二倍角公式

二倍角公式
二倍角公式

§1两角和与差的三角函数

教学目标:1、通过推导两角差的余弦公式,体会向量与三角函数的联系

2、掌握两角和差的余弦,能正确运用这些公式进行简章的三角函数式的

化简、求值和恒等式的证明。

教学重、难点:两角差角的余弦公式的推导

教学过程:

一、问题情境:

1、情境:由向量的数量积运算法则可知:

cos sin(cos,sin)(1,1)

(cos,sin)(1,1)

x x x x

x xθθ

+=?

?==

其中θ为向量(cos,sin)

x x与向量(1,1)的夹角,于是有

cos sin)

4

x x x

π

+=-

cos()

4

x

π

-可以用,

4

x

π

的三角函数值来表示

2、问题:cos()

αβ

-能否用α的三角函数与β的三角函数值来表示呢?

二、学生活动

12

(cos,sin),(cos,sin)

OP OP

ββαα

==

12

OP OP

?=

1212

||||cos()

OP OP OP OPβα

?=-

三、数学建构

1、两角差的余弦公式:cos()cos cos sin sin

αβαβαβ

-=+C

αβ

-两角和的余弦公式:cos()cos cos sin sin

αβαβαβ

+=-C

αβ

+

思考:用“β

-”代替“β”的换元法体现在图形上具有什么几何意义?

四、数学运用:

例1、利用两角和(差)的余弦公式证明下列诱导公式 (1)cos()sin 2π

αα-= (2)sin()cos 2

π

αα-=

例2、利用两角和(差)的余弦公式,求0000cos75,cos15,sin15,tan15

例3、已知233sin ,(,),cos ,(,)3252

ππ

ααπββπ=∈=-∈,求cos()αβ+的值。

例4、(1)已知,(0,

)2π

αβ∈,且111

cos ,cos()714

ααβ=+=-,求β的值 (2)已知11

cos cos ,sin sin 23αβαβ-=-=-,求cos()αβ-的值

(3)已知1212

cos(),cos()1313

αβαβ-=-+=,且

3(,),(,2)22

ππ

αβπαβπ-∈+∈求cos 2,cos 2αβ

练习:(1)在三角形ABC 中,若sin sin cos cos A B A B <,则三角形ABC 的外心位于它的 ( )

A 、内部

B 、外部

C 、一边上

D 、不确定

(2)44cos(),cos(),(cos ,sin ),(cos ,sin )

55

a b αβαβααββ+=-=-==

则a b ?=

(3)sin cos ,y x x x R =-∈的值域为 五、小结与作业:

§1 两角和与差的余弦作业

班级 姓名 学号 得分

一、选择题

1、5cos(2)2

x π

-

= ( ) A 、 sin 2x B 、 sin 2x - C 、 cos 2x D 、 cos 2x -

2、0

sin 20cos50sin 70cos 40-= ( )

A 、

12 B 、 12- C 、 D 、 3、已知312

sin ,cos ,cos()513

αβαβ==-的值 ( ) A 、 6365

B 、 3365±

C 、 6365±或3365

D 、6365±或3365±

二、填空题

4、0

cos 24cos36cos66cos54-=

5、cos()cos()sin()sin()αβαβαβαβ-++-+=

6、0

cos58sin37sin122sin53+=

7、cos()cos()33

ππ

θθ++-=

8、已知15sin ,(,)172πααπ=∈,则cos()3

π

α-= 三、解答题

9、(1)35

,(0,),sin ,cos 2513π

αβαβ∈==求cos()αβ+ (2)23

sin ,cos ,,34

αβαβ==-在第二象限,求cos()αβ-

10、

3123

,cos(),sin()

24135

ππ

βααβαβ

<<<-=+=-,求cos2,cos2

αβ

11、

11

,(0,),tan)

214

π

αβααβ

∈=+=-,求cosβ

12、已知

11

cos(),cos()

35

αβαβ

+=-=,求tan tan

αβ

?

§2两角和与差的正弦

教学目标:1、由两角和与差的余弦推导出两角和与差的正弦

2、利用两角和与差的正弦公式进行求值。 教学重点:sin()αβ±的推导及应用。 教学难点:利用公式求值过程中的角的变换。 教学过程:

一、引入:问题:已知cos()αβ±,如何求sin()αβ±

sin()cos[()]2

π

αβαβ+=-+

二、建构数学:

sin()αβ+= sin()αβ-=

三、数学应用: 例1、已知:233sin ,(,),cos ,(,)3252

ππ

ααπββπ=∈=-∈,求sin()αβ+

例2、已知54cos(),cos ,(0,)1352

π

αββαβ+==∈,求sin α

练习:98P 2、3、6、7

例3、求1sin 2y x x =

的最大值,周期。

练习:求下列函数的最值与周期

(1)cos y x x +

(2)1

sin 2

y x x =

- 推广:sin cos y a x b x =+的最值。

小结:

§2两角和与差的正弦作业

班级 姓名 学号 得分

一、选择题:

1、0

cos10cos50cos80cos 40-的值 ( )

A 、

12 B 、 12- C D 、 2、已知123cos ,(,)132πθθπ=-

∈,则sin()4

π

θ+的值 ( )

A 、 26-

B 、 126-

C 、 26

D 、 26

3、若s i n ()c o s c o s ()s i n 0αββαββ+-

+=,则s i n (2)s i n (2)αβαβ++-=( )

A 、 1

B 、 1-

C 、 0

D 、 1±

4、已知sin()cos cos()sin m αβααβα---=,且β为第三象限角,则cos β=

( )

A 、

B 、

C 、

D 、

5、3sin ),(,)x x x ??ππ=+∈-,则?= ( ) A 、 6

π

-

B 、

6

π C 、 56π- D 、 56π

二、填空题 6、35

,(0,

),sin ,cos 2513

π

αβαβ∈==,则sin()αβ+=

7、cos y x x =+的最大值 单调增区间 对称轴方程 8、34

0,sin ,cos()255

π

αβπααβ<<

<<=+=-,则sin β= 9、11sin(),sin()210αβαβ+=-=,则tan tan α

β

=

三、解答题:

10、已知sin(),sin()a b αβαβ+=-=,求证: 11、已知

4

2

π

π

αβ<<<

且412sin(),cos()513

αβαβ+=

-=,求cos 2,sin 2,tan 2ααα

12

、已知:1),(sin ,cos ),,()a b x x x R f x a b =-=∈=?

(1)求()f x 的表达式

(2)求()f x 的周期、值域、单调区间。

1

sin cos ()21

cos sin ()

2

a b a b αβαβ=+=-

§3两角和与差的正弦(二)

教学目标:比较灵活运用和与差的三角函数进行化简、求值、证明

教学重点:利用公式化简与证明、求值 教学难点:同上

教学方法:启发引导体会化归思想的运用 教学过程:

复习:cos()αβ±=

s i n ()α

β±= 例1、 求证:sin(2)sin 2cos()sin sin A B B

A B A A

+-+=

练习:求证:(1)2

2cos()cos()cos sin αβαβαβ+-=-

(2)22sin()sin()sin sin αβαβαβ+-=-

例2、已知sin sin(2)m βαβ=+其中1,,2

2

m k k π

π

απαβπ≠≠++≠+

求证:1tan()tan 1m

m

αβα++=-

例3、求

00

2cos10sin20

cos20

-

的值。

例4、已知

21

sin(),sin()

35

αβαβ

+=-=-,求

tan

tan

α

β

的值。

练习:已知

11

sin sin,cos cos

23

αβαβ

+=-=,求cos()

αβ

+

课堂小结:

§3两角和与差的正弦(二)作业

班级 姓名 学号 得分

一、填空题

1、ABC ?

中,若sin A B ==sin()A B += 2、ABC ?中,若412

cos ,cos 513A B =

=,则cos C = 3、ABC ?中,若35

sin ,cos 513

A B ==,则cos C =

4

、2sin()42sin()3

π

ααπ

αα

--=+

5、

000

000

sin12cos30sin18cos12sin 30sin18+=- 6、ABC ?中,若2cos sin sin B A C =,则ABC ?的形状一定是 7、已知cos cos cos 0,sin sin sin 0αβγαβγ++=++=,则cos()αβ-= 二、解答题

8、已知13sin 5cos 9,13cos 5sin 15αβαβ+=+=,求sin()αβ+

9、计算:000

000

sin 7cos15sin8cos 7sin15sin8

+-

10、已知3

,(0,

),sin ,cos ,cos()25

x y π

αβαβαβ∈==+=-,求函数()y f x =的解析式,并求其定义域。

11、已知(),(cos2,sin 2)a a b x x == 若函数

()2,[0,]4

f x a b a b x π

=-?++∈ 且()f x 值域为[5,1]-,求,a b 的值。

§4两角和与差的正切(一)

教学目标:1、两角和与差的正切公式及其应用

2、运用公式解决问题,进一步体会化归思想的作用 教学重点:两角和与差的正切公式的推导及运用 教学难点:运用公式化简、求值、证明 教学方法:启发引导、探究 教学过程: 一、复习引入:

求000sin15,cos15,tan15

如何用,αβ的三角函数值表示tan(),tan()αβαβ+-的值 二、建构数学

tan()αβ+=

tan()αβ-= 求00tan 75,tan105

三、数学应用

例1、已知tan ,tan αβ是2

560x x +-=的两根,求tan()αβ+

例2、求证明:

1tan151tan15+=-

练习104P 1、2、3、4、5 例3、,4

k k Z π

αβπ+=+∈,求证:(1tan )(1tan )2αβ++=

练习:0000tan10tan 20tan 20)+的值

例4、三个相同的正方形相接,求证:4

π

αβ+=

课堂小结:

βα

§4两角和与差的正切(一)作业

班级 姓名 学号 得分

一、选择题

1、0tan(165)-的值 ( )

A 、

2 B 、 2 C 、 2 D 、 2

2、已知12

tan ,tan()25

ααβ=

-=-,则tan(2)βα-= ( ) A 、 112 B 、 112

- C 、 18 D 、 18-

3、若21tan(),tan()544παββ+=-=,则tan()4

π

α+= ( )

A 、 1318

B 、 1322

C 、 322

D 、 16

4、0

tan 6730'tan 2230'-= ( )

A 、 1

B 、

C 、 2

D 、 4

二、填空题

5、

00

00

sin15cos15sin15cos15+=- 6、已知0

20,25A B ==,则(1tan )(1tan )A B ++= 7、0

(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+++++=

8、00

00

tan 55tan 3851tan(305)tan(25)

-=--- 三、解答题

9、已知tan(),tan()m n αβαβ=+=-,且1mn ≠,求证:tan 21m n

mn

α+=-

10、已知11tan(),tan()2223β

ααβ-=-=,求tan 2

αβ+

11、已知tan ,tan αβ是方程2

3570x x +-=的两根,求下列各式的值 (1)tan()αβ+ (2)sin()

cos()

αβαβ+- (3)2cos ()αβ+

§5两角和与差的正切(二)

教学目标:利用tan()αβ±公式进行三角函数式化简、求值、证明 教学重、难点:公式综合运用

教学方法:讲练结合 教学过程: 一、复习回顾

tan()αβ±=

tan tan αβ+= tan tan αβ-=

二、例题选讲

例1、在斜三角形ABC 中,求证:tan tan tan tan tan tan A B C A B C ++=

一般地:,tan tan tan tan tan tan A B C n A B C A B C π++=++=

ABC ?中,tan tan tan 0,A B C ABC ++>?形状为

例2、已知1tan ,tan 23αβ==-,0,22

ππ

αβπ<<<<,αβ+的值

例3、求0

tan 25tan3525tan35+的值。

例4、两座建筑物AB 、CD 的高分别为9,15m m ,从建筑物AB 的顶部A 看建筑物CD 的张角∠0

45CAD =,求建筑物AB 和CD 的底部之间的距离BD 。

练习105P 3、4 106P 4

A

B

D α 045α-

C

§5两角和与差的正切(二)作业

班级 姓名 学号 得分

一、选择题

1、0000tan10tan 20tan 20)+的值 ( )

A 、

B 、 1

C 、

D 、

2、ABC ?中,已知tan ,tan A B 是方程2

3810x x +-=的两个根,则tan C =( )

A 、 2

B 、 2-

C 、 4

D 、 4-

3、

tan ,tan αβ是方程2

40x ++=两根且,(,)22

ππ

αβ∈-,则αβ+为( )

A 、 3π

B 、 23

π- C 、 233ππ-或 D 、3π-或23π

二、填空题

4= 5、已知tan 22,tan()1ααβ=-=-,则tan()αβ+= 6、ABC ?中1

sin 1,cos 2

A B ==,则()tan A B += 7、1tan 2α=,则tan()4

π

α+=

8、tan(

)tan())tan()6666

π

πππ

θθθθ-+++-+= 三、解答题

9、已知11

tan(),tan ,,(0,)27

αββαβπ-==-∈,求(2)tan αβ-

10、tan ,tan αβ是方程2

330x x --=的两个实根,求

()22sin ()3sin()cos 3cos ()αβαβαβαβ+-++-+的值。

11、已知sin sin()(1)a a ααβ=+>,求证:sin tan()cos a

β

αββ+=-

二倍角公式的应用,推导万能公式

课题十:二倍角公式的应用,推导万能公式 教学第一环节:衔接阶段 回收上次课的教案,检查学生的作业,做判定。 了解家长的反馈意见 通过交流,了解学生思想动态,稳定学生的学习情绪 了解学生上次学习的情况,查漏补缺,为后面的备课方向提供依据 教学第二个环节:教学内容 一、解答本章开头的问题: 令AOB = , 则AB = a cos OA = a sin ∴S 矩形ABCD = a cos ×2a sin = a 2sin2 ≤a 2 当且仅当 sin2 = 1, 即2 = 90, = 45时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式:在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1在 α-=α2sin 212cos 中,以代2,2 α代 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2在 1cos 22cos 2-α=α 中,以代2,2 α代 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3以上结果相除得:α +α-=αcos 1cos 12tan 2 注意:1左边是平方形式,只要知道2 α角终边所在象限,就可以开平方。 2公式的“本质”是用角的余弦表示2 α角的正弦、余弦、正切 3上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 4 还有一个有用的公式:α α-=α+α=αsin cos 1cos 1sin 2tan (课后自己证) 三、万能公式 B C a A O D

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

高中数学北师大版高一必修4试题 3.3.1二倍角公式及其应用

1.函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12 C.12 D .1 解析:f (x )=12sin 2x ∈ [-12,12 ]. 答案:B 2.已知sin ????π2+α=13 ,则cos(π+2α)的值为( ) A .-79 B.79 C.29 D .-23 解析:∵sin(π2+α)=13,∴cos α=13 . 则cos(π+2α)=-cos 2α=1-2cos 2α =1-29=79. 答案:B 3.已知等腰三角形底角的余弦值为23 ,则顶角的正弦值是( ) A.459 B.259 C .-459 D .-259 解析:令底角为α,顶角为β,则β=π-2α, ∵cos α=23 ,0<α<π, ∴sin α=53 . ∴sin β=sin(π-2α)=sin 2α=2sin αcos α =2×23×53=459 . 答案:A 4.已知θ是第三象限角,若sin 4θ+cos 4θ=59 ,则sin 2θ等于( ) A.223 B .-223 C.23 D .-23 解析:∵sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2 (sin θcos θ)2=59 , ∴(sin θcos θ)2=29 . ∵θ为第三象限角,∴sin θ<0,cos θ<0, ∴sin θcos θ>0,∴sin θcos θ=23 .

∴sin 2θ=2sin θcos θ=223 . 答案:A 5.已知α为第二象限角,sin α=35 ,则tan 2α=______. 解析:由于α为第二象限角,且sin α=35 , ∴cos α=-45.∴tan α=-34 , ∴tan 2α=2tan α1-tan 2α=2×(-34)1-(-34)2=-321-916 =-247. 答案:-247 6.已知0<α<π2,sin α=45,则sin 2α+sin 2αcos 2α+cos 2α =________. 解析:∵0<α<π2,sin α=45 , ∴cos α=35 . ∴sin 2α+sin 2αcos 2α+cos 2α=sin 2α+2sin αcos α3cos 2α-1 =(45)2+2×45×353×925 -1=20. 答案:20 7.已知sin α=cos 2α,α∈(0,π2 ),求sin 2α的值. 解:∵sin α=1-2sin 2α,即2sin 2α+sin α-1=0, ∴sin α=-1或sin α=12 . 又∵α∈(0,π2),∴sin α=12,α=π6. ∴cos α=32.∴sin 2α=2sin αcos α=2×12×32=32 . 8.在△ABC 中,若cos A =13,求sin 2B +C 2 +cos 2A 的值. 解:sin 2 B + C 2+cos 2A =1-cos (B +C )2+cos 2A =1+cos A 2+2cos 2A -1 =12+12×13+2×(13)2-1=-19.

二倍角公式教案

二倍角公式教案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二 倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学方法: 讨论式教学+练习 五、教学过程 1 复习引入 前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。 2 公式推导 在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。(让学生做5分钟) (1)提问: sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式? 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α

高一数学二倍角公式讲解

在高中数学中同学们感到吃力的一部分是三角函数的学习,在这一部分有大量的公式需要同学们熟练记忆,并且在使用的时候不能够混淆。为了方便同学们能够清楚掌握这部分内容,在考试中能够取得好成绩,下面小编给大家整理了高中书序中二倍角公式推导讲解。 正弦二倍角公式: sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2 余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2] 2.Cos2a=1-2Sina^2 3.Cos2a=2Cosa^2-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cosA^2-sinA^2=2cosA^2-1 =1-2sinA^2

正切二倍角公式: tan2α=2tanα/[1-tanα^2] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tanA^2] 降幂公式: cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 tanA^2=[1-cos2A]/[1+cos2A] 变式: sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4) 以上就是关于高中数学二倍角公式的分享,对于这些公式同学们要掌握他们的推到过程,认真对应三角图形,参考推导过程进行熟练记忆。最后要强调同学们还是要进行适当的习题训练,加强公式记忆。

二倍角公式专项练习

二倍角公式专项练习 一、选择题 1.(2011福建厦门模拟)已知tan α=-43,则tan ????π4-α的值为( ). A .-7 B .7 C .-17 D .17 2.(2011北京东城模拟)已知sin θ=45 ,sin θ-cos θ>1,则sin 2θ=( ). A .-2425 B .-1225 C .-45 D .2425 3.已知α为第二象限角,3 3cos sin =+αα,则=α2cos ( ) A .35 B .95- C .95 D .35- 4.若sin θ-cos θ=-51,且π<θ<2π,则cos2θ等于( ) A. 257 B.-257 C.±257 D.-25 12 5.已知向量a =????sin ????α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ? ???α+4π3=( ). A .-34 B .-14 C .34 D .14 6.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ为( ). A .k π,(k ∈Z ) B .k π+π6,(k ∈Z ) C .k π+π3,(k ∈Z ) D .-k π-π3 ,(k ∈Z ) 7.cos 275°+cos 215°+cos75°cos15°的值等于( ) A.26 B.23 C.4 5 D.1+43 8.(2010年大同模拟)函数f (x )=sin 2(x +π4)-sin 2(x -π4 )是( ) A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为π的偶函数 9.若1sin( )34πα-=,则cos(2)3πα+=( ) A .78- B .14- C .14 D .78 10.已知2 10cos 2sin ,=+∈αααR ,则=α2tan ( ) A .34 B .43 C .43- D .3 4- 二、填空题 1. 已知cos ????π2+θ=45 ,则cos2θ=________.-725 2. 设sin ????π4+θ=13 ,则sin2θ=________.-79

最新中职数学授课教案:二倍角公式数学

15.2 二倍角公式 教学案 【学习目标】 1.会推导二倍角的正弦、余弦公式 2.熟记二倍角的正弦、余弦公式及变形公式 3.能够正确应用公式进行简单的三角函数化简,求值等。 【学习重点】:熟记公式并灵活应用 【学习难点】:抓住公式的结构特点,凑配公式形式 【学习过程】: (一)课前检测 化简下列各式(做题前请写出本题可能用到的公式)(5分钟) 1、cos440 cos760-sin440cos140 2、2cos200-2sin200 (二)新知探究 二倍角公式: ____;__________2sin =α ______________________________________________2cos ===α; 由二倍角的正弦、余弦公式可得变形公式: .______________cos ____;__________sin 22==ααsin cos αα= 1cos2α+= ;1cos2α-= ;1sin2α+= ;1sin2α-= ; 1.若3sin ,(,)52 πααπ=∈,则sin2α= ;cos2α= ;tan2α= ; 2.sin22?30/cos22?30/=__________________; 3.22 cos 112π-=_________________; 4.8cos 2π 8sin 2π -=____________________; 小结:1.倍角公式的正用与逆用;2.理解“二倍角”的广义含义即两个角之间二

倍关系如24364824284 αααααααααααα与;与;与;与;与;与分别都是二倍角的关系 (三)能力提升 1、=-2sin 2cos 44 αα32,则cos α=( ) A. 32 B.-3 2 C.35 D.-35 2、已知180°<2α<270°,化简αα2sin 2cos 2-+=( ) A 、-3cosα B 、3cos α C 、-3cos α D 、3sin α-3cos α 3、已知4sin(2),cos45απα-==则 4、已知4sin ,(8,12)85ααππ=-∈,求 sin ,cos ,tan 444ααα的值。 5、已知13cos()cos sin()sin ,( ,2)32παββαββαπ+++=∈,求cos(2)4πα+的值 6.已知5cos 13α=-,4cos 5β=,且(,)2παπ∈,(0,)2 πβ∈,求sin(2)αβ-的值。 小结:1.准确理解二倍角的广义含义;2.灵活与用公式;3.掌握统一角的思想。 (四) 学后反思与总结 本节课你学到了哪些知识?还有哪些困惑?你掌握了哪些题型及解决的方法?

二倍角公式

求三角函数最小正周期的五种方法 一、定义法:直接利用周期函数的定义求出周期。 例1.求函数y m x =-cos()56 π (m ≠0)的最小正周期。 解:因为y m x =-cos( )56 π =-+=+-cos( )cos[()] m x m x m 5625106π πππ 所以函数y m x =-cos( )56π(m ≠0)的最小正周期T m =10π || 例2.求函数y x a =cot 的最小正周期。 解:因为y x a x a a x a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最小正周期为T a =||π。 二、公式法:利用下列公式求解三角函数的最小正周期。 1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T = 2π ω|| 。2. y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T = π ω|| 。3.y x y x ==|sin ||cos |ωω或的最小正周期T = π ω|| 。4.y x y x ==|tan ||cot |ωω或的最小正周期T = π ω|| ……….例4.求函数y n m x =-cot()3π的最小正周期。 解:因为T n m = =-πωωπ ||||而,所以函数y n m x =-cot()3π的最小正周期为

T n m m n = -=ππ|| ||。 三、转化法:对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型, 再用公式法求解。 例5.求函数y x x =+sin cos 66的最小正周期。 解:因为y x x =+sin cos 66 =+-+(sin cos )(sin sin cos cos )224224x x x x x x =+-=-=--=+(sin cos )sin cos sin cos cos 222222313 4 213414238458 x x x x x x x · 所以函数y x x =+sin cos 66的最小正周期为T = =22 πωπ ||。 例6.求函数f x x x x ()sin cos cos =+422 ·的最小正周期。 解:因为f x x x x ()sin cos cos =+422 · =++=++2221521 sin cos sin()x x x φ 其中sin cos φφ= =1525 ,,所以函数f x x x x ()sin cos cos =+422 ·的最小正周期为T = =2π ωπ|| 。 四、最小公倍数法:由三角函数的代数和组成的三角函数式,可先找出各个加函数的最

二倍角公式的应用推导万能公式

教材:续二倍角公式的应用,推导万能公式 目的:要求学生能推导和理解半角公式和万能公式,并培养学生综合分析能力。 过程: 一、解答本章开头的问题:(课本 P3) 令∠AOB = θ , 则AB = a cos θ OA = a sin θ ∴S 矩形ABCD = a cos θ×2a sin θ = a 2sin2θ≤a 2 当且仅当 sin2θ = 1, 即2θ = 90?,θ = 45?时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式 在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α -= αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1?在 α-=α2sin 212cos 中,以α代2α,2 α 代α 即得: 2s i n 21c o s 2α-=α ∴2 cos 12sin 2α-=α 2?在 1cos 22cos 2-α=α 中,以α代2α,2 α 代α 即得: 12 c o s 2c o s 2-α=α ∴2cos 12cos 2α+= α 3?以上结果相除得:α +α -=αcos 1cos 12tan 2 注意:1?左边是平方形式,只要知道2 α 角终边所在象限,就可以开平方。 2?公式的“本质”是用α角的余弦表示2 α 角的正弦、余弦、正切 3?上述公式称之谓半角公式(大纲规定这套公式不必记忆) 4?还有一个有用的公式:α α -= α+α=αsin cos 1cos 1sin 2tan (课后自己证) B C a θ A O D

三、万能公式 例二、求证:2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan 2sin 2 222α -α =αα+α-=αα+α= α 证:1?2tan 12tan 22cos 2sin 2cos 2sin 21 sin sin 2 22α+α=α+ααα= α=α 2?2tan 12tan 12cos 2sin 2sin 2cos 1 cos cos 2 2 2222α+α-=α+αα-α= α=α 3?2 tan 12tan 22sin 2cos 2cos 2sin 2cos sin tan 2 22α-α=α-ααα= α α=α 注意:1?上述三个公式统称为万能公式。(不用记忆) 2?这个公式的本质是用半角的正切表示正弦、余弦、正切 即:)2(tan α f 所以利用它对三角式进行化简、求值、证明, 可以使解题过程简洁 3?上述公式左右两边定义域发生了变化,由左向右定义域缩小 例三、已知 5cos 3sin cos sin 2-=θ-θθ +θ,求3cos 2θ + 4sin 2θ 的值。 解:∵5cos 3sin cos sin 2-=θ-θθ +θ ∴cos θ ≠ 0 (否则 2 = - 5 ) ∴53tan 1 tan 2-=-θ+θ 解之得:tan θ = 2 ∴原式57 2 122421)21(3tan 1tan 24tan 1)tan 1(32 22222=+??++-=θ+θ?+θ+θ-= 四、小结:两套公式,尤其是揭示其本质和应用(以万能公式为主) 五、作业:《精编》P73 16 补充: 1.已知sin α + sin β = 1,cos α + cos β = 0,试求cos2α + cos2β的值。(1)

运用二倍角公式解题的六技巧

运用二倍角公式解题的五技巧 二倍角公式变化多姿,在求值以及恒等变换中应用很广。若熟练掌握二倍角公式以及变通公式并能灵活运用,则往往能出奇制胜,获得新颖别致的解法。 一、二倍角公式的直接运用 例1 若1 sin cos 3 αα+=,0απ<<,求sin 2cos 2αα+的值。 分析:由条件式两边平方,可求得sin 2α的值。注意到22 cos 2cos sin ααα=- (cos sin )(cos sin )αααα=+-,还需求c o s s i n α α-的值,于是先求22(cos sin )(sin cos )4sin cos αααααα-=+-的值, 然后开方,从而要进一步界定α的范围。 解:由1 sin cos 3 αα+= 两边平方得112sin cos 9αα+=,所以4sin cos 9αα=-。又 0απ<<,所以sin 0α>,cos 0α<,所以α为钝角。所以8 sin 22sin cos 9 ααα==-, cos sin αα-= 3 ==- ,所以22cos 2cos sin ααα=-(cos sin )(cos sin )αααα=+ -1(3=?=,从 而sin 2cos 2αα+=。 点评:挖掘隐含得到α 为钝角是解题的一个重要环节。注意导出公式 21sin 2(sin cos )ααα±=±。 二、二倍角公式的逆用 例2 求tan cot 8 8 π π -的值。 解:tan cot 8 8 π π -sin cos 88cos sin 8 8 πππ π =-2 2sin cos 8 8cos sin 88 π π ππ -= cos 41sin 24 π π-= 2cot 24π=-=-。 点评:本题通分后逆用正弦与余弦的二倍角公式,从而转化为特殊角函数的求值问题。 三、二倍角公式的连用 例3 求cos12cos 24cos 48cos96 的值. 分析:242 12=? ,48224=? ,96248=? ,联想二倍角的正弦公式αααcos sin 22sin =,若逐步逆用将是一条通途. 解:cos12cos 24cos 48cos96 sin12cos12cos 24cos 48cos96sin12 = sin19216sin12= sin12116sin1216 -==- 。 点评:对形如αααα1 2cos 4cos 2cos cos -n 的求值问题可考虑此法.若逆用诱导公式ααπcos )2sin(=±可知74cos 72cos 7cos πππ14 5sin 143sin 14sin π ππ-=,即对于正弦之 积或正弦余弦混合积的求值问题先利用诱导公式转化为余弦之积的形式利用此法求解. 四、整体配对使用二倍角公式 例4.求值: 78sin 66sin 42sin 6sin 分析:本题可按例2的点评部分所说的方法处理,这里介绍整体构造法.

二倍角公式的两个特殊变式及应用

高考数学复习点拨:二倍角公式的两个 特殊变式及应用 二倍角公式的两个特殊变式及应用 浙江周宇美 一、变式 变式1:sin2=sin2(+)-cos2(+) =2sin2(+)-1 =1-2cos2(+). 变式2:cos2=2sin(+) cos(+)=2sin(+) sin(-). 以上两个变式的形式与二倍角正、余弦形式恰相反,角度变为(+).其实证明只需运用诱导公式再结合倍角公式即可解决.由sin2=-cos(2+)=-cos2(+),及cos2= sin2(+),再用倍角公式即可. 二、应用 变式1、2主要用于题中含有2与±问题的转化. 例1 已知cos(+)=,求. 分析:本题只需将sin2及sin(-),运用变式及诱导公式转化成cos(+)形式即可解决问题. 解:∵cos(+)=,由变式1,得 sin2=1-2cos2(+)=. sin(-)=cos(+)=.

∴ 原式=. 例2 已知sin(+x)sin(-x)=,x∈(,),求sin4x的值. 分析:本题只需求cos2x即可,又由变式2并结合题意即可 解决. 解:由变式2,得 cos2x=2sin(+x)sin(-x)=,又2x∈(,2), ∴ sin2x=-=-. ∴ sin4x=2sin2xcos2x=-. 例3 已知x∈(-,),且sin2x=2sin(x-),求x的值. 分析:将角2x与x-统一即可,又运用变式1即可达到目的.解:由变式1,原方程可化为 1-2cos2(x+)=-cos(x+). 解得cos(x+)=1或cos(x+)=-. 又x∈(-,), ∴x+=0或x+=, ∴ x=-或x=-.

三角形的2倍角公式

三角形二倍角公式 复习两角和与差的正弦、余弦、正切公式 如何求得sin 2α? 二倍角的正弦公式: sin2A =2sinAcosA 二倍角的余弦公式: cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A 二倍角的正切公式: tan2A = 22tan A 1tan A - 例1、求值: (1)00sin 2230'cos2230' (2)00sin15sin75 (3)22sin cos 88π π - (4)20 01tan 75tan 75 - (5)sin cos cos cos 48482412πππ π (6)22cos 18π-

例2、口答: cos__sin__24sin )1(=α __sin __cos 2cos )2(22-=α __ tan 1tan__23tan )3(2-=α 对公式的再认识: (1) 适用范围:二倍角的正切公式有限制条件: A ≠kπ+2π且A ≠k 2π+4 π (k ∈Z ); (2) 公式特征:二倍角公式是两角和的正弦、余弦和正切公式之特例;二倍角关系是相对的。 (3) 公式的灵活运用:正用、逆用、变形用。 例3、设α∈(2 π,π),sin α=1213, 求2α的正弦、余弦和正切。

例4、试用完全平方式表示下列各式 (1)1sin 2α+ (2)1sin 2α- (3)1cos 2α+ (4)1cos 2α- 例5、化简: (1) 1cos 1cos αα+- (2) α∈(-2π,0) (3) α∈(π,32π) (4) α∈(32 π,2π) 小结:

二倍角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

最新两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例 知识要点: 1、两角和与差的正弦、余弦、正切公式 C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式 2S α:sin2α= ; 2T α:tan2α= ; 2C α:cos2α= = = ; 3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T(α±β)可变形为: tan α±tan β=___________________; tan αtan β= = . 考点自测: 1、已知tan α=4,tan β=3,则tan(α+β)=( ) 711 A 、 711 B 、- 713 C 、 7 13D 、- 2、已知cos ????α-π6+ sin α=4 5 3,则 sin ????α+7π6的值是( ) A .-235 B.235 C .-45 D.4 5 3、在△ABC 中,若cos A =45,cos B =5 13 ,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( ) A .0 B .±3 C .0或 3 D .0或 ±3 5 、三角式2cos55°-3sin5° cos5° 值为( ) A.3 2 B.3 C .2 D .1 题型训练 题型1 给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]???+. 变式1:化简求值:2cos10sin 20.cos 20 ?? ? - 题型2给值求值 三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()() ααβαβ=++-, 2()() αβαβα=+--, 22 αβαβ++=? ,()( ) 222αββ ααβ+=--- 例2 设cos ????α-β2=-19 ,sin ????α2-β=2 3,其中α∈????π2,π,β∈????0,π2,求cos(α+β). 变式2:π3π33π5 0π,cos(),sin(),4445413 βααβ<< <<-=+=已知求sin(α+β)的值. 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。 例3已知α,β∈(0,π),且tan(α-β)=12, tan β=-1 7 ,求2α-β的值. 变式3:已知tan α= 17,tan β= 1 3 ,并且α,β 均为锐角,求α+2β的值. 题型4辅助角公式的应用 ()sin cos a x b x x θ+=+ (其中θ角所在的象限由a , b 的符号确定,θ角的值由 tan b a θ= 确定) 在求最值、化简时起着重要作用。 例4求函数2 5f (x )sin x cos x x =- x R )∈的单调递增区间? 变式4(1)如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ; (2)若方程sin x x c -=有实数解,则c 的取值范围是___________. 题型5公式变形使用 二倍角公式的升幂降幂

高中总复习之二倍角公式

【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα=-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当2 k παπ≠ +及 ()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是32α的二 倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键.如:2 cos 2 sin 2sin α α α=;1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的在联系如下:

要点二:二倍角公式的逆用及变形 要点三:两角和与差的三角函数公式能够解答的三类基本题型 求值题、化简题、证明题 1.对公式会“正着用”,“逆着用”,也会运用代数变换中的常用方法:因式分解、配方、凑项、添项、换元等; 2.掌握“角的演变”规律,寻求所求结论中的角与已知条件中的角的关系,如 (),2()()ααββααβαβ=-+=++-等等,把握式子的变形方向,准确运用公式,也要抓住角之 间的规律(如互余、互补、和倍关系等等); 3.将公式和其它知识衔接起来使用,尤其注意第一章与第三章的紧密衔接. 【典型例题】 类型一:二倍角公式的简单应用 例1.化简下列各式: (1)4sin cos 2 2 α α ;(2)2 2 sin cos 8 8 π π -;(3) 2tan 37.51tan 37.5? -? . 【思路点拨】逆用二倍角的正弦、余弦和正切公式. 【答案】(1)2sin α(2)22-(3)23 2 + 【解析】 (1)4sin cos 22sin cos 2sin 2 2 2 2 α α α α α=?=. (2)2 2 222sin cos cos sin cos 8 88842π π πππ? ?-=--=-=- ??? (3) 22tan 37.512sin 37.5123tan 751tan 37.521tan 37.522 ??+=?=?=-?-?. 【总结升华】本题的解答没有去就单个角求其函数值,而是将所给式子作为一个整体变形,逐步向二 倍角公式的展开形式靠近,然后逆用倍角公式,要仔细体会本题中的解题思路. 举一反三:

和差公式二倍角公式及半角公式

三 角 函 数 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±=。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.半角公式: 22cos 1sin 2αα-=,22cos 1cos 2αα+=,2sin 2cos 12αα=-,2cos 2cos 12αα=+ sin 2α =cos 2α= sin 1cos tan 21cos sin α αααα-===+ 4.辅助角公式 | ()sin cos sin a x b x x ?+=+, sin cos ??==其中 5.积化和差公式: ()()[]βαβαβ-++=sin sin 21cos sin a , ()()[]βαβαβ--+=sin sin 2 1sin cos a ()()[]βαβαβ-++= cos cos 21cos cos a , ()()[]βαβαβ--+-=cos cos 21sin sin a 6. 和差化积公式: sin sin 2sin cos 22αβ αβ αβ+-+=, sin sin 2cos sin 22αβ αβ αβ+--=

cos cos 2cos cos 22αβαβαβ+-+=, cos cos 2sin sin 22αβαβαβ+--=- 例题: 例1. 已知α∈( 2π,π),sin α=53,则tan(4 πα+)的值. , 例2.sin163°sin223°+sin253°sin313°的值. 例2. 已知0cos cos 1 sin sin =+=+βαβα,,求cos )的值(βα+。 ¥ 例3. 若的值求,x x x x x tan 1cos 22sin ,471217534cos 2-+<<=??? ??+πππ。 ' 例5.已知正实数a,b 满足的值,求a b b a b a 158tan 5sin 5cos 5cos 5sin ππππ π=-+。

二倍角公式教案

【课题】1. 1两角和与差的正弦公式与余弦公式(二) 【教学目标】 知识目标: 掌握二倍角公式,能正确运用各个公式进行简单的三角函数式的计算和化简. 能力目标: 学生逆向思维能力及灵活选用公式解决问题的能力得到提高. 【教学重点】 本节课的教学重点是二倍角公式. 【教学难点】 难点是公式的推导和运用. 【教学设计】 明确二倍角的概念.二倍角的实质是用一个角的三角函数表示这个角的二倍角的三角函 数?二倍角余弦公式的三种形式同等重要,要分析这三种公式各自的形式特点?例9中,要想利用正弦二倍角公式,必须首先求出余弦函数值. 求cos2时,使用的公式有利用同角三 角函数关系、利用cos和利用sin的三类公式可供选择?选用公式cos2 1 2sin2的 主要原因是考虑到sin是已知量?例10中,讨论一角的范围是因为利用同角三角函数关 2 系求sin —时需要开方?旨在让学生熟悉:只要具备二倍角关系,就可以使用公式?教材在2 求sin 时,利用了升幕公式,由讨论角的范围来决定开方取正号还是负号?虽然这里就 4 2 是实际上使用半角公式,但是教材与大纲中,都没有引入半角公式的要求,因此,不补充半 角公式,只作为二倍角余弦变形的应用来介绍?例11是三角证明题?证明的基本思路是将 角用半角来表示,再进行三角式的化简. 【教学备品】 教学课件. 【课时安排】 1课时.(45分钟) 【教学过程】

教学 过程 问题两角和的正弦公式内容是什么? 两角和的余弦公式内容是什么? 两角和的正切公式内容是什么? *动脑思考探索新知 在公式(1.3)中,令,可以得到二倍角的正弦公式sin2 sin cos cos sin 2sin cos . sin2 2sin cos (1.7) 公式 同理,公式(1.1 )中,令 2 2 cos2 cos sin 因为sin2cos2 1 , cos2 cos2 还可以变形为 sin2 2 cos 在公式(1.5 )中,令 tan2 2tan2 1 tan ,可以得到二倍角的余弦 (1.8) 所以公式(1.8)又可以变形为 2cos2 1 , 1 2si n2 1 cos2 2 1 cos2 2 ,可以得到二倍角的正切公式 (1.9) 公式(1.7 )、(1.8)、( 1.9)及其变形形式,反映出具有二 倍关系的角的三角函数之间的关系?在三角的计算中有着广泛 的应 用. *巩固知识典型例题 例9 已知sin cos2的值. 3 且为第二象限的角,求si n2 5 因为a为第二象限的角,所以 cos sin24 5 , 教师学生 行为行为 课件 质疑 总结 归纳 仔细 分析 讲解 关键 词语 教学时 课件 思考 思考 理解 记忆 引领观察 讲解思考 说明 意图间 得■出 结果5 启发 引导 学生 发现 解决 问题 的方 法 注意 观察 学生 10

相关文档
最新文档