层流冷却中卷取温度精度的优化

层流冷却中卷取温度精度的优化
层流冷却中卷取温度精度的优化

热轧厂层流冷却装置改造中的设备设计

· 16 · 钢 铁 技 术 2004年第1期 ·冶金设备· 热轧厂层流冷却装置改造中的设备设计 陆大成潘光明 (中冶赛迪公司设备设计室, 重庆400013) 【摘 要】针对热轧厂层流冷却在带钢热轧生产线上的重要作用,根据层流冷却的工作原理,对热轧生产线层流冷却装置的结构、集管布置技术要求进行了深入的论述和探讨。并结合某热轧厂的设备设计工作对层流冷却系统的层流模型进行了理论计算,同时通过对原有层流冷却系统的改造,取得了满意的效果。这对以后热轧层流冷却系统的设计及改造具有很好的指导意义。 【关键词】热轧带钢轧机 层流冷却 计算机控制 1 概述 层流冷却装置是热轧带钢生产的关键设备,它的作用是为了获得合适的带钢卷取温度和控制带钢最终的机械性能。层流冷却的能力、冷却强度、冷却速度、终冷温度的控制精度都直接影响到最终产品的质量和性能。要想得到机械性能良好的带钢,必须使带钢在热输出辊道上高速运行的过程中由终轧温度900°C左右迅速冷却到卷取温度550°C至600°C。而带钢上的一点在热输出辊道上运行的时间只有10 s~50 s左右,只有安装层流冷却装置才能实现上述要求。因此,对层流冷却设备的研究与应用已成了热带钢连轧机中的必要环节,在国内外冶金领域被普遍重视。 2 层流冷却工作原理 带钢层流冷却装置基本工作原理是使带钢表面上覆盖一层最佳厚度的水量,利用热交换原理使带钢冷却到卷取温度。所采用的具体方式是使低压力、大水量的冷却水平稳地流向带钢表面,冲破热带钢表面的蒸汽膜,随后紧紧地贴附在带钢表面而不飞溅。这些柱状水流接触带钢表面后有一定的方向性,当冷却水吸收一定热量而随带钢前进一段距离后,侧喷嘴喷出的高压水使冷却水不断更新,从而带走了大量的热量。下部冷却是采用喷射的形式并与上部冷却相对应同步进行。为了使用最佳供水量和提高冷却精度,在国内外普遍采用了计算机控制的层流冷却设备,以满足轧制速度日益提高、产量大幅增加的需要, 同时也保证了产品的质量。 在使用层流冷却装置进行温度控制的过程 中,影响温降的因素很多,所以要求层流冷却装 置的上、下喷水段及喷水冷却组的水量和水压相 对稳定,供水总管的压力与流量也要相对稳定。 其次,要求侧喷水、辊道的冷却水等的水压和流 量也要相对稳定。这样才能尽可能减少层流冷却 的变化因素。为了保证水压的稳定,现在热轧厂 广泛采用的是机旁高位水箱型式,采用这种方式 可以在层流冷却集管频繁开闭和供水水源压力波 动的情况下稳定集管压力。水量的大小根据轧制 的钢种、带钢厚度、轧制速度以及卷取温度控制 要求采用计算机来精确控制。 3 主要工艺参数 某热轧厂带钢层流冷却装置布置在F6机架 与现有卷取机之间,冷却段长度为 62.4 m,由 12段组成,前9组为粗冷段,后3组为精冷段, 层流冷却系统布置如图1所示。 ·年产量:243.75万t; ·小时产量:530 t; ·最高轧机速度:11 m/s(最高卷取速度为 15 m/s); ·最大卷重:23 t; ·卷对卷最短间歇时间:15 s; ·终轧温度范围:820°C~950°C;

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

LM35数字温度计(最新)

课程设计任务书 课程设计内容与要求: 以所学EDA课程内容为核心,结合LM35温度传感器,及A/D转换器等内容,设计所需的测温系统。 所设计的温度计的额定温度范围为-55℃—155℃,程序设计部分可利用所学二十四进制计数器进行改编。对于其他辅助设备,A/D转换器等内容等需查阅资料,对符合要求的型号进行筛选,选出符合条件且最经济适用的部分。确定其精度大小,适用范围及在整个系统中的连接设置。 将EDA技术应用于芯片设计和系统设计,可极大提高电路设计的效率和可靠性,且节约设计成本。在实验过程中锻炼了我们的动手能力。 目录 1.LM35温度传感器测温系统摘要………………………… 2.绪论——整个课程设计的思路…………………………… 3.Protel99绘图过程………………………………………… 4.LM35温度传感器介绍…………………………………… 5.主要芯片及程序…………………………………………… 6.技术总结…………………………………………………… 7.参考文献…………………………………………………… 8.致谢………………………………………………………… 摘要 现在EDA技术是电子设计的重要工具,其核心是利用计算机完成电路设计的全程自动化,将EDA技术应用于芯片设计和系统设计,可极大提高电路设计的效率和可靠性,节约设计成本,减少设计人员的劳动强度。 本次课程设计以EDA技术为主体,辅助学习传感器原理,A/D转换器原理,设计LM35温度传感器测温系统,运用LM35为温度传感器收集信号,因为用计算机来构建数据采集系统时看,利用温度传感器的敏感特性,去检测周围的温度,所经采集的温度信号时连续的信号,而计算机能处理不连续变化的信号,因此必须用A/D转换器将模拟信号转换为电信号后进行处理,所以再利用A/D转换器将收集到的模拟信号转换为电信号送入计算机进行处理,再利用显示电路把转换后的数字信号显示出来。 本次设计将介绍EP2C5Q208C8芯片,温度传感器LM35及AD521芯片的基本原理和特点,及利用protel99画图的简要过程。 绪论 本次课程设计主要对常规数字温度计设计。LM35温度传感器测温系统的主要功能是测量周围环境的温度,在各类民用控制,工业控制以及航空航天技术方面,温度测量得到了广泛的使用。小型、低功耗、可靠性高、低成本的LM35温度传感器便得以备受关注,利用LM35为温度传感器,去收集周围环境的温度信号即可。因为所采集的温度信号是连续变化的模拟量,而只要功能芯片EP2C5Q208C8能处理不连续的信号,因此,必须用A/D转换器将模拟信号转换成数字信号,再放大相应的倍数,才能送给主芯片进行处理,再利用显示电路把转换后的数字信号显示出来。 对于显示电路的连接必须注意只能与能满足其需要的特定I/O口连接看,否则可能会导致显示的数值出现异常。 一.Protel 99 SE 绘图过程 设置原理图设计环境,设计环境对画原理图人影响很大,在画原理图之前,应该把设计环境设置好,工作环境是使用DESIGN/OPTIONS和TOOL/PREFERENCE菜单进行的,画原理图环境的设置主要包括图纸大小,捕捉栅格,电气栅格,模板设置等。 A.放置元件。将电气和电子元件放置到图纸上,一般情况下元件的原理图符号在元件库中都可以找到,只需要将元件从元件 库中取出,放置在图上,但由于本次设计中有一些新元件,故还要自己画元件。 B.画元件图。1、首先选择菜单FILE/NEW,然后在出现的窗口选择SCHEMA TIC LIBRARY DOCUMEN T图标建立一个元件 库,该库的缺省名为SCHLIBL.LIB;在设计管理器窗口中双击该元件库,这就进入了画元件图窗口,在元件管理器窗口,可以看到已经给元件取了个缺省名COMPONENT_ 。2、进入编辑窗口后使用page up键将窗口放大,放大到能清楚地看到可视栅格。3、然后使用绘图工具箱中的工具依次绘出所需使用的元件,如LM35、芯片ADC0809、芯片EP2C5Q208C8、

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

层流冷却系统流量标定与板形控制

层流冷却系统流量标定与板形控制 唐运章 (中厚板卷厂) 摘 要:讨论中厚板冷却系统流量标定问题,开发一种新型流量控制技术,通过标定调节阀在不同开口度下集管流量值,利用三次方方程回归出流量-调节阀开口度设定曲线;生产中根据流量开口度曲线进行水比的调整,提高冷却系统流量控制精度以及控冷后板形。 关键词:中厚板 层流冷却 流量标定 控冷板形 Flow Ca li bra ti on of Lam i n ar Cooli n g System and Prof ile Con trol Tang Y unzhang (W i de Pl a te/Co il Pl an t) Abstract:The paper discusses fl ow calibrati on of la m inar cooling syste m.A ne w type of fl ow contr ol technique has been devel oped.The accuracy of fl ow contr ol and p r ofile after contr olled cooling can be i m p r oved by calibrating fl ow value of header p i pe that contr ol valve is at different opening,regressing fl ow with cube,setting curve with opening degree and adjusting water rate based on the curve in p r oducti on. Keywords:heavy p late;lam inar cooling;fl ow calibrati on;contr olled cooling p r ofile 前言 中厚板卷厂控制冷却系统采用的冷却方式为集管层流冷却,产品大纲主要是船板、工程结构钢、锅炉板、熔器板、部分管线X42-X65。近年来,控轧控冷(T MCP工艺)技术广泛应用,开发出不同组织结构的高强钢;但是,由于冷却不均带来的板形问题,对产品的质量产生了一些负面影响。例如:X70级别以上管线、Q550D、Q609D级别以上结构钢等,在高速冷却速率下板形发生瓢曲,70%~80%产品需要下线后进行返矫,有10%的产品返矫也不能满足产品质量要求,只能降级处理,因此板形瓢曲已经成为利用T MCP技术进行高强钢开发的瓶颈。 本文以集管层流冷却方式为背景,根据现场测量数据,分析调节阀开口度与流量曲线特性,并针对冷却过程中引起的板形缺陷进行讨论,通过对冷却水开启方式、水比、冷却速度和矫直工艺等的调整,解决钢板在冷却后瓢曲问题。 1 层流冷却设备 层流冷却系统由水箱、水管、集管、吹扫装置组成(见图1),集管共有32组,其中1~10组为粗调区、11~20组为精调区、2~32组为微调区,每组分上、下两条管路,分别用来冷却钢板的上、下表面。每个集管上安装手动阀、电动流量调节阀和电磁开关阀。电动流量调节阀用于集管流量的控制,电磁开关阀用于集管冷却水的开关。

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

数字温度计设计报告

文理学院 单片机课程综合设计 设计题目:数字温度计 学号: 3 姓名:洋 班级: 2013级电气S2班提交日期: 2016.01.14 电子电气工程学院

目录 一.引言 二. 设计务任和要求 三. 系统总体方案及硬件设计 四. 系统软件算法分析 五. 电路仿真 六. 电路板制作过程 七. 电路调试过程 八. 总结与体会 九. 参考文献 十. 源程序

一引言 随着电子技术的不断发展,我们能应用到的电子产品也越来越多。而生活中我们用的很多电子产品都越来越轻巧,价格也越来越便宜.利用电子芯片实现的东西也越来越来越多,比如数字温度计。当然,非电子产品的常用温度计也很便宜。此次课设论文所介绍的是自己动手制作的一个高精度数字温度计。本次课设不但丰富了课余生活,还从实践中学到并了很多新知识,并从中巩固了以前的知识。 用Protel 99软件来设计制作电路板——PCB(Printed circuit Bound)。在PCB上,布置一系列的芯片、电阻、电容等元件,通过PCB上的导线相连,构成电路,一起实现一定的功能。电路通过连接器或者插槽进行输入/输出,有时还有显示部分(如发光二极管LED、.数码显示器等)。可以说,PCB是一块连接板,它的主要目的是为元件提供连接,为整个电路提供输入输出端口和显示,电气连接通性是PCB最重要的特性之一。PCB在各种电子设备中有如下功能:(1)提供集成电路等各种电子元件固定、装配的机械支撑。(2)实现集成电路等各种电子元件之间的布线和电气连接或电绝缘,提供所要的电气特性。(3)为电动装配提供阻焊徒刑,为元器件插装、检查、维修提供识别符和图形。 做本课题的所用到的知识是我们学过的模拟电子电路以及数字逻辑电路等,当然还用到了刚刚学过不久的单片机知识。本次课设是把理论和实践结合起来,这不但可以锻炼自己的动手能力,而且还可以加深对数字逻辑电路和模拟电子电路的学习和理解。同时也激起了我学好单片机的斗志。为了全面清晰的表达,本论文用图文并茂的方式,尽可能详细的地介绍此次设计的全过程。 二设计务任和要求 2.1、基本围-20℃——100℃ 2.2、精度误差小于0.5℃ 2.3、LED 数码直读显示 2.4、可以任意设定温度的上下限报警功能 三系统总体方案及硬件设计 3.1数字温度计设计方案论证 3.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。而且在对采集的信号进行放大时容易受温度的影响从而出现较大的偏差。 3.1.2 方案二

热轧带钢层流冷却水处理系统设计改进

热轧带钢层流冷却水处理系统设计改进 热轧带钢厂水处理系统中,根据层流冷却的用水特点,均将其作为一个单独的系统进行处理。层流冷却的用水主要有以下特点:一是流量大,一般在6000m3/h(100×104t钢卷/a)至18000m3/h(450×104t 钢卷/a)之间;二是压力低,但要求压力稳定,层流集管处要求压力为0.07MPa;三是对水质指标的要求比浊环水低,因此系统的处理率要求较低,且水中的氧化铁皮粒度细、含油量小;四是水量变化大,用水量随轧制钢板的品种而变化。用水指标详见表1。

本文拟就层流冷却系统的水量平衡和水质稳定以及节能措施两个方面对水处理层流冷却系统的工艺流程设计进行探讨。 1 层流冷却系统的水量平衡和水质稳定

热轧带钢热输出辊道有3种不同压力的用水,即:层流冷却(0.07MPa)、层流辊道冷却(0.3MPa)、层流侧喷(1.2MPa)。其中辊道冷却和侧喷水的水质、水温、水压与浊循环系统的用水差不多,因此许多厂的层流冷却系统中层流辊道冷却和层流侧喷就是直接使 用的浊循环系统的辊道冷却水(0.3MPa)和轧辊冷却水(1.2MPa见图1)。 1.1 两个系统的水混用方式的缺点 ①层流冷却用水经各厂运行实践证明,因其含油量很少,悬浮物去除率要求不高,故该系统不必设除油、除渣设施。但浊环水中含有一定的油(≤5mg/L),因此,若浊环水长期进入层流系统,会因层流系统未设除油设施而造成该系统水中油含量增加,甚至使水质恶化。 ②层流系统因用了浊环系统的水,必须将等量的水返回浊环系统,但这在水量上较难以准确控制,易造成两个系统间水量不平衡。

③层流冷却系统用水的温度及悬浮物较浊环水系统高,因此层流的回返水不能返回至浊环储水池直接给用户用,而必须返回至浊环系统的平流沉淀池经过滤、冷却之后才能满足浊环水的水质要求,这样就增加了浊环水系统的处理负荷,造成投资与运行费用的增加。1.2 两个系统分开要解决的问题 笔者认为层流系统的辊道冷却及侧喷水宜由层流冷却系统自身供给,与浊环系统彻底分开,这样能完全保证该系统的水量平衡和水质的稳定。但这样作有两个问题需要解决: ①层流辊道冷却及侧喷水要求温度<35℃,悬浮物<20mg/L,而层流冷却水温度一般在38℃以上,悬浮物一般在40mg/L以上,因此需进行处理。这在设计上我们已找到解决的办法:层流冷却流程是将回水中一部分水进行旁通过滤、冷却,然后与未处理的水混合以降低全系统用水的悬浮物含量及温度,再供用户使用。经过滤、冷却后的水中悬浮物<15mg/L,温度<33℃。只要在层流储水池旁建一侧喷储水池,将过滤降温后的水先引入该水池再溢流入层流储水池中与未处理的水混合供层流用,而侧喷储水池的水则供层流辊道和侧喷用,可保证这两用户的水质和水温。而这两部分水量与层流冷却水量相比只占很小比例,不必增加层流冷却系统的旁滤量。 ②辊道冷却及侧喷需单独设泵组及管道,因此可能会引起投资的增加。其实,这两部分水无论是来自层流冷却系统还是来自浊环水系统其动力消耗是一样的,即运行费用一样。层流增设了两组泵但浊环系统的处理能力减小了,两者相比设备费用变化不大。至于管道,虽

高精度温度传感器芯片调研及选型指导

型号ADT7410ADT7411输出类型:Digital Digital 精度:±0.5°C(?40°C 至+105°C,2.7 V 至3.6 V)Typ=±0.5 Max =±3 °C from 0°C to 85°C. Typ=±2 Max=±5 °C from ?40°C to +120°C (@VDD=3.3V±10%) 数字输出 - 总线接口:2-Wire, I2C, SMBus3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V 电源电压-最小: 2.7 V 2.7 V 最大工作温度:+ 150 C+ 120 C 最小工作温度:- 55 C- 40 C 安装风格:SMD/SMT SMD/SMT 封装 :SOIC-8QSOP-16 设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI 数字输出 - 位数:16 bit10 bit 电源电流:230 uA 3 mA 温度分辨率:0.0078°C0.25°C 温漂: 温度迟滞:0.02°C(温度循环= 25°C至125°C 并返回至25°C) 可重复性:0.01°C(25°C)

型号AD592ADT6501 输出类型:Analog Digital 精度:0.5°C MAX @ 25°C Typ=±0.5 Max= ±6 °C from ?45°C to ?25° C Typ=±0.5 Max=±4 °C from ?15°C to +15° Typ=±0.5 Max=±4 °C from +35°C to +65 °C 数字输出 - 总线接口:2-Wire, I2C, SMBus- 电源电压-最大:30 V 5.5 V 电源电压-最小: 4 V 2.7 V 最大工作温度:+ 105 C+ 125 C 最小工作温度:- 25 C- 55 C 安装风格:Through Hole SMD/SMT 封装 :TO-92-3SOT-23-5 设备功能:Temperature Transducer Temperature Switch 商标:ADI ADI 数字输出 - 位数:11 bit 电源电流:50 uA 温度分辨率: 温漂:0.08°C (Drift over 10 years, if part is operated at 55°C) 温度迟滞:可重复性:

基于AD590的高精度四位数数字温度计

高精度四位数数字温度计 1.温度传感器AD590基本知识 AD590产生的电流与绝对温度成正比,它可接收的工作电压为4V-30V,检测的温度范围为-55℃-+150℃,它有非常好的线性输出性能,温度每增加1℃,其电流增加1u A。 AD590温度与电流的关系如下表所示 AD590引脚图 2.实验任务 利用AD590温度传感器完成温度的测量,把转换的温度值的模拟量送入ADC0809的其中一个通道进行A/D转换,将转换的结果进行温度值变换之后送入数码管显示。3.电路原理图

图4.30.1 4.系统板上硬件连线 (1).把“单片机系统”区域中的P1.0-P1.7与“动态数码显示”区域中的ABCDEFGH 端口用8芯排线连接。 (2).把“单片机系统”区域中的P2.0-P2.7与“动态数码显示”区域中的S1S2S3S4S5 S6S7S8端口用8芯排线连接。 (3).把“单片机系统”区域中的P3.0与“模数转换模块”区域中的ST端子用导线相连接。

(4).把“单片机系统”区域中的P3.1与“模数转换模块”区域中的OE端子用导线相连接。 (5).把“单片机系统”区域中的P3.2与“模数转换模块”区域中的EOC端子用导线相连接。 (6).把“单片机系统”区域中的P3.3与“模数转换模块”区域中的CLK端子用导线相连接。 (7).把“模数转换模块”区域中的A2A1A0端子用导线连接到“电源模块”区域中的G ND端子上。 (8).把“模数转换模块”区域中的IN0端子用导线连接到自制的AD590电路上。 (9).把“单片机系统”区域中的P0.0-P0.7用8芯排线连接到“模数转换模块”区域中的D0D1D2D3D4D5D6D7端子上。 5.程序设计内容 (1).ADC0809的CLK信号由单片机的P3.3管脚提供 (2).由于AD590的温度变化范围在-55℃-+150℃之间,经过10KΩ之后采样到的电压变化在2.182V-4.232V之间,不超过5V电压所表示的范围,因此参考 电压取电源电压V CC,(实测V CC=4.70V)。由此可计算出经过A/D转换之后 的摄氏温度显示的数据为: 如果(D*2350/128)<2732,则显示的温度值为-(2732-(D*2350/128)) 如果(D*2350/128)≥2732,则显示的温度值为+((D*2350/128)-2732) 6.汇编源程序 (略)

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

超高精度数字温度计

超高精度数字温度计 单输入和双输入型号 HH-20A 系列 产品特点: ?每台设备都附有NIST可溯源证书(无数据点) ?单输入和双输入型号,带有显示保持功能 ?双输入型具有趋势,最小值/最大值和温差测量功能 ?HH-21A和HH-23A接受J,K和T型热电偶输入 ?HH-22A接受J和K型输入 ?°F和℃全量程范围内分辨率为0.1 ?精度高达读数的0.1% ?自诊断和用户编程保留 ?符合RoHS要求 ?可选电源 产品描述 HH-20A系列基于微处理器的手持式温度计适用的温度范围很广,并采用最尖端的创新技术。读数方便且带趋势显示屏和自诊断功能的定制5位LCD是所有型号的标准配置。外壳防滴/ 防溅和防尘,并有内置的倾斜座/手柄,适合台面应用或免提现场测量。 HH-21A是一款单输入设备,可接受J、K和T型热电偶。在前面板上,用户可以选择热电偶

类型、显示单位(° C或° F)和显示分辨率(0.1°或1°)。HH-21A还具有显示保持功能。与所有HH-20A系列设备相同,HH-21A的精度极高,达到读数的0.1%加1° F。 HH-22A和HH-23A接受双输入。HH-22A接受J型或K型热电偶,而HH-23A可使用J、K或T型。两种型号都能显示T1(输入1)、T2(输入2)和T1-T2(温差),或在T1、T2和T1-T2 之间扫描。HH-22A和HH-23A的标准功能都包括显示保持、最小和最大值存储以及趋势指示。最小和最大值功能可记录T1、T2和T1-T2的最小值和最大值。趋势指示表明显示数据将会升高、降低还是保持稳定。 当打开HH20A后,它会记忆你所做的操作。热电偶类型、分辨率和温度单位存储在非易失性内存中,因此不必在每次启动时都重新编程。 规格: 显示屏:5位显示屏;用于指示热电偶类型、°C/°F单位、保持和低电量的定制指示器;HH-22A和HH-23A还有用于指示输入(T1、T2、T1-T2、扫描)、上/下趋势箭头和最小/最大值数据存储的指示器。 键盘:带触觉反馈的瞬时开关;开/关状态、热电偶类型、单位、分辨率、保持;HH-22A和HH-23A还有用于记录最小/最大值、查看最小/最大值、停止/清除记录输入类型(T1、T2、T1-T2、扫描)的按钮。 配置保留:断电时保留所选读出结果、输入类型、单位和分辨率诊断:低电量、热电偶断路、无效的键盘输入、超出范围、内部硬件故障 精度:读数的0.1% + 0.6° C (1° F) 重复性:在恒温条件下,1周内可达0.2° 分辨率:整个量程内为0.1° 温度系数:低于64° F (18° C)和高于82° F (28° C)时为(读数的0.02% + 0.1° C);在18 ~ 28° C (64 ~ 82° F)内,则包含在精度中 环境温度:0 ~ 50° C (32 ~ 122° F),相对湿度为0 ~ 90% 读取速率:1次每秒 最高共模电压:到接地的峰值为42V 工作电源:9 Vdc碱性电池(内含) 电池寿命:100小时,典型,碱性电池 外形尺寸:178(高)x 74(宽)x 28 mm (厚)(7.0 x 2.9 x 1.1") 重量:284 g (10 oz) 随附配件:9 Vdc碱性电池、串珠线K型探头(每个输入)、单体式倾斜座/手柄、腕带、橡胶保护带、NIST证书和操作手册

热轧带钢层流冷却区功能说明

首钢1580热轧 层流冷却区功能说明轧制技术及连轧自动化国家重点实验室(东北大学)

目录 1 层流冷却区概述 (4) 2 层流冷却系统设计工艺技术参数 (7) 3 层流冷却区域设备组成与技术参数 (9) 3.1 层流冷却集管装置 (9) 3.1.1 层流冷却集管装置的功能 (9) 3.1.2 层流冷却集管装置的技术参数 (9) 3.1.3 层流冷却集管装置的开闭控制 (11) 3.1.4 层流冷却区域带钢微跟踪控制 (14) 3.1.5 层流冷却区域出口温度反馈控制 (15) 3.1.6 层流冷却区域精轧机抛钢后的冷却水前馈控制 (20) 3.1.7 层流冷却集管装置的操作 (22) 3.1.8 层流冷却集管装置的状态显示 (24) 3.2 层流冷却侧喷装置 (25) 3.2.1 层流冷却侧喷装置的功能 (25) 3.2.2 层流冷却侧喷装置的技术参数 (25) 3.2.3 层流冷却侧喷装置的开闭控制 (25) 3.2.4 层流冷却侧喷装置的操作 (26) 3.2.5 层流冷却侧喷装置的状态显示 (26) 3.3 层流冷却压缩空气吹扫装置 (26) 3.3.1 层流冷却压缩空气吹扫装置的功能 (26) 3.3.2 层流冷却压缩空气吹扫装置的技术参数 (26) 3.3.3 层流冷却压缩空气吹扫装置的开闭控制 (27) 3.3.4 层流冷却压缩空气吹扫装置的操作 (27) 3.3.5 层流冷却压缩空气吹扫装置的状态显示 (27) 3.4 层流冷却上集管倾翻装置 (27) 3.4.1 层流冷却上集管倾翻装置的功能 (27) 3.4.2 层流冷却上集管倾翻装置的技术参数 (27) 3.4.3 层流冷却上集管倾翻装置的控制 (27) 3.4.4 层流冷却上集管倾翻装置的操作 (28) 3.5 层流冷却边部遮蔽装置 (28) 3.5.1 层流冷却边部遮蔽装置的功能 (28) 3.5.2 层流冷却边部遮蔽装置的技术参数 (29) 3.5.3 层流冷却边部遮蔽装置的控制 (29) 3.5.4 层流冷却边部遮蔽装置的操作 (29) 3.5.5 层流冷却边部遮蔽装置的状态显示 (29) 3.6 热输入辊道冷却装置 (29) 3.6.1 热输入辊道冷却装置的功能 (29) 3.6.2 热输入辊道冷却装置的技术参数 (29) 3.6.3 热输入辊道冷却装置的开闭控制 (30) 3.6.4 热输入辊道冷却装置的操作 (30) 3.7 层流冷却区域仿真功能 (30) 3.8 层流冷却过程计算机控制 (30) 3.8.1 层流冷却过程计算机控制功能 (30)

温度传感器

实验九温度传感器设计 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器一般由敏感元件、转换元件和基本转换电路三部分组成。其中,敏感元件用于感知被测量,并输出与被测量成确定关系的某一物理量;转换元件将敏感元件的输出量转换成电路参量;转换电路将上述电路参量转换成电学量进行输出。 物理学中的温度用以表征物体的冷热程度。而温度在具体的计量时,一般需要通过物体随温度变化的某些特性来间接测量。温度传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 在科技日新月异的今天,温度传感器的应用尤其广泛。在工业方面,温度传感器可应用于各种对温度有要求的产业,如金属冶炼,用于控制加热熔炉的温度以及冷却金属;航天领域,用于检测顶流罩、航天服等的耐热及耐寒程度等。在化学方面,关于对温度有严格要求的化学反应,需要高精度的温度传感器帮助控制反应过程中的特定温度。在农业方面,温度传感器可以应用在温室培养的温度控制,对于农作物新品种开发及温室栽培起着重要作用。在军事方面,可应用温度传感器对热源进行探测,起到侦查作用。在医疗方面,温度传感器可用于体温探热器等探测体温的仪器。 【实验目的】 1、了解Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。 2、学习运用不同的温度传感器设计测温电路。 【实验原理】 热电阻传感器是利用导体的电阻随温度变化的特性,对温度和温度有关的参数进行检测的装置。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。大多数热电阻在温度升高1℃时电阻值将增加0.4% ~ 0.6%。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在也逐渐采用镍、锰和铑等材料制造热电阻。能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定。 1、Pt100铂电阻的测温原理 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,

相关文档
最新文档