数学实验分形实例

数学实验分形实例
数学实验分形实例

数学实验报告

学院:

班级:

学号:

姓名:

完成日期:

实验二分形

(一)练习题1

一.实验目的

1.了解分形几何的基本情况;

2.了解通过迭代方式,产生分形图的方法;

3.了解matlab软件中简单的程序结构。

二. 问题描述

对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。

三.实验过程

仿照Koch曲线代码对三角形的每条边进行Koch曲线

化,建立函数“snow”的输入参数有三角形的边长R和迭代次数k,输出Koch雪花图形以及雪花所围面积S.

源代码如下:

function snow(R,k)

p=[0;R/2+1i*R*sin(pi/3);R;0];

S=0;

n=3;

A=exp(1i*pi/3);

for s=1:k

j=0;

for i=1:n

q1=p(i,:);

q2=p(i+1,:);

d=(q2-q1)/3;

j=j+1;r(j,:)=q1;

j=j+1;r(j,:)=q1+d;

j=j+1;r(j,:)=q1+d+d*A;

j=j+1;r(j,:)=q1+2*d;

end

n=4*n;

clear p

p=[r;q2];

end

figure

q(:,1)=real(p(:,1));

q(:,2)=imag(p(:,1));

plot(q(:,1),q(:,2))

fill(q(:,1),q(:,2),'b')

for i=0:k

S=S+(3.^(0.5-i))*0.25*(R.^2); end

S

axis equal

按照以上程序,输入参数,有以下结果:>> snow(1,1) S =0.5774 图形如下:

>>snow(1,2) S =0.6255 图形如下:

>>snow(1,3) S =0.6415 图形如下:

>>snow(1,4) S =0.6468 图形如下:

>>snow(1,5) S =0.6486 图形如下:

四.总结分析和心得体会

根据观察迭代的面积规律,即可推得面积递推公式:错误!未找到引用源。,其中错误!未找到引用源。即:面积公式错误!未找到引用源。,也就等于

错误!未找到引用源。

分形维数,根据迭代的规律得到:

相似形个数:m=4

边长放大倍数c=3,

维数d=ln m/ln c=ln 6/ln 3=1.631

(二)练习题2

一.实验目的

1.了解分形几何的基本情况;

2.了解通过迭代方式,产生分形图的方法;

3.了解matlab软件中简单的程序结构。

二. 问题描述

对一条竖线段,在其三分之一分点处,向左上方向画一条线段,在其三分之二点处,向右上方向画一条线段,线段长度都是原来的三分之一,夹角都为30度,迭代一次后变成图3-22.继续迭代得到分形图,可模拟树木花草,编制程序绘制出它的图形。

三.实验过程

代码如下:

function tree(z1,z2,N,n)

if n>N

return

end

if n==1

d=(z2-z1)/3;

q1=z1+d+d*exp(1i*pi/6);

q2=z1+2*d+d*exp(-1i*pi/6);

plot([z1+d,q1])

hold on

axis equal

plot([z1+2*d,q2])

plot([z1,z2])

tree(z1,z2,N,n+1)

else

d=(z2-z1)/3;

q1=z1+d+d*exp(1i*pi/6);

q2=z1+2*d+d*exp(-1i*pi/6);

plot([z1+d,q1])

plot([z1+2*d,q2])

tree(z1+d,q1,N,n+1);

tree(z1+d,z1+2*d,N,n+1);

tree(z1+2*d,q2,N,n+1);

tree(z1+2*d,z2,N,n+1);

end

其中N为迭代次数,n的初始值为1,输入以下代码:tree (0,10i,2,1) 图形如下:

tree (0,10i,3,1)

图形如下:

tree (0,10i,4,1) 图形如下:

tree (0,10i,5,1) 图形如下:

tree (0,10i,6,1) 图形如下:

四.总结分析和心得体会

通过本次的实验,我更了解了几合分形图以及用matlab软件产生几合分形图的方法、程序结构。总的来说,通过本次实验,学习到了matlab软件的一种

新的用法,对自己的数学实验能力又提升了不少。体验了通过图形迭代方式产生分形图的过程,迭代的规则非常简单,产生的结果却异常奇妙,并且这些图形很好地反映出了分形所具有的自相似的层次结构。

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

Matlab实验报告:分形迭代

数学实验报告:分形迭代 练习1 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。 4.实验步骤: (1)Koch曲线 function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数 if (n==0) plot([real(p);real(q)],[imag(p);imag(q)]); hold on; axis equal else a=(2*p+q)/3; % 求出从p 到q 的1/3 处端点a b=(p+2*q)/3; % 求出从p 到q 的2/3 处端点b c=a+(b-a)*exp(pi*i/3);% koch(p, a, n-1); % 对pa 线段做下一回合 koch(a, c, n-1); % 对ac 线段做下一回合 koch(c, b, n-1); % 对cb 线段做下一回合 koch(b, q, n-1); % 对bq 线段做下一回合 end (2)Sierpinski三角形 function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数 if (n==0) fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abc hold on; axis equal else a1=(b+c)/2; b1=(a+c)/2; c1=(a+b)/2; sierpinski(a,b1,c1,n-1); sierpinski(a1,b,c1,n-1); sierpinski(a1,b1,c,n-1); end (3)树木花草 function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

分形树__Matlab

%这是一个生成树的主函数,它的输入分别为每叉树枝的缩短比、树枝的偏角、生长次数. %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %%小提示:若用做函数,请将虚线框内语句删去。 function f=tree(w,dtheata,NN) %%%--------------------虚线框--------------------%%% clear;clc;clf;w=0.8;dtheata=pi/6;NN=8;%建议生长次数NN不要超过10 %%%--------------------虚线框--------------------%%% n=2^NN;%从主枝算起,共需生成2^NN个树枝 for NNK=1:n x1=0; y1=0; r1=1; theata1=pi/2; dataway=ten2twoN(NNK,NN); %把每一个树枝的编号转化为一个NN位的二进制数 for NNL=1:NN if dataway(NNL)==0 [x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata);%若路径数组上对应的数字为0,则向左生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) else [x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata);%否则,数字为1,向右生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) end end end hold off %--------------------------------------------------------------------------

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

Newton分形的原理及Matlab实现

龙源期刊网 https://www.360docs.net/doc/c03961386.html, Newton分形的原理及Matlab实现 作者:张健徐聪全付勇智 来源:《电脑知识与技术》2009年第24期 摘要:详细推导了复平面上Newton迭代法的原理和计算公式,用MATLAB编制程序实现了Newton迭代算法,得到了一些奇异、绚丽的分形图形。对《数学实验》课程有一定的参考价值。 关键词:Newton迭代法;分形;Matlab;数学实验 中图分类号:TP312文献标识码:A文章编号:1009-3044(2009)24-6997-03 The Principles of Newton Fractal and it's Realization Using MATLAB ZHANG Jian, XU Cong-quan, FU Yong-zhi (Department of Basic Courses, Southwest Forestry College, Kunming 650224, China) Abstract: The Principles and formulas of Newton fractal was explained,fractal graphics of Newton iteration was created using Matlab. Key words: newton iteration; fractal; Matlab; mathematical experimental 分形是非线性科学的一个重要分支,应用于自然科学和社会科学的众多领域。其中,分形图形以其奇异、绚丽多彩的特点,广泛应用于纺织印染、广告设计、装潢设计、计算机美术教学 等领域[1]。 很多分形图形都是用迭代的方式实现的,Newton迭代法就是其中的一种。由Newton迭代 法产生的分形图形称为Newton分形[2]。很多文献都对Newton分形进行了介绍,但都没有详细的计算公式和算法说明,读者很难编制相应程序。本文详细介绍了复平面上Newton迭代法的原理和计算公式,设计了相应的实现算法,并用Matlab编制程序实现了Newton分形的绘制,生成了一些奇异、瑰丽的分形图形。

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

分形几何与斐波那契数列的对比

摘 要 分形是美籍法国应用数学家蒙德布罗特所提出的,它和英文中的 fracture(断裂)和fraction (分数)有一定联系,体现出蒙德布罗特创立这 个新的几何思想。分形几何作为一门新兴的交义学科,正在被越来越多的人 所认识和学习。据美国科学家情报所调查,八十年代,全世界有1257种重要 学术刊物所发表的论文中,有37.5%与分形有关。美国著名的物理学家Wheeler 说:“可以相信,明天谁不熟悉分形,谁就不能被认为是科学上的文化人”】16【。 传统的欧式几何主要研究对象是规则图形和光滑曲线,对自然景物的描述却 显得无能为力。而分形几何的创立,就是用来描述那些欧式几何无法描述的 几何现象和事物的,被誉为“大自然本身的几何学”,使自然景物的描绘得以 实现,这也是分形几何得到高度重视的原因之一。 斐波那契数列产生于一个关于兔子繁殖后代的问题:某人有一对兔子饲 养在围墙中,如果它们每个月生一对兔子,且新生的兔子在第二个月后也是 每个月生一对兔子,问一年后围墙中共有多少对兔子?斐波那契数列从问世 到现在,不断显示出它在数学理论和应用上的重要作用。如今,斐波那契数 列渗透到了数学的各个分支中。同时,在自然界和现实生活中斐波那契数列 也得到了广泛的应用。如一些花草长出的枝条会出现斐波那契数列现象,大 多数植物的花的花瓣数都恰是斐波那契数列等等。 斐波那契数列又被称为是黄金分割数列,而黄金分割本身就是一种分形 的例子。二者都可以解决一些传统数学所不能解决的问题,所不同的是分形 几何是通过几何的角度来解决问题,而斐波那契数列则是通过代数的角度来 解决实际问题。 作为一门新兴的对现实生活有重要影响的两个定义,研究两者的对比关 系,探讨如何更好地运用这两个定义来解决现实中的一些实际问题,具有重要 意义。 关键字:斐波那契数列;分形几何;应用;对比 ABSTRACT Fractal is first put forward by French-American applied mathematician Mandelbrot. It relates to the words “fracture” and “fraction”, reflecting Mandelbrot’s opinion on creating the new definition. As a rising interdiscipline subject, Fractal is being understood and learned by more and more people. According to the survey of

分形——分形树

分形(二)——分形树 上次我们画出了谢尔宾斯基三角形,这次我们所画分形图形同样也是比较简单的——分形树,记得在上次的递归里~我们传入的参数是所绘的点的坐标,但这种方法并不一定的最好的,在绘制分形图案的时候,使用递归,所传参数应根据实际情况来定:(可以是角度,变长等) 同学们可以自己也试着画一下分形:这是今天的题目: 分形树一次递归调用: 分形树两次递归调用:

分形树六次递归调用: 分形树十次递归调用: 分形树二十五次递归调用

后面的我不敢往下试了——机子会爆掉的…… 下面是绘制次分形树的方法: package Elps; import java.awt.Graphics; import javax.swing.JFrame; public class Main extends JFrame { /** * @param args */ p ublic static void main(String[] args) { // TODO Auto-generated method stub Main a = new Main(); a.draw(); } public void draw(){//绘制窗体,添画布 this.setSize(1000,700);// this.setLocationRelativeTo(null);

this.setDefaultCloseOperation(3); this.setVisible(true); Graphics g = this.getGraphics(); } public void paint(Graphics g){ super.paint(g); this.Show(500,550,100, Math.PI/2,0,Math.PI/6,25,g); //(Math.PI为180°) } public void Show(double x0,double y0,double l,double a,double b,double c,double count,Graphics g){ double x2; double y2; double x3; double y3; double x4; double y4; double x5; double y5; if(count<1) { return; }//判断是否继续进行递归调用,注意:判断一定要放在递归调用之前,否则这段代码将永远不会被执行 x2 = x0 - l*Math.cos(a); y2 = y0 - l*Math.sin(a); x3 = x2 - l*Math.cos(b); y3 = y2 - l*Math.sin(b); x4 = x0 - l*Math.cos(b); y4 = y0 - l*Math.sin(b); x5 = x2 - l*Math.cos(Math.PI/6)*Math.cos(c); y5 = y2 - l*Math.cos(Math.PI/6)*Math.sin(c); //计算五个点的位置,以右下点为(X0,Y0) g.drawLine((int)x0, (int)y0, (int)x2, (int)y2); g.drawLine((int)x2, (int)y2, (int)x3, (int)y3); g.drawLine((int)x3, (int)y3, (int)x4, (int)y4); g.drawLine((int)x4, (int)y4, (int)x0, (int)y0); g.drawLine((int)x2, (int)y2, (int)x5, (int)y5); g.drawLine((int)x5, (int)y5, (int)x3, (int)y3); //划线——注意方法所需要的数据类型 Show(x2,y2,l*Math.cos(Math.PI/6),a+Math.PI/6,b+Math.PI/6,c+Math.PI/6,count-1,g);

几个分形matlab实现

几个分形的matlab实现 摘要:给出几个分形的实例,并用matlab编程实现方便更好的理解分形,欣赏其带来的数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设 1 P和 5 P分别为 原始直线段的两个端点,现需要在直线段的中间依次插入三个点 2 P, 3 P, 4 P。显然 2 P位 于线段三分之一处, 4 P位于线段三分之二处, 3 P点的位置可看成是由 4 P点以 2 P点为轴心,逆时针旋转600而得。旋转由正交矩阵 ?? ? ? ? ? ? ? - = ) 3 cos( ) 3 sin( ) 3 sin( ) 3 cos( π π π π A 实现。 算法根据初始数据( 1 P和 5 P点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个2 5?矩阵,矩阵的第一行为 1 P的坐标,第二行为 2 P的坐标……,第五行为 5 P的坐标。矩阵的第一列元素分别为5个结点的x坐标,第二列元素分别为5个结点的y坐标。 进一步考虑Koch曲线形成过程中结点数目的变化规律。设第k次迭代产生的结点数为k n,第1 + k次迭代产生的结点数为 1+ k n,则 k n和 1+ k n中间的递推关系为3 4 1 - = +k k n n。

三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch分形曲线: 图2 五、注记: 1.参照实验方法,可绘制如下生成元的Koch 分形曲线:

分形图程序

(1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中 [A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3;

ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by]; %把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中 %每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标 function w=sub_koch2(A,B) a11=A(1);b11=B(1); a12=A(2);b12=B(2); a21=A(2);b21=B(2); a22=A(3);b22=B(3); a31=A(3);b31=B(3); a32=A(4);b32=B(4); a41=A(4);b41=B(4); a42=A(5);b42=B(5); w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

Matlab实现 递归算法生成3维分形树ByLinking

Matlab实现递归算法生成3维分形树 注:此算法树根在侧面,需对坐标轴进行旋转便可得到上图效果 以下代码全部粘贴到一个M文件中命名为TreeByL即可运行 为方便网友研读代码加入了大量注释 同时愿与matlab程序爱好者进行交流:Linking508@https://www.360docs.net/doc/c03961386.html, %%%%%%%%%%%%%%%%%%%%%%%%%%%% %Matlab实现递归算法生成3维分形树 %ByLinking %%%%%%%%%%%%%%%%%%%%%%%%%%%% function TreeByL L=15;%主干长 a=0; b=pi/3; r=0;%r=pi/5; %分支生成函数 makeBranch(0,0,0,L,a,b,r); % a在XOZ平面投影与X轴夹角b与Y轴的夹角r与主干的夹角 function makeBranch (x,y,z,L,a,b,r) B=pi/5;s1=1.5;s2=3;s3=1.2;%B枝干的倾斜度C主干的倾斜度s1细腻程度s2分支收缩速度s3主干收缩速度 % B=pi/5;s1=1.5;s2=2.4;s3=1.35; if L>s1 x1=x+L/s2*cos(a)*cos(r);

y1=y+L/s2*sin(a); z1=z+L/s2*cos(a)*sin(r); x1R=x1+L/s2*cos(a-b)*cos(r); y1R=y1+L/s2*sin(a-b); z1R=z1+L/s2*cos(a-b)*sin(r); x1L=x1+L/s2*cos(a+b)*cos(r); y1L=y1+L/s2*sin(a+b); z1L=z1+L/s2*cos(a+b)*sin(r); x1F=x1+L/s2*cos((a-b)*sin(a))*cos(r+atan(1/cos(a))); y1F=y1+L/s2*sin((a-b)*sin(a)); z1F=z1+L/s2*cos((a-b)*sin(a))*sin(r+atan(1/cos(a))); x1B=x1+L/s2*cos((a-b)*sin(a))*cos(r-atan(1/cos(a))); y1B=y1+L/s2*sin((a-b)*sin(a)); z1B=z1+L/s2*cos((a-b)*sin(a))*sin(r-atan(1/cos(a))); %------------------------------------------------------ x2=x+L/s2*cos(a)*cos(r); y2=y+L/s2*sin(a); z2=z+L/s2*cos(a)*sin(r); x2R=x2+L/s2*cos(a-b)*cos(r); y2R=y2+L/s2*sin(a-b); z2R=z2+L/s2*cos(a-b)*sin(r); x2L=x2+L/s2*cos(a+b)*cos(r); y2L=y2+L/s2*sin(a+b); z2L=z2+L/s2*cos(a+b)*sin(r); x2F=x2+L/s2*cos((a-b)*sin(a))*cos(r+atan(1/cos(a))); y2F=y2+L/s2*sin((a-b)*sin(a)); z2F=z2+L/s2*cos((a-b)*sin(a))*sin(r+atan(1/cos(a))); x2B=x2+L/s2*cos((a-b)*sin(a))*cos(r-atan(1/cos(a))); y2B=y2+L/s2*sin((a-b)*sin(a)); z2B=z2+L/s2*cos((a-b)*sin(a))*sin(r-atan(1/cos(a))); plot3([x,x2],[y,y2],[z,z2],'k');hold on;set(gcf,'color','w');grid on;view(pi/2,0);%axis off;xlabel('X Label');ylabel('Y Label');zlabel('Z Label'); set(gca,'xlim',[0,25],'ylim',[-15,15],'zlim',[-15,15]); plot3([x2,x2R],[y2,y2R],[z2,z2R],'g');hold on; plot3([x2,x2L],[y2,y2L],[z2,z2L],'g');hold on; plot3([x2,x2B],[y2,y2B],[z2,z2B],'g');hold on;

相关文档
最新文档