美国环保局 EPA 试验 方法 8310

美国环保局 EPA  试验  方法 8310
美国环保局 EPA  试验  方法 8310

METHOD 8310

POLYNUCLEAR AROMATIC HYDROCARBONS

1.0SCOPE AND APPLICATION

1.1Method 8310 is used to determine the concentration of certain poly-nuclear aromatic hydrocarbons (PAH) in ground water and wastes. Specifically, Method 8310 is used to detect the following substances:

Acenaphthene Chrysene

Acenaphthylene Dibenzo(a,h)anthracene

Anthracene Fluoranthene

Benzo(a)anthracene Fluorene

Benzo(a)pyrene Indeno(1,2,3-cd)pyrene

Benzo(b)fluoranthene Naphthalene

Benzo(ghi)perylene Phenanthrene

Benzo(k)fluoranthene Pyrene

1.2Use of Method 8310 presupposes a high expectation of finding the specific compounds of interest. If the user is attempting to screen samples for any or all of the compounds listed above, he must develop independent protocols for the verification of identity.

1.3The method detection limits for each compound in reagent water are listed in Table 1. Table 2 lists the practical quantitation limit (PQL) for other matrices. The sensitivity of this method usually depends on the level of interferences rather than instrumental limitations. The limits of detection listed in Table 1 for the liquid chromatographic approach represent sensitivities that can be achieved in the absence of interferences. When interferences are present, the level of sensitivity will be lower.

1.4This method is recommended for use only by experienced residue analysts or under the close supervision of such qualified persons.

2.0SUMMARY OF METHOD

2.1Method 8310 provides high performance liquid chromatographic (HPLC) conditions for the detection of ppb levels of certain polynuclear aromatic hydrocarbons. Prior to use of this method, appropriate sample extraction techniques must be used. A 5- to 25-uL aliquot of the extract is injected into an HPLC, and compounds in the effluent are detected by ultraviolet (UV) and fluorescence detectors.

2.2If interferences prevent proper detection of the analytes of interest, the method may also be performed on extracts that have undergone cleanup using silica gel column cleanup (Method 3630).

8310 1

CD-ROM Revision 0

Date September 1986

8310 2

CD-ROM Revision 0 Date September 1986

TABLE 1. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY OF PAHs a

Column Method Detection Retention capacity limit (ug/L) Compound time (min) factor (k') UV Fluorescence Naphthalene 16.6 12.2 1.8

Acenaphthylene 18.5 13.7 2.3

Acenaphthene 20.5 15.2 1.8

Fluorene 21.2 15.8 0.21

Phenanthrene 22.1 16.6 0.64Anthracene 23.4 17.6 0.66Fluoranthrene 24.5 18.5 0.21Pyrene 25.4 19.1 0.27Benzo(a)anthracene 28.5 21.6 0.013Chrysene 29.3 22.2 0.15Benzo(b)fluoranthene 31.6 24.0 0.018Benzo(k)fluoranthene 32.9 25.1 0.017Benzo(a)pyrene 33.9 25.9 0.023Dibenzo(a,h)anthracene 35.7 27.4 0.030Benzo(ghi)perylene 36.3 27.8 0.076Indeno(1,2,3-cd)pyrene 37.4 28.7 0.043

HPLC conditions: Reverse phase HC-ODS Sil-X, 5 micron particle size, in a

a 250-mm x 2.6-mm I.D. stainless steel column. Isocratic elution for 5 min using acetonitrile/water (4:6)(v/v), then linear gradient elution to 100% acetonitrile over 25 min at 0.5 mL/min flow rate. If columns having other internal diameters are used, the flow rate should be adjusted to maintain a linear velocity of 2mm/sec.TABLE 2. DETERMINATION OF PRACTICAL QUANTITATION LIMITS (PQL) FOR VARIOUS

MATRICES a

Matrix Factor b

Ground water 10

Low-level soil by sonication with GPC cleanup 670

High-level soil and sludges by sonication 10,000

Non-water miscible waste 100,000

Sample PQLs are highly matrix-dependent. The PQLs listed herein are a provided for guidance and may not always be achievable.

PQL = [Method Detection Limit (Table 1) X [Factor (Table 2)]. For non-b aqueous samples, the factor is on a wet-weight basis.

3.0INTERFERENCES

3.1Solvents, reagents, glassware, and other sample processing hardware may yield discrete artifacts and/or elevated baselines, causing misinterpretation of the chromatograms. All of these materials must be demonstrated to be free from interferences, under the conditions of the analysis, by running method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be required.

3.2Interferences coextracted from the samples will vary considerably from source to source. Although a general cleanup technique is provided as part of this method, individual samples may require additional cleanup approaches to achieve the sensitivities stated in Table 1.

3.3The chromatographic conditions described allow for a unique resolution of the specific PAH compounds covered by this method. Other PAH compounds, in addition to matrix artifacts, may interfere.

4.0APPARATUS AND MATERIALS

4.1Kuderna-Danish (K-D) apparatus:

4.1.1Concentrator tube: 10-mL, graduated (Kontes K-570050-1025 or

equivalent). Ground-glass stopper is used to prevent evaporation of extracts.

4.1.2Evaporation flask: 500-mL (Kontes K-570001-500 or equivalent).

Attach to concentrator tube with springs.

4.1.3Snyder column: Three-ball macro (Kontes K-503000-0121 or

equivalent).

4.1.4Snyder column: Two-ball micro (Kontes K-569001-0219 or

equivalent).

4.2Boiling chips: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.3Water bath: Heated, with concentric ring cover, capable of temperature control (+5E C). The bath should be used in a hood.

4.4Syringe: 5-mL.

4.5High pressure syringes.

4.6HPLC apparatus:

4.6.1Gradient pumping system: Constant flow.

4.6.2Reverse phase column: HC-ODS Sil-X, 5-micron particle size

diameter, in a 250-mm x 2.6-mm I.D. stainless steel column (Perkin Elmer No.

089-0716 or equivalent).

8310 3

CD-ROM Revision 0

Date September 1986

4.6.3Detectors: Fluorescence and/or UV detectors may be used.

4.6.3.1Fluorescence detector: For excitation at 280-nm and

emission greater than 389-nm cutoff (Corning 3-75 or equivalent).

Fluorometers should have dispersive optics for excitation and can

utilize either filter or dispersive optics at the emission detector.

4.6.3.2UV detector: 254-nm, coupled to the fluorescence

detector.

4.6.4Strip-chart recorder: compatible with detectors. A data system

for measuring peak areas and retention times is recommended.

4.7Volumetric flasks: 10-, 50-, and 100-mL.

5.0REAGENTS

5.1Reagent water: Reagent water is defined as water in which an interferent is not observed at the method detection limit of the compounds of interest.

5.2Acetonitrile: HPLC quality, distilled in glass.

5.3Stock standard solutions:

5.3.1Prepare stock standard solutions at a concentration of 1.00

ug/uL by dissolving 0.0100 g of assayed reference material in acetonitrile and diluting to volume in a 10-mL volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be 96% or greater, the weight can be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards can be used at any concentration if they are certified by the manufacturer or by an independent source.

5.3.2Transfer the stock standard solutions into Teflon-sealed screw-

cap bottles. Store at 4E C and protect from light. Stock standards should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.

5.3.3Stock standard solutions must be replaced after one year, or

sooner if comparison with check standards indicates a problem.

5.4Calibration standards: Calibration standards at a minimum of five concentration levels should be prepared through dilution of the stock standards with acetonitrile. One of the concentration levels should be at a concentration near, but above, the method detection limit. The remaining concentration levels should correspond to the expected range of concentrations found in real samples or should define the working range of the HPLC. Calibration standards must be replaced after six months, or sooner if comparison with check standards indicates a problem.

8310 4

CD-ROM Revision 0

Date September 1986

5.5Internal standards (if internal standard calibration is used): To use this approach, the analyst must select one or more internal standards that are similar in analytical behavior to the compounds of interest. The analyst must further demonstrate that the measurement of the internal standard is not affected by method or matrix interferences. Because of these limitations, no internal standard can be suggested that is applicable to all samples.

5.5.1Prepare calibration standards at a minimum of five concentration

levels for each analyte as described in Paragraph 5.4.

5.5.2To each calibration standard, add a known constant amount of one

or more internal standards, and dilute to volume with acetonitrile.

5.5.3Analyze each calibration standard according to Section 7.0.

5.6Surrogate standards: The analyst should monitor the performance of the extraction, cleanup (if necessary), and analytical system and the effectiveness of the method in dealing with each sample matrix by spiking each sample, standard, and reagent water blank with one or two surrogates (e.g., decafluorobiphenyl or other PAHs not expected to be present in the sample) recommended to encompass the range of the temperature program used in this method. Deuterated analogs of analytes should not be used as surrogates for HPLC analysis due to coelution problems.

6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1See the introductory material to this chapter, Organic Analytes, Section 4.1. Extracts must be stored under refrigeration and must be analyzed within 40 days of extraction.

7.0PROCEDURE

7.1Extraction:

7.1.1Refer to Chapter Two for guidance on choosing the appropriate

extraction procedure. In general, water samples are extracted at a neutral pH with methylene chloride, using either Method 3510 or 3520. Solid samples are extracted using either Method 3540 or 3550. To achieve maximum sensitivity with this method, the extract must be concentrated to 1 mL.

7.1.2Prior to HPLC analysis, the extraction solvent must be exchanged

to acetonitrile. The exchange is performed during the K-D procedures listed in all of the extraction methods. The exchange is performed as follows.

7.1.2.1Following K-D of the methylene chloride extract to 1 mL

using the macro-Snyder column, allow the apparatus to cool and drain

for at least 10 min.

8310 5

CD-ROM Revision 0

Date September 1986

7.1.2.2Increase the temperature of the hot water bath to 95-

100E C. Momentarily remove the Snyder column, add 4 mL of acetonitrile,

a new boiling chip, and attach a two-ball micro-Snyder column.

Concentrate the extract using 1 mL of acetonitrile to prewet the Snyder

column. Place the K-D apparatus on the water bath so that the

concentrator tube is partially immersed in the hot water. Adjust the

vertical position of the apparatus and the water temperature, as

required, to complete concentration in 15-20 min. At the proper rate

of distillation the balls of the column will actively chatter, but the

chambers will not flood. When the apparent volume of liquid reaches

0.5 mL, remove the K-D apparatus and allow it to drain and cool for at

least 10 min.

7.1.2.3When the apparatus is cool, remove the micro-Snyder

column and rinse its lower joint into the concentrator tube with about

0.2 mL of acetonitrile. A 5-mL syringe is recommended for this

operation. Adjust the extract volume to 1.0 mL. Stopper the

concentrator tube and store refrigerated at 4E C, if further processing

will not be performed immediately. If the extract will be stored

longer than two days, it should be transferred to a Teflon-sealed

screw-cap vial. Proceed with HPLC analysis if further cleanup is not

required.

7.2HPLC conditions (Recommended):

7.2.1Using the column described in Paragraph 4.6.2: Isocratic

elution for 5 min using acetonitrile/water (4:6)(v/v), then linear gradient elution to 100% acetonitrile over 25 min at 0.5 mL/min flow rate. If columns having other internal diameters are used, the flow rate should be adjusted to maintain a linear velocity of 2 mm/sec.

7.3Calibration:

7.3.1Refer to Method 8000 for proper calibration procedures. The

procedure of internal or external standard calibration may be used. Use Table 1 and especially Table 2 for guidance on selecting the lowest point on the calibration curve.

7.3.2Assemble the necessary HPLC apparatus and establish operating

parameters equivalent to those indicated in Section 7.2.1. By injecting calibration standards, establish the sensitivity limit of the detectors and the linear range of the analytical systems for each compound.

7.3.3Before using any cleanup procedure, the analyst should process

a series of calibration standards through the procedure to confirm elution

patterns and the absence of interferences from the reagents.

7.4HPLC analysis:

7.4.1Table 1 summarizes the estimate retention times of PAHs

determinable by this method. Figure 1 is an example of the separation achievable using the conditions given in Paragraph 7.2.1.

8310 6

CD-ROM Revision 0

Date September 1986

8310 7

CD-ROM Revision 0

Date September 1986

7.4.2If internal standard calibration is to be performed, add 10 uL

of internal standard to the sample prior to injection. Inject 2-5 uL of the sample extract with a high-pressure syringe or sample injection loop.

Record the volume injected to the nearest 0.1 uL, and the resulting peak size, in area units or peak heights. Re-equilibrate the HPLC column at the initial gradient conditions for at least 10 min between injections.

7.4.3Using either the internal or external calibration procedure

(Method 8000), determine the identity and quantity of each component peak in the sample chromatogram which corresponds to the compounds used for calibration purposes. See Section 7.8 of Method 8000 for calculation equations.

7.4.4If the peak area exceeds the linear range of the system, dilute

the extract and reanalyze.

7.4.5If the peak area measurement is prevented by the presence of

interferences, further cleanup is required.

7.5Cleanup:

7.5.1Cleanup of the acetonitrile extract takes place using Method

3630 (Silica Gel Cleanup). Specific instructions for cleanup of the extract for PAHs is given in Section 7.1 of Method 3630.

7.5.2Following cleanup, analyze the samples using HPLC as described

in Section 7.4.

8.0QUALITY CONTROL

8.1Refer to Chapter One for specific quality control procedures. Quality control to validate sample extraction is covered in Method 3500 and in the extraction method used. If extract cleanup was performed, follow the QC in Method 3600 and in the specific cleanup method.

8.2Mandatory quality control to validate the HPLC system operation is found in Method 8000, Section 8.6.

8.2.1The quality control check sample concentrate (Method 8000,

Section 8.6) should contain each analyte at the following concentrations in acetonitrile: naphthalene, 100 ug/mL; acenaphthylene, 100 ug/mL;

acenaphthene, 100 ug/mL; fluorene, 100 ug/mL; phenanthrene, 100 ug/mL;

anthracene, 100 ug/mL; benzo(k)fluoranthene, 5 ug/mL; and any other PAH at

10 ug/mL.

8.2.2Table 3 indicates the calibration and QC acceptance criteria for

this method. Table 4 gives method accuracy and precision as functions of concentration for the analytes of interest. The contents of both Tables should be used to evaluate a laboratory's ability to perform and generate acceptable data by this method.

8310 8

CD-ROM Revision 0

Date September 1986

8310 9

CD-ROM Revision 0 Date September 1986

8.3Calculate surrogate standard recovery on all samples, blanks, and spikes. Determine if the recovery is within limits (limits established by performing QC procedures outlined in Method 8000, Section 8.10).

8.3.1

If recovery is not within limits, the following procedures are

required.Check to be sure there are no errors in calculations, surrogate

.solutions and internal standards. Also, check instrument

performance.

Recalculate the data and/or reanalyze the extract if any of the

.above checks reveal a problem.

Reextract and reanalyze the sample if none of the above are a

.problem or flag the data as "estimated concentration."

9.0METHOD PERFORMANCE

9.1The method was tested by 16 laboratories using reagent water, drinking water, surface water, and three industrial wastewaters spiked at six concentrations over the range 0.1 to 425 ug/L. Single operator precision,overall precision, and method accuracy were found to be directly related to the concentration of the analyte and essentially independent of the sample matrix.Linear equations to describe these relationships are presented in Table 4.

9.2This method has been tested for linearity of spike recovery from reagent water and has been demonstrated to be applicable over the concentration range from 8 x MDL to 800 x MDL with the following exception: benzo(ghi)perylene recovery at 80 x and 800 x MDL were low (35% and 45%, respectively).

9.3The accuracy and precision obtained will be determined by the sample matrix, sample-preparation technique, and calibration procedures used.10.0REFERENCES

1."Development and Application of Test Procedures for Specific Organic Toxic Substances in Wastewaters, Category 9 - PAHs," Report for EPA Contract 68-03-2624 (in preparation).

2.Sauter, A.D., L.D. Betowski, T.R. Smith, V.A. Strickler, R.G. Beimer, B.N.Colby, and J.E. Wilkinson, "Fused Silica Capillary Column GC/MS for the Analysis of Priority Pollutants," Journal of HRC&CC 4, 366-384, 1981.

3."Determination of Polynuclear Aromatic Hydrocarbons in Industrial and Municipal Wastewaters," EPA-600/4-82-025, U.S. Environmental Protection Agency,Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268,September 1982.

4.Burke, J.A. "Gas Chromatography for Pesticide Residue Analysis; Some Practical Aspects," Journal of the Association of Official Analytical Chemists, 48, 1037, 196

5.

5."EPA Method Validation Study 20, Method 610 (Polynuclear Aromatic Hydrocarbons)," Report for EPA Contract 68-03-2624 (in preparation).

6.U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule," October 26, 1984.

7.Provost, L.P. and R.S. Elder, "Interpretation of Percent Recovery Data," American Laboratory, 15, pp. 58-63, 1983.

8310 10

CD-ROM Revision 0

Date September 1986

8310 11

CD-ROM Revision 0 Date September 1986

TABLE 3. QC ACCEPTANCE CRITERIA a

Test

Limit Range Range conc.

for s for x p, p s

Parameter

(ug/L)(ug/L) (ug/L) (%)Acenaphthene 10040.3 D-105.7 D-124Acenaphthylene 10045.122.1-112.1 D-139Anthracene 10028.711.2-112.3 D-126Benzo(a)anthracene 10 4.0 3.1-11.612-135Benzo(a)pyrene 10 4.0 0.2-11.0 D-128Benzo(b)fluoranthene 10 3.1 1.8-13.8 6-150Benzo(ghi)perylene 10 2.3 D-10.7 D-116Benzo(k)fluoranthene 5 2.5 D-7.0 D-159Chrysene 10 4.2 D-17.5 D-199Dibenzo(a,h)anthracene 10 2.0 0.3-10.0 D-110Fluoranthene 10 3.0 2.7-11.114-123Fluorene 10043.0 D-119 D-142Indeno(1,2,3-cd)pyrene 10 3.0 1.2-10.0 D-116Naphthalene 10040.721.5-100.0 D-122Phenanthrene 10037.7 8.4-133.7 D-155Pyrene 10 3.4 1.4-12.1 D-140

s = Standard deviation of four recovery measurements, in ug/L.

= Average recovery for four recovery measurements, in ug/L.

p, p = Percent recovery measured.

s D = Detected; result must be greater than zero.

Criteria from 40 CFR Part 136 for Method 610. These criteria are based a

directly upon the method performance data in Table 3. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 3.

8310 12

CD-ROM Revision 0 Date September 1986

METHOD ACCURACY AND PRECISION AS FUNCTIONS OF CONCENTRATION a

Accuracy, as Single analyst Overall recovery, x' precision, s ' precision,r Parameter (ug/L) (ug/L) S' (ug/L)Anthracene 0.63C-1.26 0.23x+1.16 0.41x+0.45Benzo(a)anthracene 0.73C+0.05 0.28x+0.04 0.34x+0.02Benzo(k)fluoranthene 0.59C+0.00 0.44x-0.00 0.69x+0.10Chrysene 0.77C-0.18 0.32x-0.18 0.66x-0.22Dibenzo(a,h)anthracene 0.41C-0.11 0.24x+0.02 0.45x+0.03Naphthalene 0.57C-0.70 0.39x-0.18 0.41x+0.74Phenanthrene 0.72C-0.95 0.29x+0.05 0.47x-0.25Pyrene 0.69C-0.12 0.25x+0.14 0.42x-0.00

x' =Expected recovery for one or more measurements of a sample

containing a concentration of C, in ug/L.

s ' =Expected single analyst standard deviation of measurements at an

r S' =Expected interlaboratory standard deviation of measurements at an average concentration found of x, in ug/L.

C =True value for the concentration, in ug/L.x = Average recovery found for measurements of samples containing a

concentration of C, in ug/L.

8310 13

CD-ROM Revision 0

Date September 1986

患者知情同意书-中国临床试验注册中心

研究标题: 单纯调强放疗与调强放疗联合同期化疗治疗II、III期鼻咽癌的非劣效性II期 临床试验 研究申办方:中山大学附属肿瘤医院 --------------------------------------------------------------------- 研究者姓名:....................... 电话 ................... 地址:.............................................................. ................................................................... __________________________________ 患者姓名:....................... 出生日期:...... 年......月......日 __________________________________ 1.简介 您的医生已经告知您,目前您所患疾病的最主要治疗方法是放疗。您正受邀 参加一项临床研究,其目的是比较单纯调强放疗与调强放疗联合同时期化疗治疗 AJCC分期II、III期鼻咽癌患者的疗效、副反应与生活质量。 目前同时期放化疗是目前Ⅱ~Ⅳb期鼻咽癌的标准治疗方案。在这些确定同 时期化疗地位的临床研究中,放射治疗技术采用的均为二维的常规放疗技术。在 常规放疗技术条件下,同期放化疗确实可以提高局部中晚期的生存,然而同期放 化疗的生存获益主要是通过提高局部控制率实现的。10余年来,调强放射治疗 技术的物理学优势以及鼻咽癌的临床解剖和生物学特点,使得调强放射治疗在鼻 咽癌治疗中得到广泛应用,众多临床实验结果也表明调强放射治疗技术使鼻咽癌 的治疗疗效达到一个新的高度,调强放射治疗技术的应用,削弱了同期放化疗+/- 辅组化疗在局部晚期鼻咽癌中的作用。 并且同时期化疗加重了鼻咽癌患者近期和远期副反应的发生率,如血液毒 性、体重下降及耳毒性等毒副反应。在众多化疗药物中,顺铂是治疗中晚期鼻咽 癌的经典一线药物。但是,由于顺铂引起的胃肠道反应较重,例如剧烈的恶心、 呕吐等,导致部分患者不能耐受化疗;而顺铂直接损害肾实质,治疗时需要水化 和利尿;顺铂的神经毒性和放疗后的远期毒性放射性听神经损伤叠加,严重影响 了患者的生活质量。 因此,根据现有的调强放射治疗结果和同期化疗的疗效,以及常规放射

美国环保局 EPA 试验 方法 3541

METHOD 3541 AUTOMATED SOXHLET EXTRACTION 1.0SCOPE AND APPLICATION 1.1Method 3541 describes the extraction of organic analytes from soil, sediment, sludges, and waste solids. The method uses a commercially available, unique, three stage extraction system to achieve analyte recovery comparable to Method 3540, but in a much shorter time. There are two differences between this extraction method and Method 3540. In the initial extraction stage of Method 3541, the sample-loaded extraction thimble is immersed into the boiling solvent. This ensures very rapid intimate contact between the specimen and solvent and rapid extraction of the organic analytes. In the second stage the thimble is elevated above the solvent, and is rinse-extracted as in Method 3540. In the third stage, the solvent is evaporated, as would occur in the Kuderna-Danish (K-D) concentration step in Method 3540. The concentrated extract is then ready for cleanup (Method 3600) followed by measurement of the organic analytes. 1.2The method is applicable to the extraction and concentration of water insoluble or slightly water soluble polychlorinated biphenyls (PCBs) in preparation for gas chromatographic determination using either Method 8080 or 8081. This method is applicable to soils, clays, solid wastes and sediments containing from 1 to 50 μg of PCBs (measured as Arochlors) per gram of sample. It has been statistically evaluated at 5 and 50 μg/g of Arochlors 1254 and 1260, and found to be equivalent to Method 3540 (Soxhlet Extraction). Higher concentrations of PCBs are measured following volumetric dilution with hexane. 1.3The method is also applicable the extraction and concentration of semivolatile organics in preparation for GC/MS analysis by Method 8270 or by analysis using specific GC or HPLC methods. 2.0SUMMARY OF METHOD 2.1PCBs: Moist solid samples (e.g., soil/sediment samples) may be air-dried and ground prior to extraction or chemically dried with anhydrous sodium sulfate. The prepared sample is extracted using 1:1 (v/v) acetone:hexane in the automated Soxhlet following the same procedure as outlined for semivolatile organics in Sec. 2.1. The extract is then concentrated and exchanged into pure hexane prior to final gas chromatographic PCB measurement. 2.2Other semivolatile organics: A 10-g solid sample (the sample is pre-mixed with anhydrous sodium sulfate for certain matrices) is placed in an extraction thimble and usually extracted with 50 mL of 1:1 (v/v) acetone/hexane for 60 minutes in the boiling extraction solvent. The thimble with sample is then raised into the rinse position and extracted for an additional 60 minutes. Following the extraction steps, the extraction solvent is concentrated to 1 to 2 mL. CD-ROM3541 - 1Revision 0 September 1994

研究方案10-中国临床试验注册中心

颅内血管磁共振管壁成像注册登记研究方案 一、研究背景 1. 研究目的与意义 颅内动脉狭窄是缺血性卒中的重要原因。由于缺乏可靠影像学手段及病理学证据,颅内动脉粥样硬化斑块(ICAD)易损性特征一直是研究难点。基于前期高分辨磁共振(HR-MRI)管壁成像研究工作,我们提出:症状性ICAD斑块强化是斑块易损性的重要标志,其强化程度与卒中复发密切相关。我们拟通过建立的颅内动脉狭窄研究队列,采用HR-MRI技术前瞻性比较症状性与无症状ICAD斑块组成、形态结构、强化程度等定量指标,探索①HR-MRI技术在脑卒中病因学诊断,治疗方案决策方面的价值;②建立包含斑块强化特性的ICAD易损斑块评价标准,明确及其在药物治疗效果评估中的价值,为ICAD的个体化治疗提供重要的客观依据。 2. 国内外研究现状 颅内动脉粥样硬化性狭窄是引起脑梗死的重要原因颅内动脉粥样硬化性狭窄发生率存在种族差异[1]。亚洲黄种人及非洲、美洲黑人的颅内动脉狭窄的发生率较美洲白人高。基于我国的两项研究发现年龄超过60岁的正常人群中颅内动脉狭窄发生率为5.9%~6.9%[2, 3]。我国卒中患者中颅内动脉狭窄约占33%~50%,TIA患者中颅内动脉狭窄所占比例更高(>50%)。 症状性ICAD年卒中复发率较无症状ICAD年发生率显著增高。脑梗死后患者存在再卒中风险,而伴有颅内动脉狭窄患者的卒中复发率明显增加。我国国家卒中注册调查的数据显示伴有颅内动脉狭窄1年内卒中复发率随动脉狭窄程度而增加,其1年复发率从3.34%增至7.40%[4]。在WASID研究中症状性ICAD者应用阿司匹林组1年内卒中复发率为19%,而狭窄率≥70%的患者年卒中复发率高达23%;无症状颅内动脉粥样硬化性狭窄发生率为18.9%-27.3%,而其相关卒中年发生率平均3.5%。因此,ICAD导致卒中发生的风险存在显著差异,进一步的危险分层研究对于临床干预决策具有重要指导意义。颅内动脉粥样硬化引起卒中的机制复杂,包括:血栓形成、动脉-动脉栓塞、低灌注、穿支动脉闭塞等。其中血栓形成、动脉-动脉栓塞在卒中事件的发生中占有重要地位。而二者多由于局部斑块

主要发达国家环保产业发展概况

主要发达国家环保产业发展概况 一、美国 (一)产业分类情况 美国环保产业分为环保服务、环保设备和环境资源三大类。 (二)产业发展概况 美国现在也在面临和处理一系列挑战,包括水方面、气候变化、细菌、污染、负氧,以及水供应。美国环保局现在也在动用自己的力量重整整个水资源系统,不管是学术界还是市民,都参与到了环保的行业当中。没有人能够再袖手旁观了。

美国环保技术和设备可以帮助解决水跟土壤的问题,其实最主要的是淤泥积土。每一次下雨的时候,空气当中的污染物都会进入到的水中,包括河流,包括大江,而随着水的流动,所有的这些分子,还有污染物都会流向其他地方,所以美国现在的环保部对于处理水污染方面的技术是的重点。要减排,减少能源的消耗,同时要解决这些水方面的问题。 美国技术和设备方面的优势。美国现在已经成为全球在环境保护技术和设备方面领先的国家,美国的研发工作做得非常到位,美国使用目前的研发成果来开发新的技术,例如水资源处理,还有其他诊断和探寻设备,还有在细菌、濒危物种、化肥、杀虫剂等方面的一些技术和设备。其实,目前中国的发展也非常快,在环境方面也解决了很多的问题。面临着新一代的环境系统,在基础设施建设方面也有着更多的优势,所以创新是一个很好的推动力量,只有创新才能推动经济的长远发展,中国和全球各个国家都已经意识到了这一点。 在现代经济当中,各个国家都在鼓励新技术的创新,新技术同时也推动了经济发展,新技术是经济发展的燃料剂和助推剂,可以影响到每个人,也会影响到每天的商业决策。目前有很多数据讲的都是一些新兴企业的产品、市场、知识产权的保护,这些议题是所有全球企业都面临的议题,而同时在这样的环境当中,美国有不断的技术、产品和服务推陈出新,同时美国有着新的体系、新的标准、新的数据,还有新的发现、分析的结果,这些能够更好的保护隐私和安全。关于气候变化和天气管理的政府机构都会对进行评估,对大气、水资源等去进行环评。另外很多企业和国家都面临着非常严峻的供应链的挑战,都会考虑所有的这些环境因素,未来发展的能力已经到了一个临界点,甚至现在天灾也会带来非常严重的后果,例如地震等,另外还有全球一些地区的冲突,所以货物在运输时所造成的损失也越来越频繁,每年因为这些因素导致的货物损失高达数亿美元,有

美国EPA通用土壤筛选值

美国EPA通用土壤筛选值

美国EPA通用土壤筛选值

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 1 +04 E+0 5 +00 +04 75-86- 5 丙酮氰 醇 2.0E +02 n 2.1 E+0 3 n 1.2E -02 5.8E +01 75-05- 8 乙腈 8.7E +02 n 3.7 E+0 3 n 2.6E -02 1.3E +02 98-86- 2 乙酰苯 7.8E +03 ns 1.0 E+0nms 1.1E +00 3.7E +03

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 -8 -01 E-0 1 -06 -02 79-06- 1 丙烯酰 胺 2.3E -01 c 3.4 E+0 c 9.1E -06 4.3E -02 79-10- 7 丙烯酸 3.0E +04 n 2.9 E+0 5 nm 3.7E +00 1.8E +04 107-13 -1 丙烯腈 2.4E -01 c* 1.2 E+0c* 9.9E -06 4.5E -02

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 60-8 +00 E+0 1 -04 +00 116-06 -3 涕灭威 6.1E +01 n 6.2 E+0 2 n 9.1E -03 3.7E +01 1646-8 8-4 涕灭威 砜 6.1E +01 n 6.2 E+0 2 n 8.0E -03 3.7E +01 309-00 -2 艾氏剂 2.9E -02 c* 1.0 E-0 c 6.5E -04 4.0E -03

美国环境保护制度

美国环境保护制度 篇一:环保:美国的垃圾管理机制 环境产业研究 第19期 20XX年7月27日全国工商联环境服务业商会 美国垃圾管理机制 ——商业模式下的系统化垃圾管理 作为经济大国的美国同样也是一个消费大国,持续增长的垃圾排放对其环境质量也造成了极大地威胁。据美国环境署最新公布数字显示,20XX年,美国城市固体垃圾产量达2.5亿吨,如果用卡车运送这些垃圾,组成的车队足以绕地球6圈。但是,在清晰的垃圾管理战略的指导下,美国垃圾处理产业得到了快速的发展,目前已经形成了系统化的垃圾管理商业模式,足以应对日益增长的垃圾排放量。 一、美国垃圾管理概况 (一)垃圾管理战略 美国确定的固体废弃物治理战略方针是实施源头控制政策,从生产阶段抑制废物的产生,减少使用成为污染源的物质;最大限度地实施废物资源回收,通过堆肥、焚烧热能回收利用实现废物资源、能源的再生利用,最后进行卫生填埋。 近年来,美国一直坚持垃圾减量、分流和再利用这个主题,以废物变

资源、废物变能源(焚烧和生物制肥)作为垃圾治理的主导方向,制定的20XX年的垃圾处理目标是:回收利用(包括直接回收、路边分类、堆肥、综合利用等)50%,填埋40%,焚烧10%。 为实现这些目标,美国各州普遍采取垃圾源头控制和减量措施,提出垃圾分流的概念,将食品垃圾、庭院垃圾和餐厨垃圾等按类别作为分流目标,直接进入适用的处理程序,既促进了不同成分垃圾的分类处理,也促进了资源的循环再生,垃圾处理已经形成了比较系统的模式。美国垃圾管理战略已取得了明显的成效:垃圾填埋已经从1980年的89%降为20XX年的54%,而垃圾资源回收再利用则从1980年的9.6%提高到了20XX年的33.4%,垃圾焚烧处理从1980年的1.8%上升到了20XX年的12.6%。 (二)垃圾处理方式的演变 全美国1988年共有垃圾填埋场7924个,1999年为2514个,20XX 年下降到1767个,20XX年又降为1654个,总体上呈下降趋势。垃圾焚烧厂数量从1997年的131座下降到20XX年的101座,包括焚烧和生物制能的废物变能源工厂。20XX年全美国共有废物定点回收场地12694个,路边资源垃圾分类回收项目也从1989年的1042个增长 到20XX年的7689个,成为废物资源回收的重要组成部分。 目前在美国的不同地区,垃圾处理方式的比例各不相同。如:新英格兰地区的填埋占36%,回收占33%,焚烧占31%。美国西部的填埋

最新clinicaltrialsgov临床试验注册辅导汇总

C l i n i c a l T r i a l s g o v 网站临床试验注册辅 导

https://www.360docs.net/doc/c03753373.html,网站临床试验注册辅导 缩略语 ICMJE=International Committee of Medical Journal Editors; IRB=institutional review board; NIH=National Institutes of Health; PRS=Protocol Registration System 供稿:沈阳帕博医学信息咨询有限公司 临床试验注册一直是医学文献、通俗媒体以及美国议会所关注的焦点问题。临床试验的注册库都属于网络数据库,收录临床试验的资料,兼有伦理和学术双重作用。这些注册库确保公众对目前正在开展或既往已开展项目的了解,从而发挥伦理作用;同时还可为研究人员、期刊编辑人员和审稿专家提供一些解读研究结果所需的背景资料;通过完整罗列各项临床试验的目录清单,还可提示研究人员对当前尚未发表成果的课题加以注意。各类试验注册库因主办机构、侧重面 (综合库还是疾病专库) 以及所收录试验信息内容等多种标准不同而彼此有别。国际医学期刊编辑委员会 (ICMJE) 等多个团体均主张注册库应实行非盈利机构管理、对注册户和用户免费开放等原则。试验注册库有别于研究成果库:前者收录的通常是研究方案和研究对象招募情况,而后者则收录研究结果。仅供学习与交流,如有侵权请联系网站删除谢谢2

目前,国际上能符合ICMJE原则的最大临床试验注册库就是美国的https://www.360docs.net/doc/c03753373.html,网站(即北美临床注册中心),包含了约35 000项试验;还有英国的国际标准随机对照试验项目编号登记库,约有试验5050项。本文着重谈谈在https://www.360docs.net/doc/c03753373.html,网站进行试验注册的要点,但由于其中的大部分原则也适用于其他注册库的注册过程,文章内容因而显得简明实用。 背景 https://www.360docs.net/doc/c03753373.html,网站是由美国卫生研究所 (NIH) 下属国家医学图书馆运作的一个注册库,收录了全球由国家拨款或私募经费资助的各项试验目录。创建该库的初衷是为了帮助那些患有致命性疾病患者找到意愿参与的合适试验项目。自此以后,该库的用途越来越多,用户类型也多种多样 (见表1)。美国https://www.360docs.net/doc/c03753373.html,网站的试验注册对国内外注册户均不收费。只要能上网,任何人都可以免费使用该注册库。 仅供学习与交流,如有侵权请联系网站删除谢谢3

ICF - 中国临床试验注册中心

一项评价西达本胺联合联合泼尼松、环磷酰胺、依托泊苷及甲氨蝶呤治疗复发或难治性外周T细胞淋巴瘤的多中心、单臂、开放性II期临床试验 知情同意书 受试者姓名: 受试者姓名缩写: 受试者编号: 联系电话: 联系地址:

受试者须知 尊敬的患者:您好! 首先感谢您有意参加本项临床试验。在您同意参加本项临床试验之前,请您仔细阅读这份知情同意书,如果您愿意也可以和您的亲人或朋友商量,或向您的医生或研究人员提出任何您需要了解的问题,直至得到满意的答复。 参加本临床试验是自愿的,如果您同意参加,请您签署此知情同意书,并且保存该份经您和研究者双方签字的知情同意书副本。本临床试验遵循《药物临床试验质量管理规范》和《赫尔辛基宣言》,并获得国家食品药品监督管理局和医院伦理委员会的批准,这将会保证您的权益在本试验中不受侵犯。 签署知情同意书不会改变您的合法权益,仅表示您已经理解了这些信息并愿意参加本试验。 【试验目的和背景】 针对外周T细胞淋巴瘤(PTCL)目前尚无标准的治疗方案,一线治疗包括CHOP 方案(环磷酰胺、阿霉素、长春新碱和强的松四药联合)或CHOP类似方案,虽然可获得较高缓解率,但维持时间短,患者生存获益差。对于难治患者或缓解后再复发的患者,特别是对于因各种原因不能进行自体干细胞移植患者,二线治疗难度更大,因此治疗指南首选临床试验。 西达本胺(Chidamide,爱谱沙)是我国自主研发的亚型选择性组蛋白去乙酰化酶(HDAC)抑制剂,为 1.1类新药。在全国多家中心完成的西达本胺片治疗复发或难治性外周T细胞淋巴瘤的II期临床试验结果显示,西达本胺单药有效率为29.1%,常见不良事件为血液学毒性、胃肠道反应、食欲不振等,超过半数患者发生的不良事件为1-2级。这些结果显示,西达本胺安全性较好,主要不良反应为可控的血液毒性,并显示了较好的综合获益,口服给药方便。2014年12月23日国家食品药品监督管理总局(CFDA)批准西达本胺单药治疗复发或难治性PTCL。 本项临床试验的主要目的是在前期相同适应症的单药临床试验基础上,对西达本胺联合泼尼松、环磷酰胺、依托泊苷及甲氨蝶呤治疗复发或难治性PTCL的疗效和安全性进行评价,为西达本胺联合用药的临床应用进一步提供依据。 【试验设计和步骤】 试验将选择合适的患者参加,计划共计入选36例受试者。在入组筛选期间,为了确定您是否适合参加本项临床试验,您的医生将询问并记录您的病史、全身健康状况以及进行相关的检查。您将被要求抽血(约5~8毫升)以及留取尿标本进行血常规、血生化、电解质和尿常规等检查,同时进行皮肤病灶拍照评估、放射学和其他必要的检查,以便了解您的疾病情况是否符合参加本项临床试验的入选标准。 本研究包括联合治疗期和维持治疗期。在联合治疗期,您将接受西达本胺联合泼尼松、环磷酰胺、依托泊苷及甲氨蝶呤的治疗:西达本胺片每次30mg,每周服用2次

美国环保局 EPA 试验 方法 9066Phenolics (Colorimetric, Automated 4-AAP with Distillation)

9066 1 CD-ROM Revision 0 Date September 1986 METHOD 9066PHENOLICS (COLORIMETRIC, AUTOMATED 4-AAP WITH DISTILLATION) 1.0SCOPE AND APPLICATION 1.1This method is applicable to the analysis of ground water and of drinking, surface, and saline waters. 1.2The method is capable of measuring phenolic materials from 2 to 500ug/L in the aqueous phase using phenol as a standard. 2.0SUMMARY OF METHOD 2.1This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K Fe(CN)) and 364-amino-antipyrine (4-AAP) to form a red complex which is measured at 505 or 520 nm. 3.0INTERFERENCES 3.1Interferences from sulfur compounds are eliminated by acidifying the sample to a pH of < 4.0 with H SO and aerating briefly by stirring. 243.2Oxidizing agents such as chlorine, detected by the liberation of iodine upon acidification in the presence of potassium iodide, are removed immediately after sampling by the addition of an excess of ferrous ammonium sulfate (5.5). If chlorine is not removed, the phenolic compounds may be partially oxidized and the results may be low. 3.3Background contamination from plastic tubing and sample containers is eliminated by filling the wash receptacle by siphon (using Kel-F tubing) and using glass tubes for the samples and standards. 4.0APPARATUS AND MATERIALS 4.1Automated continuous-flow analytical instrument: 4.1.1 Sampler : Equipped with continuous mixer.4.1.2 Manifold .4.1.3 Proportioning pump II or III .4.1.4 Heating bath with distillation coil .4.1.5Distillation head .

那些临床试验需要注册

注册指南请仔细阅读本指南,如有疑问,请与我们联系。 一、什么样的临床研究需要注册? 所有在人体进行的研究,包括各种干预措施的疗效和安全性的有对照或无对照试验(如随机对照试验、病例-对照研究、队列研究及非对照研究)、预后研究、病因学研究、和包括各种诊断技术、试剂、设备的诊断性试验,均需注册并公告。 二、中、英文双语注册 在完成中文注册申请表后,必须于两周内完成英文注册申请表。如果两周内不能完成英文版,请与我们联系采用英文翻译服务。在完成中、英文注册资料的上传后15天内可获得注册号,一个月内可在世界卫生组织国际临床试验注册平台检索入口(WHO ICTRP search portal)检索到已注册试验。 未完成英文注册申请表者不算完成注册。 三、注册是否需要费用? 中国临床试验注册中心为非赢利机构,一律免费注册。 四、哪些项目需要收费? 1、只有那些需要我们指导设计的试验才收取一定的服务费用,仅仅用于维持机构运转。参考目前国际注册机构收费标准,任何类型的单个研究设计指导费用均为1500元; 2、翻译服务:500元。 五、伦理审查及其费用 中国临床试验注册中心组建的中国注册临床试验伦理审查委员会由资深各专业临床医学家、临床试验专家、医疗卫生服务用户代表、WHO患者安全保护联盟中国区代表、律师及药物公司代表组成,宗旨是保障受试者权益,审查临床试验的合理性,评估安全性,凡未经其他伦理委员会审查的临床试验均需在中国临床试验注册中心临床试验伦理委员会接受审查。临床试验伦理审查费用标准为每项2000元。 六、申请注册程序 1. 全部注册程序均为在线申报; 2. 首先在中国临床试验注册中心网站上建立申请者账户:点击ChiCTR首页右侧的“用户登陆”区的“注册”; 3. 弹出个人信息注册表,请将你的信息录入此表后点击“注册”,则您的账户就建立起来了;

美国环保局 EPA 试验 方法 8318

METHOD 8318 N-METHYLCARBAMATES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 1.0SCOPE AND APPLICATION 1.1Method 8318 is used to determine the concentration of N-methylcarbamates in soil, water and waste matrices. The following compounds can be determined by this method: _______________________________________________________________________________ Compound Name CAS No.a ________________________________________________________________________________ Aldicarb (Temik) 116-06-3 Aldicarb Sulfone 1646-88-4 Carbaryl (Sevin) 63-25-2 Carbofuran (Furadan) 1563-66-2 Dioxacarb 6988-21-2 3-Hydroxycarbofuran16655-82-6 Methiocarb (Mesurol) 2032-65-7 Methomyl (Lannate)16752-77-5 Promecarb 2631-37-0 Propoxur (Baygon) 114-26-1 ________________________________________________________________________________ a Chemical Abstract Services Registry Number. 1.2The method detection limits (MDLs) of Method 8318 for determining the target analytes in organic-free reagent water and in soil are listed in Table 1. 1.3This method is restricted to use by, or under the supervision of, analysts experienced in the use of high performance liquid chromatography (HPLC) and skilled in the interpretation of chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method. 2.0SUMMARY OF METHOD 2.1N-methylcarbamates are extracted from aqueous samples with methylene chloride, and from soils, oily solid waste and oils with acetonitrile. The extract solvent is exchanged to methanol/ethylene glycol, and then the extract is cleaned up on a C-18 cartridge, filtered, and eluted on a C-18 analytical column. After separation, the target analytes are hydrolyzed and derivatized post-column, then quantitated fluorometrically. 2.2Due to the specific nature of this analysis, confirmation by a secondary method is not essential. However, fluorescence due to post-column derivatization may be confirmed by substituting the NaOH and o-phthalaldehyde solutions with organic-free reagent water and reanalyzing the sample. If

美国环保局 EPA 试验 方法 3520c

METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION 1.0SCOPE AND APPLICATION 1.1This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration techniques suitable for preparing the extract for the appropriate determinative steps described in Sec. 4.3 of Chapter Four. 1.2This method is applicable to the isolation and concentration of water-insoluble and slightly soluble organics in preparation for a variety of chromatographic procedures. 1.3Method 3520 is designed for extraction solvents with greater density than the sample. Continuous extraction devices are available for extraction solvents that are less dense than the sample. The analyst must demonstrate the effectiveness of any such automatic extraction device before employing it in sample extraction. 1.4This method is restricted to use by or under the supervision of trained analysts. Each analyst must demonstrate the ability to generate acceptable results with this method. 2.0SUMMARY OF METHOD 2.1 A measured volume of sample, usually 1 liter, is placed into a continuous liquid-liquid extractor, adjusted, if necessary, to a specific pH (see Table 1), and extracted with organic solvent for 18 - 24 hours. 2.2The extract is dried, concentrated (if necessary), and, as necessary, exchanged into a solvent compatible with the cleanup or determinative method being employed (see Table 1 for appropriate exchange solvents). 3.0INTERFERENCES 3.1Refer to Method 3500. 3.2The decomposition of some analytes has been demonstrated under basic extraction conditions required to separate analytes. Organochlorine pesticides may dechlorinate, phthalate esters may exchange, and phenols may react to form tannates. These reactions increase with increasing pH, and are decreased by the shorter reaction times available in Method 3510. Method 3510 is preferred over Method 3520 for the analysis of these classes of compounds. However, the recovery of phenols may be optimized by using Method 3520 and performing the initial extraction at the acid pH. 4.0APPARATUS AND MATERIALS 4.1Continuous liquid-liquid extractor - Equipped with polytetrafluoroethylene (PTFE) or glass connecting joints and stopcocks requiring no lubrication (Kontes 584200-0000, 584500-0000, 583250-0000, or equivalent). CD-ROM3520C - 1Revision 3 December 1996

临床研究方案-中国临床试验注册中心

临床研究方案 放疗同步替吉奥胶囊治疗鼻咽癌 临床研究 研究者放射肿瘤科 医院海军总医院 申办者:海军总医院放射肿瘤科

一:前言 鼻咽癌是我国常见恶性肿瘤之一,在头颈部恶性肿瘤中占首位。发病率有明显的地区分布。据估计,世界上80%的鼻咽癌病例发生在我国。治疗首选放射治疗,放疗后年生存率约为34-53%。 到目前为止,其标准的治疗方案仍为以铂类药物为基础的联合化疗。由于铂类显著的肾毒性、消化道反应、血液学毒性,以及对生活质量的影响,在临床使用上受到限制。 替吉奥为抗代谢药物,有替加氟、吉美嘧啶、奥替拉西钾按1:0.4:1摩尔比组成。吉美嘧啶和奥替拉西钾通过对酶的抑制作用,使替加氟在体内生成5-氟尿嘧啶(5-FU)的有效浓度持续更长的时间,同时减少5-FU胃肠道副反应。适用于头颈部肿瘤及晚期胃癌、胰腺癌、结直肠癌、非小细胞肺癌等患者。临床荟萃分析显示,在晚期胃癌、胰腺癌、结直肠癌、非小细胞肺癌中使用替吉奥可以在提高疗效的同时,还能降低患者的不良反应的发生率。替吉奥联合同步放疗既能使肿瘤细胞的增殖周期发生改变,增加放疗的敏感性,同时不增加患者严重的不良反应发生率。 现进行放疗联合替吉奥胶囊治疗鼻咽癌的临床研究,以探讨该方案的疗效和不良反应。 二:研究目的 ◆主要研究终点:疗效(无进展生存期PFS,总生存期OS) ◆次要研究终点:不良反应(早期,晚期) 三:研究设计 本研究采用单中心、随机、平行对照试验设计,拟纳入病人50例。研究采用随机分组方法:组别1(25例)为替吉奥胶囊同步放化疗,组别2(25例)为氟尿嘧啶+顺铂(PF方案)同步放化疗,在放疗结束后维持化疗3周期治疗结束时评价疗效。任何时间发现病情进展均可停止治疗。

美国EPA200种潜在致癌物的危害等级

潜在致癌剂的危害等 级 致癌性是筛选优先污染物的重要依据之一,下表列出了美国EPA公布的200种致癌剂的危害等级。其中的参数含义为: 1、证据的充分程度(Degree of Evidence) 化学品对人体的致癌性证据之充分程度可以分为下列几类。 (1)证据充分,指致癌剂和人体癌症之间有因果关系。 (2)证据有限,指能提供一些可信的致癌性证据,但证据尚有限,还需作进一步补充。 (3)证据不充分,可能有3种情况,①能获取的致癌性数据很少;②与证据有关的研究尚不能排除偶然性、误差及混淆等情况;③研究结果无致癌性证据。 根据动物实验取得的致癌性证据的充分程度可分4级。 1级,致癌性证据充分。 2级,致癌性证据有限。 3级,致癌性证据不充分。 4级,无致癌性证据。 2、IARC标准分组 国际癌症研究所 (International Agency for research on cancer,简称IARC)将人类的肿瘤风险分为3组。 1组:列在此组内的化学品属致癌物,流行病学和暴露实验均已肯定,基致癌证据是充分的。 2组:化学品可能对人体有致癌性。其中有的对人体的致癌性证据几乎是“充分的”,另一类的证据不够充分。证据程度较高的为A组,较低的为B 组。例如,2A指对人体的致癌性至少存在着有限证据。当动物证据充分而人体数据不充分时,归入2B。 3组:列在本组中的化学品对人类没有致癌性。

3、潜力因素值F(Potency Factor Estimate) 潜力因素值F定义为1/ED 10。ED 10 等于10%终身致癌风险的致癌剂剂量。 F可以和致癌性的确认证据一起,用来划分化学品潜在致癌性的危险等级。 4、潜力因素分组(Potency factor Grouping) 由于潜力因素值F可表示致癌危险性的相对大小,因而,可将潜在致癌剂的相对潜力因素分为4组。潜力因素最高的化学品分在1组,中等潜力因素的为2组,低潜力因素的为3组,最低潜力因素的为4组。 5、致癌危害等级(Cancer Hazard Ranking) 根据人和动物试验所取得的致癌性证据,结合潜力因素分组数据,可将化学品致癌危害等级分为高、中、低3级。

相关文档
最新文档