning的重要概念之一,是由于先辈们对于生物神经学科的深刻理解和融会贯通。 对于神经(neuron)我们有一个简单的抽象:每个神经元是与其他神经元连结在一起的,一个神经元会受到多个其他神经元状态的冲击,并由此决定自身是否激发。(如下图) Neuron Model (From Wikipedia) 这玩意儿仔细想起来可以为我们解决很多问题,尤其是使用决策树和KNN算法时解决不了的那些问题: ?决策树只使用了一小部分知识来得到问题的答案,这造成了一定程度上的资源浪费。 ?KNN对待数据的每个特征值都是一样的,这也是个大问题。比如一组数据包含100种特征值,而只有其中的一两种是起最重要作用的话,其他的特征值就变成了阻碍我们找到最好答案的噪声(Noise)。 根据神经元模型,我们可以设计这样一种算法。对于每种输入值(1 - D),我们计算一个权重。当前神经元的总激发值(a)就等于每种输入值(x)乘以权重(w)之和。 neuron sum 我们还可以推导出以下几条规则: ?如果当前神经元的某个输入值权重为零,则当前神经元激发与否与这个输入值无关?如果某个输入值的权重为正,它对于当前神经元的激发值a 产生正影响。反之,如果权重为负,则它对激发值产生负影响。

接下来我们要将偏移量(bias)的概念加入这个算法。有时我们希望我们的神经元激发量a 超过某一个临界值时再激发。在这种情况下,我们需要用到偏移量b。 neuron sum with bias 偏移量b 虽然只是附在式子后面的一个常数,但是它改变了几件事情: ?它定义了神经元的激发临界值 ?在空间上,它对决策边界(decision boundary) 有平移作用,就像常数作用在一次或二次函数上的效果。这个问题我们稍后再讨论。 在了解了神经元模型的基本思路之后,我们来仔细探讨一下感知器算法的具体内容。 感知器算法虽然也是二维分类器(Binary Classifier),但它与我们所知道的决策树算法和KNN都不太一样。主要区别在于: ?感知器算法是一种所谓“错误驱动(error-driven)”的算法。当我们训练这个算法时,只要输出值是正确的,这个算法就不会进行任何数据的调整。反之,当输出值与实际值异号,这个算法就会自动调整参数的比重。 ?感知器算法是实时(online)的。它逐一处理每一条数据,而不是进行批处理。 perceptron algorithms by Hal Dame III 感知器算法实际上是在不断“猜测”正确的权重和偏移量: ?首先,感知器算法将所有输入值的权重预设为0。这意味着,输入值预设为对结果不产生任何影响。同时,偏移量也被预设为0。 ?我们使用参数MaxIter。这个参数是整个算法中唯一一个超参数(hyper-parameter)。 这个超参数表示当我们一直无法找到准确答案时,我们要最多对权重和偏移量进行几次优化。

感知器的学习算法

感知器的学习算法 1.离散单输出感知器训练算法 设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。 算法如下: Step1:初始化网络权值向量W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()d ,X ,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =WX f y ; (2.1.3)若d y ≠,则当0=y 时,X W W ?+=α;否则X W W ?-=α。 2.离散多输出感知器训练算法 设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=?W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f , 网络的实际输出向量为()110-=m y y y ,,, Y 。 算法如下: Step1:初始化网络权值矩阵W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()D X ,,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =XW Y f ; (2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ?+=αωω,110-=n i ,,, ; 否则i ji ji x ?-=αωω,110-=n i ,,, 。

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

感知器算法实验--1

感知器算法实验--1

一.实验目的 1.理解线性分类器的分类原理。 2.掌握感知器算法,利用它对输入的数据进行 分类。 3.理解BP算法,使用BP算法对输入数据进 行分类。 二. 实验原理 1.感知器算法 感知器算法是通过训练模式的迭代和学习算法,产生线性可分的模式判别函数。感知器算法就是通过对训练模式样本集的“学习”得出判别函数的系数解。在本次实验中,我们主要是采用硬限幅函数进行分类。 感知器的训练算法如下: 设输入矢量{x1,x2,…,x n}其中每一个模式类别已知,它们分别属于ω1类和ω2类。 (1)置步数k=1,令增量ρ为某正的常数,分别赋给初始增广权矢量w(1)的各分量较小的任意值。 (2)输入训练模式x k,计算判别函数值 w T(k) x k。 (3)调整增广权矢量,规则是:

a.如果x k ∈ω1和w T (k) x k ≤0,则w(k+1)=w(k)+ ρx k ; b.如果x k ∈ω2和w T (k) x k ≥0,则w(k+1)=w(k)-ρx k ; c.如果x k ∈ω1和w T (k) x k >0,或x k ∈ω2和w T (k) x k <0,则w(k+1)=w(k) (4)如果k 0分类正确,则为第一个表达式,如果w T (k) x k ≤0错误分类则为第二个表达式。 在全部模式训练完一轮之后只要还有模式分类错误,则需要进行第二轮迭代,再用全部训练模式训练一次,建立新的权矢量。如果对训练模式还有错分,则进行第三轮迭代依此类推,直

感知器的训练算法实例

感知器的训练算法实例 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 1)T, x②=(0 1 1)T, x③=(-1 0 -1)T, x④=(-1 -1 -1)T 第一轮迭代:取C=1,w(1)= (0 0 0)T 因w T(1)x①=(0 0 0)(0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 1)T 因w T(2)x②=(0 0 1)(0 1 1)T=1>0,故w(3)=w(2)=(0 0 1)T 因w T(3)x③=(0 0 1)(-1 0 -1)T=-1≯0,故w(4)=w(3)+x③=(-1 0 0)T 因w T(4)x④=(-1 0 0)(-1 -1 -1)T=1>0,故w(5)=w(4)=(-1 0 0)T 这里,第1步和第3步为错误分类,应“罚”。 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T(5)x①=(-1 0 0)(0 0 1)T=0≯0,故w(6)=w(5)+x①=(-1 0 1)T 因w T(6)x②=(-1 0 1)(0 1 1)T=1>0,故w(7)=w(6)=(-1 0 1)T 因w T(7)x③=(-1 0 1)(-1 0 -1)T=0≯0,故w(8)=w(7)+x③=(-2 0 0)T 因w T(8)x④=(-2 0 0)(-1 -1 -1)T=2>0,故w(9)=w(8)=(-2 0 0)T 需进行第三轮迭代。 第三轮迭代: 因w T(9)x①=(-2 0 0)(0 0 1)T=0≯0,故w(10)=w(9)+x①=(-2 0 1)T

基本遗传算法及其在函数优化中的作用

《人工智能及其应用大作业(一)》 题目:基本遗传算法及其在函数优化中的作用 学号: 姓名:

基本遗传算法及其在函数优化中的应用 摘要: 从遗传算法的编码、遗传算子等方面剖析了遗传算法求解无约束函数优化问题的一般步骤,并以一个实例说明遗传算法能有效地解决函数优化问题。本文利用基本遗传算法求解函数优化问题,选用f(x)=xsin(10πx)+2.0,取值范围在]2,1 [ 中,利用基本遗传算法求解两个函数的最优值,遗传算法每次100代,一共执行10次,根据运算结果分析得到最优解。 关键字:遗传算法选择交叉变异函数优化 1.前言 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。遗传算法是一种群体型操作,该操作以群体中的所有个体为对象。选择(Selection)、交叉(Crossover)和变异(Mutation)是遗传算法的3个主要操作算子,它们构成了所谓的遗传操作(genetic operation),使遗传算法具有了其它传统方法所没有的特性。 1.2 遗传算法的特点 其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。 1.3遗传算法的应用 函数优化,组合优化,机器人智能控制,及组合图像处理和模式识别等。 2.基本遗传算法 2.1简单遗传算法的求解步骤 Step1:参数设置及种群初始化; Step2:适应度评价; Step3:选择操作; Step4:交叉操作; Step5:变异操作; Step6:终止条件判断,若未达到终止条件,则转到Step3; Step7:输出结果。 2.2停机准则

感知器算法

感知器算法 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

基于模式识别的判别函数分类器的设计 与实现 摘要:本文主要介绍了模式识别中判别函数的相关概念和感知器算法的原理及特点,并例举实例介绍感知器算法求解权向量和判别函数的具体方法,最后按照线性函数判决函数的感知算法思想结合数字识别,来进行设计,通过训练数字样本(每个数字样本都大于120),结合个人写字习惯,记录测试结果,最后通过matlab 编码来实现感知器的数字识别。 关键字:模式识别 判别函数 感知器 matlab 1 引言 模式识别就是通过计算机用数学技术方法来研究模式的自动处理和识别。对于人类的识别能力我们是非常熟悉的。因为我们在早些年就已经会开发识别声音、脸、动物、水果或简单不动的东西的技术了。在开发出说话技术之前,一个象球的东西,甚至看上去只是象个球,就已经可以被识别出来了。所以除了记忆,抽象和推广能力是推进模式识别技术的关键技术。最近几年我们已可以处理更复杂的模式,这种模式可能不是直接基于通过感知器观察出来的随着计算机技术的发展,人类对模式识别技术提出了更高的要求。 本文第二节介绍判别函数分类器,具体介绍了判别函数的概念、特点以及如何确定判别函数的正负;第三节介绍了感知器的概念、特点并用感知器算法求出将模式分为两类的权向量解和判别函数,最后用matlab 实现感知判别器的设计。 2 判别函数分类器 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中0)(32211=++=w x w x w d X 式中: 21,x x 为坐标变量。 图2-1 两类二维模式的分布 将某一未知模式 X 代入: 若0)(>X d ,则1ω∈X 类; 若0)(

模式识别第三章-感知器算法

模式识别第三章 感知器算法 一.用感知器算法求下列模式分类的解向量w : })0,1,1(,)1,0,1(,)0,0,1(,)0,0,0{(:1T T T T ω })1,1,1(,)0,1,0(,)1,1,0(,)1,0,0{(:2T T T T ω 将属于2ω的训练样本乘以(-1),并写成增广向量的形式: T x )1,0,0,0(1 =,T x )1,0,0,1(2=,T x )1,1,0,1(3=,T x )1,0,1,1(4 = T x )1,1-,0,0(5-=,T x )1,1-,1-,0(6-=,T x )1,0,1-,0(7-=,T x )1,1-,1-,1-(8-= 第一轮迭代:取1=C ,T )0,0,0,0()1(=ω 因0)1,0,0,0)(0,0,0,0()1(1==T T x ω不大于0,故T x )1,0,0,0()1()2(1=+=ωω 因1)1,0,0,1)(1,0,0,0()2(2==T T x ω大于0,故T )1,0,0,0()2()3(==ωω 因1)1,1,0,1)(1,0,0,0()3(3==T T x ω大于0,故T )1,0,0,0()3()4(==ωω 因1)1,0,1,1)(1,0,0,0()4(4==T T x ω大于0,故T )1,0,0,0()4()5(==ωω 因1)1,1-,0,0)(1,0,0,0()5(5-=-=T T x ω不大于0,故T x )0,1-,0,0()5()6(5 =+=ωω 因1)1,1-,1-,0)(0,1-,0,0()6(6=-=T T x ω大于0,故T )0,1-,0,0()6()7(==ωω 因0)1,0,1-,0)(0,1-,0,0()7(7=-=T T x ω不大于0,故T x )1-,1-,1,0()7()8(7-=+=ωω 因3)1,1-,1-,1-)(1-,1-,1,0()8(8=--=T T x ω大于0,故T )1-,1-,1,0()8()9(-==ωω 第二轮迭代: 因1)1,0,0,0)(1-,1-,1,0()9(1-=-=T T x ω不大于0,故T x )0,1-,1,0()9()10(1-=+=ωω 因0)1,0,0,1)(0,1-,1-,0()10(2==T T x ω不大于0,故T x )1,1,1,1()10()11(2--=+=ωω 因1)1,1,0,1)(1,1,1,1()11(3=--=T T x ω大于0,故T )1,1,1,1()11()12(--==ωω 因1)1,0,1,1)(1,1,1,1()12(4=--=T T x ω大于0,故T )1,1,1,1()12()13(--==ωω

用于函数优化的遗传算法

一、遗传算法介绍 1.综述 遗传算法(Genetic Algorithm)是由美国Michigan 大学Holland 教授和他的学生发展建立起来的,其思想是起源于生物遗传学适者生存的自然规律,是一种新兴的自适应随机搜索方法,它对优化对象既不要求连续,也不要求可微,并具有极强的鲁棒性和内在的并行计算的机制,特别适合于非凸空间中复杂的多极值优化和组合优化问题。 2.基本原理 传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。遗传算法的搜索结果会有很大的差异。遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。遗传算法实质上是在群体空间中寻求较优解。 3.主要构成 遗传算法主要由编码、适应度、遗传算子(选择算子、交叉算子、变异算子)构成,包含的主要进化参数有编码长度、种群规模、交叉概率、变异概率、终止进化代数。 4.基本步骤 (1)初始化:确定种群规模,交叉概率 P,变异概率m P和终止进化准则,随 c 机生成初始种群() X t;置0 t ; (2)个体评价:计算或估计() X t中各个个体的适应度。 (3)选择:从() X t运用选择算子选择出一些母体。 (4)交叉:对所选个体依概率 P执行交叉,形成新的种群。 c (5)变异:随所选个体依概率 P执行变异,形成新的种群。 m 反复执行步骤(2)-(4),直到满足终止进化准则为止。

实验一报告实验一 基于感知器的线性分类器设计

北华大学开放实验报告 实验名称:实验一基于感知器的线性分类器设计所属课程:模式识别 班级:信息10—1 学号:36 姓名:张慧

实验一、基于感知器算法的线性分类器设计 一、实验目的: 1. 熟悉感知器算法。 2. 掌握感知准则函数分类器设计方法。 3. 掌握感知器算法,利用它对输入的数据进行分类。 二、实验原理: 感知机算法 线性分类器的第一个迭代算法是1956年由Frank Rosenblatt提出的,即具有自学习能力的感知器(Perceptron)神经网络模型,用来模拟动物或者人脑的感知和学习能力。这个算法被提出后,受到了很大的关注。感知器在神经网络发展的历史上占据着特殊的位置:它是第一个从算法上完整描述的神经网络,是一种具有分层神经网络结构、神经元之间有自适应权相连接的神经网络的一个基本网络。 感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。感知器的基本模型结构如图1所示: 图1 感知器基本模型 其中,X输入,Xi表示的是第i个输入;Y表示输出;W表示权向量;w0是阈值,f是一个阶跃函数。 感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk是网络的输入元素,每一个元素与相应的权wi相乘。,乘积相加后再与阈值w0相加,结果通过f函数执行激活功能,f为系统的激活函数。因为f是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。这样,根据输出信号Y,把相应的特征向量分到为两类。

然而,权向量w 并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。故设这个超平面为w ,满足: 12 *0,*0,T T w x x w x x ωω>?∈

相关文档
最新文档