材料力学性能学习之收获与体会

材料力学性能学习之收获与体会
材料力学性能学习之收获与体会

《材料的力学性能》学习之收获与体会

材料的力学性能通常是指材料的强度、硬度、塑性和韧性。《材料的力学性能》一书主要论述材料,包括金属材料和非金属材料,在不同形式的外力作用下,发生损伤、变形和断裂的过程、机制和力学模型。

通过本课程的学习,我收获颇多,特别是孙老师一自己的研究及实践成果为例,让我们更加真实、透彻地理解书中诸多概念、现象以及产生现象的原因,我们受益匪浅。学完本课程,逐渐明晰了本课程的重点,本课程重点包括三部分:第一部分主要是阐述金属的形变及断裂过程、机制和基本理论,材料在一次静加载条件下的力学性能。加载方式包括拉伸、弯曲、压缩和剪切等等,试件包括光滑件、切口试件和含裂纹的试件等,所测定的力学性能指标用于评价零件在服役过程中的抗过载失效的能力或安全性。第二部分论述疲劳、蠕变、环境效应和磨损,这是机件常见的四种失效形式,材料对这四种失效形式的抗力将决定零件的寿命。第三部分是介绍复合材料、高分子材料和陶瓷材料的力学性能,从工程应用的观点,把本书分成了以上三部分,然而在学科内容上,各部分又有着紧密的联系。以上三部分内容又细分为十四章,每章都各自详细的介绍了自己的重点。下面是我根据老师所讲,总结的各章的重点。

第一章着重介绍材料的拉伸性能。本章开篇介绍拉伸试验,紧接着介绍脆性材料的拉伸性能和塑性材料的拉伸性能。脆性材料在拉伸断裂前只发生弹性变形,而不发生塑性变形,在弹性变形阶段应力与应变成正比。塑性材料的力学性能可以从其工程应力——工程应变曲线中得到理解和体会,根据工程应力——工程应变曲线可以确定材料的拉伸性能,包括材料的强度、塑性和韧性。

第二章着重讲弹性变形和塑性变形,而塑性变形又是孙老师强调的考研重点。金属材料在外力作用下发生尺寸或形状的变化,称为变形。若外力除去后,变形随之消失,这种变形即为弹性变形,弹性变形是可逆的。弹性变形里最重要的概念是弹性模量,影响弹性模量的因素是很多的,比如纯金属的弹性模量、合金元素、温度、加载速率、冷变形等,但是弹性模量却是最稳定的力学性能参数,对合金成分和组织的变化不敏感。一般情况下,弹性模量较大的合金,其硬度、熔点也相对较高。当外加的应力超过弹性极限,金属则会发生塑性变形。常见的塑性变形方式包括滑移、孪生、马氏体剪切转变,扩散蠕变和晶界迁移。通常晶体中的滑移系越多,这种金属的塑性就可能越好,而孪生虽然提供的直接塑性变形很小,但间接地贡献却很大。工程上应用的金属大多是多晶体,这些实用的金属材料有其自身的塑性变形特点:(1)各晶粒塑性变形的非同时性和不均一性。(2)各晶粒塑性变形的相互制约性与协调性。屈服现象是大多数金属材料都会有的,而要出现明显的屈服,则必须满足两个条件:材料中原始的可动位错密度小和应力敏感因数小。为使机件不致发生塑性变形而失效,常采用各种措施来提高屈服强度,为此要先了解影响屈服强度的各种因素,这些因素包括点阵阻力、位错间交互作用阻力、晶界阻力——细晶强化、固溶强化和第二相强化,它们共同作用决定了材料的屈服强度。绝大多数金属在室温下屈服后,要使塑性变形继续进行,必须不断增大应力,在其真应力——真应变曲线上表现为流变应力不断上升,这种现象称为形变强化。形变强化是金属得到广泛应用的原因之一,有很重要的技术意义:(1)形变强化与塑性变形配合,保证了金属材料在截面上的均匀变形,得到均匀一致的冷变形制品。(2)形变强化性能使金属制件在工作中具

有适当的抗偶然过载的能力,保证了机器的安全工作。(3)形变强化是生产上强化金属的重要的工艺手段。(4)形变强化可以降低低碳钢的塑性,改善其加工切削性能。

第三章主要介绍其他静加载下材料的力学性能。本章主要是试验,包括扭转试验、弯曲试验、压缩试验和剪切试验。机械和工程结构的很多零件是在扭矩、弯矩或轴向压力作用下服役的,因此,需要测定材料在扭转、弯曲和轴向压缩加载下的力学性能,作为零件设计、材料选用和制定热处理工艺的依据。

第四章主要介绍材料的硬度,包括布氏硬度,洛氏硬度,维氏硬度,显微硬度和肖恩硬度。测定硬度的方法很多,主要有压入法,回跳法和刻线法三大类,而不同的方法测定的硬度具有不同的意义。

第五章主要介绍断裂。断裂是机械和工程构件失效的主要形式之一,它比其他的失效形式更具有危险性,可分为脆性断裂和韧性断裂。脆性断裂的宏观特征,从理论上讲,是断裂前不发生塑性变形,而裂纹扩展速度很快,几近音速。脆性断裂的解理机制有解理断裂和晶间断裂。要充分理解断裂,必须先弄懂理论断裂强度和脆断强度理论,理论断裂强度是由原子间结合力决定,脆断强度理论是指假定在实际材料中存在着裂纹,当名义应力很低时,裂纹尖端的局部应力已经达到很高的数值,从而使裂纹快速扩展,并导致脆性断裂。另外一种断裂形式是延性断裂,其过程为“微孔形核——微孔长大——微孔聚合”,其微观形貌是韧窝形貌。工程上总是希望构件在韧性状态下工作,避免危险的脆性断裂。构件或材料是韧性或脆性状态,取决于材料本身的组织结构,应力状态,温度,加载速率等,并不是固定不变的,而是可以相互转化的。

第六章主要介绍切口强度与切口冲击韧性。机械和工程结构的零件,由于结构细节设计的需要,使构件的外形具有几何不连续性,即为切口,在切口根部引起应力和应变集中,引起应力和应变的多向性。切口强度可用实验测定,也可以估算得出。对切口的敏感度要进行评估,综合考虑切口影响,对零件精心地设计和加工。本章的另一个重点就是冲击韧性和低温脆性。

第七章主要介绍断裂韧性。主要内容包括裂纹应力分析,裂纹扩展的物理过程,断裂韧性的物理意义、测定及实用意义,以及提高材料的断裂韧性的途径等。

第八章主要阐述金属的疲劳。主要内容包括金属在对称循环应力和非对称循环应力下的疲劳,累计疲劳损伤和应变疲劳以及延寿技术,重点理解疲劳寿命曲线和循环加载的特征参数。

第九章主要讲材料在高温下的力学性能。主要介绍和讨论了高温蠕变现象,蠕变抗力和持久强度,蠕变损伤和断裂机制,应力松弛,高温疲劳以及疲劳和蠕变的交互作用等。还讨论了改善高温力学性能的途径,评价材料的高温力学性能指标。

第十章主要介绍环境介质作用下金属的力学性能。主要阐述材料的应力腐蚀断裂,氢脆和腐蚀疲劳的特征、评定指标及破坏机理,介绍提高材料环境敏感断裂抗力的途径以及防止环境敏感断裂的措施。

第十一章主要介绍金属的磨损与接触疲劳。重点内容包括磨损和接触疲劳的概念,磨损和接触疲劳的类型,磨损和解接触劳机制及影响因素。

最后三章简单的介绍了复合材料,高分子材料和陶瓷材料的力学性能,了解这些特殊材料的力学性能特征以及用途,展望这些材料的发展前景。

通过这门课的学习,我收获颇多。孙老师很认真的给我们讲,大家也都很努力的在学,由于时间仓促,难免有学得不牢固的地方,但是孙老师上课那种严谨

治学的态度给我们留下很深的印象,让我们对学习有了更深的认识。

《材料的力学性能》学习之收获与体会

学院:机械学院

专业:材料成型及控制工程

班级:2008061班

学号:200806102

姓名:刘工艺

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

材料力学小论文 竹竿性能分析

竹子外形和截面性能的力学分析 选课序号100 姓名杨建成学号2220133836 摘要:略约200字 一引言 在日常生活中,随处可见竹子,竹竿可视为上细下粗、横截面为空心圆形的杆件。这样的形状赋予了竹子很强的抗弯强度。 二力学分析 材料力学的任务是在满足强度、刚度和稳定性的要求下,以最经济的代价为构件确定合理的形状和尺寸,选择适宜的材料,为构件设计提供必要的理论基础的计算方法。换句话说,材料力学是解决构件的安全与经济问题。所谓安全是指构件在外力作用下要有足够的承载能力,即构件要满足强度、刚度和稳定性的要求。所谓经济是指节省材料,节约资金,降低成本。当然构件安全是第一位的,降低经济成本是在构件安全的前提下而言的。实际工程问题中,构件都应有足够的强度、刚度和稳定性。 本文以竹子为研究对象,其简化力学模型如下图所示。 竹子体轻,质地却非常坚硬,强度比较高,竹子的顺纹抗拉强度170Pa,顺纹抗压强度达80Pa 单位质量的抗拉强度大概是普通钢材的两倍。 根据材料力学,弯曲正应力是控制强度的主要因素,自然界的竹子经常受到来自风的力,主要是弯矩,主要是弯曲正应力。

从公式可以看出,当弯矩一定的时候,正应力与惯性矩正反比。 截面为实心圆的对中性轴的惯性矩,大部分树木都是这种结构。 (假设实心和空心竹子的横截面) 2.1 竹子的弯曲强度分析 根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为 max max []z M W σσ= ≤ (1) 横截面如上图所示。实心圆截面和空心圆截面的抗弯截面模量分别为: 332 W d π = 实 (2) 341 132 ()()D W D D π αα= -= 空 (3) 式中,d 是实心杆横截面直径,D 和D 1分别是空心杆横截面外径和内径,1 D D α=为空心杆内外径之比。 当空心杆和实心杆的两横截面的面积相同时

生活中的材料力学

生活中的材料力学 罗晖淼 摘要:在我们身边的每一个角落都运用到了材料力学的原理。学完材料力学之后,用另一个角度去剖析生活中的材料力学现象,别有一番风味。 关键字:应力集中,动载荷,稳定性 一:应力集中 大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观, 可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。这是为什么呢?这其实运用到了圣维南原理。当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这个凹槽将包装袋撕开。

这种应用应力集中的现象生活中还有很多。比如掰黄瓜,有时候我们想

把黄瓜掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的。 既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。 工程上的这些问题可比生活中的小问题严重得多,一个小问题都有可能导致重大的事故。曾经有一起飞行事故:飞机起落架里的一个小零件由于应力集中而发生断裂,卡在那里,导致起落架无法放下。不过还好,凭借飞行员高超的技术最终还是平安降落了。 二:动载荷 生活中其实有一个有趣的小现象:在称体重 时,如果很缓慢地站上去,体重计的示数也将慢慢增 加,直至我们的真实体重,而如果我们一下子跳上去, 体重计会在一瞬间飙到一百多公斤,然后再降回到我们 的

材料力学性能复习总结

绪论 弹性:指材料在外力作用下保持与恢复固有形状与尺寸得能力。 塑性:材料在外力作用下发生不可逆得永久变形得能力。 刚度:材料在受力时抵抗弹性变形得能力。 强度:材料对变形与断裂得抗力。 韧性:指材料在断裂前吸收塑性变形与断裂功得能力。 硬度:材料得软硬程度。 耐磨性:材料抵抗磨损得能力。 寿命:指材料在外力得长期或重复作用下抵抗损伤与失效得能。 材料得力学性能得取决因素:内因——化学成分、组织结构、残余应力、表面与内部得缺陷等;外因——载荷得性质、应力状态、工作温度、环境介质等条件得变化。 第一章材料在单向静拉伸载荷下得力学性能 1、1 拉伸力—伸长曲线与应力—应变曲线 应力—应变曲线 退火低碳钢在拉伸力作用下得力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形与不均匀集中塑性变形与断裂几个阶段。 弹性变形阶段:曲线得起始部分,图中得oa段。 多数情况下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范围之后,有得材料在 塑性变形初期产生明显得塑性流动。此时,在外力 不增加或增加很小或略有降低得情况下,变形继续产 生,拉伸图上出现平台或呈锯齿状,如图中得ab段。 均匀塑性变形阶段:屈服后,欲继续变形,必须 不断增加载荷,此阶段得变形就是均匀得,直到曲 退火低碳钢应力—应变曲线 线达到最高点,均匀变形结束,如图中得bc段。 不均匀塑性变形阶段:从试样承受得最大应力点开始直到断裂点为止,如图中得cd段。在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。 弹性模量E:应力—应变曲线与横轴夹角得大小表示材料对弹性变形得抗力,用弹性模量E表

材料力学论文学习心得

《集中力作用下深梁弯剪耦合变形应力计算方法》学习心得 背景 深梁是工程中常见的的结构,其跨高比一般介于3~8之间。当梁上作用集中力时,既有弯矩又有剪力即横力弯曲,出现弯剪耦合现象。由于剪力的存在,梁的横截面上会出现翘曲现象,并且与中性层平行的截面上出现挤压应力。 跨高比小于5的梁在应用细长梁的纯弯曲理论及假设计算时,误差会随跨高比的减小而迅速增大。对这种深梁而言,细长梁理论就不适用了。深梁应力计算主要影响因素有截面形状、支座约束、跨高比,究其原因是集中力作用下发生弯曲变形时,平面假设和纵向纤维相互不挤压的假设与实际相差太大。 原理 文章只研究两端简支和两端固支时,集中载荷作用在跨中时的横力弯曲的问题,以矩形截面为例,然后推广至工字形截面。 模型简化:在深梁跨中施加集中力F ;当深梁为简支时,两端只有集中反力R 的作用;当深梁为固支时,梁两端受到剪力和弯矩的共同作用。当深梁受有集中力时,由于跨度小,梁高大,其跨中截面的挠度较小。故以力的作用点为圆心的区域内按一半平面考虑应力分布。根据弹性力学半平面体在边界上受集中力作用时,应力计算方法得出深梁内的应力分布。由弹性力学半平面模型可得到图1所示载荷下应力表达式。 ?x =? 2F πx 2y (x 2+y 2)2 (1) 在梁两端集中反力作用下,梁内也会产生应力场,按照叠加原理,梁内应力由这三个力产生的应力场叠加而得。为方便将这三个应力叠加在一起,文章采用了坐标变换, 变换方式坐标轴以图2为基准。坐标变换公式如下: 对于集中力F 产生的应力场,有如下坐标变换:

x F=x?l 2 y F=y?? 2 (2) 对于集中反力R1产生的应力场,有如下坐标变换: x R 1 =?x y R 1=?y+? 2 (3) 对于集中反力R2产生的应力场,有如下坐标变换:x R 2 =l?x y R 2=?y+? 2 (4) 将(2)、(3)、(4)式代入到(1)中,由平衡原理知R1=R2=F 2 ,可得到叠加后应力表达式: ?x=2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (5) 梁在集中力作用下,不仅引起剪力,还会产生弯矩,因此需要考虑弯矩剪力共同作用产生的应力。再将材料力学梁受弯矩作用下的应力公式代入叠加到(5)式中,可得弯剪共同作用下的应力表达式: ?x=My I + 2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (6) 分析 对(6)式所得结果进行无量纲化分析,定义剪跨比η=x l (0<η<1),跨高 比α=l ?,和y值的无量纲值ξ=y ?/2 。将其代入(6)得到 ?x=My I +F 2π? {2α 2 η+1 2 2 (ξ+1) α2 η+1 2 +1ξ+12 2 ?α2η2?ξ+1 α2η2+1 4 ?ξ+12 2 ?α2(1?η)2?ξ+1 α21?η2+1 4 ?ξ+12 2 }(7) 再将大括号中的表达式用λ表达得到?x=My I +Fλ 2π? 。为材料力学解加一个修 正项。为比较材料力学和修正项的比例又引入无量纲翘曲应力λ?=Fλ 2π? I My 。得到 无量纲弯曲正应力表达式:

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

材料力学论文

大连理工大学 材料力学论文 学生:宋子杰 学号: 201241013 班级:运船1201 院(系):运载工程与力学学部 专业:船舶与海洋工程 2014 年 6 月 11日

材料力学在螺纹连接中的应用 摘要:在我们的日常生活中,处处离不开连接。连接是指被连接件与连接件的组合。就机械零件而言,被连接件有轴与轴上零件、轮圈与箱盖、焊接零件中的钢板与型钢等。这样应用广泛的连接中螺栓是必不可少的成分。因此,螺纹连接的强度校核便成为了工程中必不可少的环节。 关键词:连接;材料力学;强度校核 正文: 一:材料力学知识简介与生活中的运用 材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 1.研究材料在外力作用下破坏的规律; 2.为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3.解决结构设计安全可靠与经济合理的材料力学基本假设; a)连续性假设——组成固体的物质内毫无空隙地充满了固体的体积 b)均匀性假设——在固体内任何部分力学性能完全一样 c)各向同性假设——材料沿各个不同方向力学性能均相同 d)小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算。 人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学论文

材料力学在生活中的应用 学院: 专业: 班级: 姓名: 学号: 授课老师:

摘要:在如今现代化的社会中,随着高新技术的研发,建筑行业的大力发展,机械材料的广泛使用,大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品,各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要,材料力学知识在生活中得到广泛的。 关键字:材料力学、生活应用、材料知识 正文: 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 在生活中随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。如果在安

全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 生活中我们平常吃到的面条,有的口感筋道,有的口感松散。材料力学在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。用《质构仪评价面条质地品质的研究》一文指出:用不同的材料:试样A :100 %的面包粉;试样B:面包粉和饼干粉的质量比为 3/ 1;试样C :面包粉和饼干粉的质量比为1/ 1;试样D :面包粉 和饼干粉的质量比为1/ 3;试样E :饼干粉的含量为100%。用质构 仪对其进行了TPA 实验、剪切实验和拉伸实验,得到:指标 A B C D E;最大拉伸应力 3. 546 3. 245 2. 790 2. 571 2. 211;拉伸应变 1. 357 1. 336 1. 315 1. 052 0. 821。筋道感得分 1. 773 0. 935 - 0. 407 - 1. 380 - 1. 972。硬度得分1. 778 0. 815 0. 064 - 1. 270 - 2. 175 在材料力学中,我们把拉伸试验共分 四个阶段:1弹性阶段2屈服阶段3强化阶段4颈缩阶段。而抗压强度或强度极限是材料的重要指标。工程上常将延伸率〉5%的材料称为塑性材料,而将延伸率占<5%的材料称为脆性材料。我们这里把工程的比例引用,进行如下计算:拉伸应变:L = L2/ L1(L1为拉伸前的面条长度; L2 :拉断瞬间面条长度的增加量)拉应力P=F/A(P为正拉力,A为截面面积La=1.357 Pa =3.546 Lb=1.336 Pb= 3.245 Lc=1.315 Pc = 2.790 Ld=1.052 Pd = 2.571 Le=0.821 Pe = 2.118 由塑性材料拉伸La-P图可知,材料在颈缩阶段迅速收缩,

材料力学性能总结材料

材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖的结果。 屈服强度:开始产生塑性变形的最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。 b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果: 在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。 同时提高塑性及韧性的机理: 晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。 细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下的应力场强度因子的大小。 塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。 1.单晶体:滑移+孪生;

材料力学论文

材料力学在生活建筑学的运用 摘要:近年来随着建筑高度的不断增加,建筑类型与功能愈来愈复杂,结构体系更加多样化,高层建筑结构设计也越来越成为结构工程师设计工作的重点和难点之所在。现就高层建筑结构的设计要点谈谈材料力学在建筑学中的应用。 关键词:高层建筑;材料力学;结构体系;结构分析 一:材料力学知识简介与生活中的运用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 研究材料在外力作用下破坏的规律; 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 解决结构设计安全可靠与经济合理的材料力学基本假设; 人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性体。但在实际研究中不可能会有符合这些条件的材料,所以需要各种理论与实际方法对材料进行实验比较。材料在机构中会受到拉伸或压缩、弯曲、剪切、扭转及其组合等变形。根据胡克定律,在弹性限度内,物体的应力与应变成线性关系。 材料力学是现代科学科学技术迅速发展的理论事实基础,20世纪以前推动近代科学技术与社会进步的工具。蒸汽机、内燃机、铁路、桥梁、船舶、兵器等都是材料力学知识的累积应用和完善的基础上逐渐形成和发展起来的。 20世纪产生的诸多高新技术,如高层建筑,大型桥梁海洋石油钻井平台,精密仪器,航空航天器材,机器人,高速列车以及大型水利工程等许多的重要工程更是在材料力学指导下得以实现并不断发展完善的。 20世纪产生的另一些高新技术,如核反应堆工程、电子工程、计算机工程学。虽然是在其它基础学科指导下产生和发展起来的,但对材料力学都提出了各式各样的,大大小小的问题。材料力学知识的广泛运用,使生活中各行业得到迅速发展。如冶金行业、物料运输行业、珠宝鉴定行业、工程设计行业、科研行业、技术研究与开发行业、交通质量安全检测行业等多个领域,材料力学知识的广泛运用,使现实世界发展迅速并使各个行业得到提升。尤其是在生活建筑学方面得到了广泛地运用和发展,并得到了人们的深刻认识和体会。人们逐渐认识到材料力学知识在生活中的重要性。材料力学在生活建筑学的运用就是一个很好地体现。下面就仔细谈谈材料力学在生活建筑学的运用和对人们日常生活的影响。 二:生活中高层建筑的结构设计特点 结构内力与变形 随着建筑物高度的增加,水平荷载作用下的结构侧向变形迅速增大,结构顶点侧移与建筑物高度的四次方成正比。所以对于高层建筑,结构侧移已成为设计中的关键因素,这是因为: 高层建筑的使用功能和安全与结构侧移的大小密切相关。结构在阵风作用下的振动加速度超过0.015g时,就会影响楼房内使用人员的正常工作与生活,而振动加速度的大小与侧移幅值的大小有关。 过大的侧向变形会使高层建筑的隔墙、围护墙以及饰面材料开裂或损坏。

材料力学论文

中国古代的材料与结构 一、前言 中国是一个历史悠久、文化源远流长的国家。经历了绵绵五千年的历史沉积,中国文化在中华民族的传承中不断得到发展。而文化的沉淀,不仅仅凝聚在优雅的诗词和动人心弦的历史故事中,更多的是以建筑的物质形象存在于我们身边,以具体的技术体现在我们使用的工具中。中国古代没有现在高端的技术与高效精密的工具设备,使用的材料也都是通过粗制加工后得到,然而中国古代的许多建筑在经历了几千年的风吹雨打后仍屹立于世,备受世人感叹。它们不仅是前人的智慧的结晶,更是世界的瑰宝。 二、中国古代建筑的材料与结构 放眼中国古代的建筑,可谓是丰富多彩。其中最常见的有木结构、石木结构,如布达拉宫等藏式古建筑;有石结构,如石牌楼、石桥及部分地区的长城等;有土结构,如秦汉时期的长城、延安陕北地区的窑洞等;有砖结构,如影壁、围墙等;还有竹建筑,如南方少数民族地区的竹楼等。而根据不同建筑的结构特点,中国古建筑所用的建筑材料主要有:木材、砖瓦、石材、土、竹子等。 (一)中国古建筑的发展历史 1.原始雏形 早在五十万年前的旧石器时代,中国原始人就已经知道利用天然的洞穴作为栖身之所,北京、广东、湖北、浙江等地均发现有原始人居住过的崖洞。 到了新石器时代, 黄河中游的氏族部 落,利用黄土层为墙 壁,用木构架、草泥 建造半穴居住所,进 而发展为地面上的建 筑,并形成聚落。长 江流域,因潮湿多雨, 常有水患兽害,因而 发展为干栏式建筑。 据考古发掘,约在距 今六、七千年前,中 国古代人已知使用榫卯构筑木架房屋,如浙江余姚河姆渡遗址。木构架的形制已经出现,房屋平面形式也因功用不同而有圆形、方形、吕字形等。这是中国古建筑的草创阶段。 春秋、战国时期,中国的大地上先后营建了许多都邑,夯土技术已广泛使用于筑墙造台。此时木构技术较之原始社会已有很大提高。春秋、战国的各诸侯国均各自营造了以宫室为中心的都城。这些都城均为夯土版筑,墙外周以城濠,辟有高大的城门。宫殿布置在城内,建在夯土台之上,木构架已成为主要的结构方式,屋顶已开始使用陶瓦。这标志着中国古代建筑已经具备了雏形,不论是夯土技术、木构技术还是建筑的平面布局、以及建筑材料的制造与运用,都达到了雏

材料力学学习心得

材料力学学习体会 摘要:本文对我在学习材料力学中的心得体会作了总结 关键词:力学性能,生活,体会 引言:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。这学期,从第一章的绪论到附录一的平面图形的几何性质,使我更深入的了解了材料力学,学会了如何应用材料力学解决生活总的实际问题,以及对材料力学有了更深刻的体会。 一:综述 在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。 包括两大部分:一部分是材料的力学性能,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: ①线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形,可先分别求出各外力单独作用下杆件的变形,然后将这些变形叠加,从而得到最终结果。 ②几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 ③物理非线性问题。在这类问题中,材料内的变形和内力之间不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 二:生活中的材料力学 生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的形变属于扭转变形。

材料力学论文压杆稳定与实际生活问题研究

压杆稳定与实际生活问题研究 班 摘要:现在随着社会经济的发展,工程中受压的杆件越来越多,例如许多建筑立柱、各种液压机械活塞杆、机床的丝杆等等,都有平衡构件的稳定性问题。另外,除细长杆外,其他弹性构件也存在稳定性问题。本文主要就是根据这些方面对压杆稳定在生活中某些实际方面应用的研究 关键字:压杆稳定工程实例桥梁结构 正文: 1.压杆稳定的实用计算 在实际计算中,对压杆的稳定采用折减系数法,即把材料的许用应力[σ]乘上一个折减系数φ,作为压杆的稳定许用应力: 那么,用折减系数法计算压杆稳定的条件为: 压杆截面设计是在满足稳定条件的前提下,确定压杆所需要的最小截面尺寸。由压杆的稳定条件得知,要确定截面尺寸,必须先知道折减系数φ。但是,折减系数φ与柔度λ有关,而柔度λ又要通过惯性矩I、截面面积A及惯性半径i求得。所以只能采用逐次逼近法进行反复试算。 通常,用逐次逼近法确定截面积的大小,一般要2~3次才可获得满意的结果。 2.压杆稳定一些生活实际研究

图一 当细长杆件受压时,却表现出与强度失效全然不同的性质。例如一根细长的竹片受压时,开始轴线为直线,接着必然是被压弯,发生颇大的弯曲变形,最后折断。与此类似,工程结构中也有很多受压的细长[1]杆。例如内燃机配气机构中的挺杆(图一),在它推动摇臂打开气阀时,就受压力作用。又如磨床液压装置的活塞杆(图二) 图二 ,当驱动工作台向右移动时,油缸活塞上的压力和工作台的阻力使活塞杆受到压缩。同样,内燃机(图三)、空气压缩机、蒸汽机的连杆也是受压杆件。还有,桁架结构中的抗压杆、建筑物中的柱也都是压杆。现以图四所示两端铰支的细长压杆来说明这类问题。设压力与杆件轴线重合,当压力逐渐增加,但小于某一极限值时,杆件一直保持直线形状的平衡,即使用微小的侧向干扰力使其暂时发生轻微弯曲(图四a),干扰力解除后,它仍将恢复直线 图四 形状(图四b)。这表明压杆直线形状的平衡是稳定的。当压力逐渐增加到某一极限值时,压杆的直线平衡变

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

材料力学性能总结

材料力学性能:材料在各种外力作用下抵抗变形与断裂得能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖得结果。 屈服强度:开始产生塑性变形得最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料得拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时得比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子得物质,使之形成稳定化合物得元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.内因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受得阻力不同。 b)晶粒大小与亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现得强化。 强化效果: 在第二相体积比相同得情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同得情况下,长形质点得强化效果比球形质点得强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍得数目(阻力大),减小晶粒内位错塞积群得长度(应力小),从而使屈服强度提高得方法。 同时提高塑性及韧性得机理: 晶粒越细,变形分散在更多得晶粒内进行,变形较均匀,且每个晶粒中塞积得位错少,因应力集中引起得开裂机会较少,有可能在断裂之前承受较大得变形量,即表现出较高得塑性。细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高得韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错得弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体得强化效果大于置换固溶体;溶质与溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要得外力不断增大,表明金属材料有一种阻止继续塑性变形得能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下得应力场强度因子得大小。 塑性变形:作用在物体上得外力取消后,物体得变形不完全恢复而产生得永久变形。

材料力学论文

如何理解生物软组织力学特性中的滞后环,应力松弛以及蠕变现象 摘要:软组织主要有皮肤、浅层与深层筋膜、韧带、滑膜、软骨盘和关节软骨,以及肌肉肌腱。滑膜、软骨盘和关节软骨在关节生物力学中已经提及,这里主要讨论韧带和肌腱的生物力学特性。 生物软组织受力,产生脱离虎克定律的应力一应变曲线,即具有非线性变形。在非线性变形中,又分为材料非线性与几何形状非线性两类。形状、尺寸有显著变化时,是形状非线性。在固体力学中,弹性板和弹性壳的大挠度及屈曲后的变形,在解析上只考虑形状非线性即可。然而对生物软组织的变形,在许多情况下, 必需考虑两者。 皮肤覆盖于体表,是人体最大的器官,具有多种生理功能,其中许多功能的实现有赖于其生物力学特性,如粘弹性、张力、抗压力等,因此人体皮肤生物力学特性的研究有其重要意义。皮肤是软组织,与其它生物软组织在力学特性上是相似的,如动脉、血管、心脏瓣膜和肌肉等,它们都有应力-应变关系、应力松弛、蠕变、滞后、各向异性等性质,以及需要预调。 关键字:软组织,应力一应变曲线,特性,性质 软组织的主要特点是具有大量结缔组织纤维,结缔组织起源于胚胎时期的间充质,具有连接、支持、养、保护等功能。其细胞少而排列稀疏,细胞间质非常发达。与人体运动有关的致密结缔组织多为规则结缔组织与不规则结缔组织。软组织的基质具有支持和固着细胞的功能,营养物质及代谢产物可自由地通过这层基质在毛细血管和细胞之间进行交换,基质的主要成分是纤维性细胞间质,间质中的纤维是由成纤维细胞合成的,它们对组织能起到支持和加固的作用,包括胶原纤维、弹性纤维。 一、软组织的滞后环: 应力-应变曲线滞后:应力-应变曲线滞后指对物体作周期性加载和卸载,加载和卸载时的应力-应变曲线不重合的特性。在同样负载下,卸载曲线的拉长比值(受载下的长度与原来长度的比值)要比加载过程中的大,只有在卸载较多负荷情况下才能恢复到原有载荷状态下的变形。即应力-应变曲线的上升曲线与下降曲线不相重合。也即是说,对物体作周期性加载和卸载,加载和卸载时的应力-应变曲线不重合,称为滞后。 一般生物软组织的力学实验都需要经过重复多次(>5次)循环加载和卸载过程,才能得到稳定的应力-应变关系曲线,这一过程称成为预调。每次加载卸载过程中,应力响应都会出现滞后环,这就是所谓的滞后现象。但滞后环会逐渐减弱,最后也趋于一个稳定的状态。皮肤的应力-应变关系不服从虎克定律,应力随着应变的增加比虎克定律预计的要快得多,是非线性的关系。 Lanir和Fung在1974年测得了兔腹部皮肤在体(时)情况下的二维力学性质,而后Schneider等在同样的装置上进行了人体皮肤的二维应力-应变实验。下图为兔腹部皮肤的力-伸长率关系曲线。

相关文档
最新文档