中文电子标签分拣系统实验指导书

中文电子标签分拣系统实验指导书
中文电子标签分拣系统实验指导书

中文电子标签的操作说明

此系统集成了两种分拣模式:即“摘取试分拣模式”和“播种式分拣模式”。

2.1 选择程序进入操作界面

运行“电子标签”桌面上的VB程序,进入电子标签拣货系统与订单设置。

2.2 分拣订单设置

(1)点击货架信息设置,进入货架信息设置界面,对摘取式的货架信息进行设置。

选择仓位号,填写详细无聊信息即可。(2)入库订单设置。

点击入库按钮,进入入库单设置界面,对入库单进行设置。点击新建入库单。

选择要入库的内容。

选择数量。按生成入库单就可以了。

选择入库仓位输入数量并生成。

(3)摘取式分拣订单设置。

点击分拣订单设置,进入分拣订单设置界面,摘取式分拣订单进行设置。

点击新建订单,输入订单号(自动会生成定单号,可以修改),并生成订单。选择客户需要的物品,和对应数量就可以了。

(4)电子标签盘点指令。

点击电子标签盘点,发出电子标签盘指令。

(5)播种式分拣定单设置。

点击“播种式分拣”,出现如下界面:

点击“新建定单”,输入分拣货物条码,选择相应客户,具体操作如下:

选择完毕,点击“生成定单”即可,当点击“返回”,则屏幕显示“定单体统主界面”。

2.3 电子标签辅助分拣系统

选择模式:

如果选择分拣模式就可以进行分拣了。

同样选择仓管模式就能进入仓管模式了。1.仓管模式:

进入仓管模式,选择品名设置,进行品名设置:

签的品名设置)。

2.摘取式分拣模式

(1).入库

点击主界面“入库”图标,出现上图界面,输入入库单中已经设定的条码并开始入库:

这样数据就发送到电子标签上,显示的内容是:in+数量。

注意:一次只能入一件商品。

(2).摘取式分拣:

点击主界面“摘取式分捡”,出现如下界面,输入已设置的分拣得订单号,开始分拣。

分拣完成以后就可以得到分拣完成的提示:

(3).补货:在摘取式分拣中,对由于缺货没有完成分拣的商品进行补足,进入分拣系统主界面,点击“补货”出现如下界面。

输入有缺货的分拣订单号,开始补货。

(4).盘点:在“分拣系统”主界面中,点击“盘点”出现如下界面。点击“开始盘点”,系统进入盘点状态。

当订单发出盘点指令后,才可以进行盘点。

3.播种式分拣模式

在主界面中,点击“播种式分拣”,出现如下界面。

输入分拣货物条码,将会出现定单中选种的客户终端,界面如下。

点击“开始分拣”即可。

4.货品信息

在“分拣系统”主界面中,点击“信息表”,如下图所示。

点击“货物信息表”我们可看到摘取式分拣货架上货品的具体信息,如下图所示。

注意:当软件发送完指令后,只有按下对应电子标签上的“完成”按扭后,计算机才有数据反馈。

计算机组成原理实验指导书

“计算机组成原理” 实验指导书 伟丰编写 2014年12月

实验一算术逻辑运算实验 一、实验目的 1、掌握简单运算器的组成以及数据传送通路。 2、验证运算功能发生器(74LS181)的组合功能。 二、实验容 运用算术逻辑运算器进行算术运算和逻辑运算。 三、实验仪器 1、ZY15Comp12BB计算机组成原理教学实验箱一台 2、排线若干 四、实验原理 实验中所用的运算器数据通路如图1-1所示。其中运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。运算器的输出经过一个三态门(74LS245)和数据总线相连。数据显示灯已和数据总线(“DATA BUS”)相连,用来显示数据总线容。

图1-l 运算器数据通路图 图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。其中除T4为脉冲信号,其它均为电平控制信号。实验电路中的控制时序信号均已部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接,其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。按动微动开关PULSE,即可获得实验所需的单脉冲。 五、实验步骤 l、按图1-2连接实验线路,仔细检查无误后,接通电源。(图中箭头表示需要接线的地方, 2、用INPUT UNIT的二进制数据开关向寄存器DR1和DR2置数,数据开关的容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。以向DR1中置入11000001(C1H)和向DR2中置入01000011(43H)为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT的开关SP05打在“NORM”状态,然后按下图所示步骤进行。

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

信号与系统实验指导书

实验一 常用信号分类与观察 一、实验目的 1、了解单片机产生低频信号源; 2、观察常用信号的波形特点及产生方法; 3、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ? ??><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

信号与系统实验指导书

信号与系统软件实验 指导书 《信号与系统》课程组 华中科技大学电子与信息工程系 二零零九年五月

“信号与系统软件实验”系统简介《信号与系统》是电子与通信类专业的主要技术基础课之一,该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给以物理解释,赋予物理意义。由于本学科内容的迅速更新与发展,它所涉及的概念和方法十分广泛,而且还在不断扩充,通过本课程的学习,希望激发起学生对信号与系统学科方面的学习兴趣和热情,使他们的信心和能力逐步适应这一领域日新月异发展的需要。 近二十年来,随着电子计算机和大规模集成电路的迅速发展,用数字方法处理信号的范围不断扩大,而且这种趋势还在继续发展。实际上,信号处理已经与计算机难舍难分。为了配合《信号与系统》课程的教学、加强学生对信号与线性系统理论的感性认识,提高学生计算机应用能力,《信号与系统》课程组于2002年设计并开发了“基于MATLAB的信号与线性系统实验系统”。该实验系统是用MATLAB5.3编写的,包含十个实验内容,分别是:信号的 Fourier 分析、卷积计算、连续时间系统和离散时间系统的时域分析、变换域分析、状态变量分析、稳定性分析等,基本上覆盖了信号与线性系统理论的主要内容。通过这几年为学生们开设实验,学生们普遍反映该实验能够帮助他们将信号与系统中抽象的理论知识具体化,形象化。而且对于进一步搞清数学公式与物理概念的内在联系都很有帮助。 但是近两年我们进行了教学改革,更换了教材,原有的软件系统在内容的设计上就显现出一些不足;而且随着MATLAB版本的升级,该软件系统也陆续出现了一些问题,导致个别实验无法进行。在这样的背景下,我们设计并开发了一个新的基于MATLAB7.0的软件实验系统,利用MATLAB提供的GUI,使得系统界面更加美观;根据新教材的内容,设计并完善了实验内容;保留原有一些实验内容,但完善了功能,例如动态显示卷积过程,在任意范围显示图形等。 本系统包括七个实验,分别是:信号的时域基本运算、连续信号的卷积与连续时间系统的时域分析、离散信号的卷积与离散时间系统的时域分析、信号的频域分析、连续信号的采样与恢复、系统的频域分析、信号的幅度调制与解调。为了加强学生的计算机编程能力和应用能力,所有实验均提供设计性实验内容,让学生参与编程。 本系统既可作为教师教学的实验演示,又可作为学生动手实验的实验系统。 1. 安装本实验系统 本实验系统只能在 MATLAB 环境下运行,所以要求必须先安装 MATLAB7.0 以上版本的 MATLAB 软件,推荐安装MATLAB的所有组件。安装好MATLAB7.0之后,将本实验系统包含的文件夹 Signals&Systems 复制到MATLAB 的 work文件夹下即可。 2. 运行本实验系统 在 MATLAB 命令窗口下,键入启动命令 start,即可运行本实验系统,进入主实验界面。注意:如果MATLAB软件没有安装符号(Symbolic)、控制(Control)、信号(Signal)工具箱,运行过程中会有些命令无法识别。 start ↙ %启动命令 实验的运行过程中,需要实验者输入相应的参数、向量和矩阵,请参照本书中的格式输入。在输入向量时,数字之间用空格或逗号分隔,如输入离散序列

计算机组成原理虚拟实验指导书

计算机组成原理实验指导书 (虚拟实验系统)

实验1 1位全加器 ?实验目的 ?掌握全加器的原理及其设计方法。 ?熟悉组成原理虚拟教学平台的使用。 ?实验设备 与非门(3片)、异或门(2片)、开关若干、指示灯若干 ?实验原理 1位二进制加法器单元有三个输入量:两个二进制数Ai,Bi和低位传来的进位信号Ci,两个输出量:本位和输出Si以及向高位的进位输出C(i+1),这种考虑了全部三个输入量的加法单元称为全加器。来实验要求利用基本门搭建一个全加器,并完成全加器真值表。 ?实验步骤 各门电路芯片引脚显示于组件信息栏。 1. 测从组件信息栏中添加所需组件到实验流程面板中,按照图1.1所示搭建实验。 图1.1 组合逻辑电路实验流程图

2. 打开电源开关,按表1设置开关的值,完成表1-1。 表1-1 实验2 算术逻辑运算实验 ?实验目的 ?了解运算器的组成结构 ?掌握运算器的工作原理 ?掌握简单运算器的组成以及数据传送通路 ?验证运算功能发生器(74LS181)的组合功能 ?实验设备 74LS181(2片),74LS273(2片), 74LS245(2片),开关若干,灯泡若干,单脉冲一片 ?实验原理 实验中所用的运算器数据通路图如图2.1所示,实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。 ?74LS181:完成加法运算 ?74LS273:输入端接数据开关,输出端181。在收到上升沿的时钟信号前181和其 输出数据线之间是隔断的。在收到上升沿信号后,其将输出端的数据将传到181, 同时,作为触发器,其也将输入的数据进行保存。因此,通过增加该芯片,可以通 过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181 芯片的不同引脚之中 ?74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

机场行李分拣系统

1. 概述 随着国内经济改革开放的不断深入,国内民航事业获得了空前的发展,机场进出港旅客数量不断增加,行李吞吐量随着到了一个新的高度。而行李的处理对大型机场而言一直是一项庞大而复杂的工作,特别是不断发生的针对航空业的恐怖袭击也对行李的识别与追踪技术也提出了更高的要求。如何管理堆积如山的行李及有效提高处理效率是航空公司面临的重要问题。 2. 背景 为应对旅客行李对机场输送系统处理能力提出的新的挑战,Trimble & ThingMagic 代理商深圳市铨顺宏科技有限公司为各大运营商、集成商带来的ThingMagic 超高频 RFID读写模块,超高频 RFID读写设备被越来越多的机场开始使用到行李自动分拣系统中。这种系统通过条形码标签对旅客行李进行标识,在输送过程中,通过对条码的识别来达到对乘客行李的分拣处理。全球航空公司的行李追踪系统发展到现在,已经相对比较成熟,然而,即使在最理想的情况下,条形码系统也只能在10件行李中正确读取8到9件,这意味着航空公司要不断投入大量的时间和精力进行人工操作将分拣的行李运送到不同的航班上。同时,因条码扫描对方向性要求高,这对机场工作人员在进行条码包装时也增加了额外的工作量。 单纯使用条形码对行李进行匹配分拣,将是一件需要耗费大量时间与精力的工作,甚至有可能导致航班的严重延误。 提高机场行李自动分拣系统的自动化程度和分拣准确性,对保护公众出行安全,减少机场分拣人员工作强度,提高机场整体运行效率,具有重要意义。 RFID无线射频识别技术被普遍认为是21世纪最具发展潜力的技术之一,是既条码技术之后,引起自动识别领域变革的一项新技术。其具有的非视距、远距离,对方向性要求不高,快速精准的无线通讯能力,被越来越多的聚焦在机场行李自动分拣系统。最终在2005年10月,IATA(国际航空运输协会)一致通过决议,将UHF(超高频)RFID 绑带式标签作为航空行李标签的唯一标准。 3. 系统架构 RFID行李自动分拣系统,是给每一个飞机乘客随机托运的行李上粘贴RFID 电子标签,电子标签中记录旅客个人信息、出发港、到达港、航班号、停机位、起飞时间等信息;行李流动的各个控制节点上,如分捡、装机处、行李提取处安装电子标签读写设备。当带有标签的信息的行李通过各个节点的时候,RFID读写器会读取这些信息,传到数据库。实现行李在运输全流程中的信息共享和监控。其系统架构图如下:

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

《信号与系统》实验指导书

《信号与系统》实验指导书 张静亚周学礼 常熟理工学院物理与电子工程学院 2009年2月

实验一常用信号的产生及一阶系统的阶跃响应 一、实验目的 1. 了解常用信号的波形和特点。 2. 了解相应信号的参数。 3. 熟悉一阶系统的无源和有源模拟电路; 4.研究一阶系统时间常数T的变化对系统性能的影响; 5.研究一阶系统的零点对系统的响应及频率特性的影响。 二、实验设备 1.TKSX-1E型信号与系统实验平台 2. 计算机1台 3. TKUSB-1型多功能USB数据采集卡 三、实验内容 1.学习使用实验系统的函数信号发生器模块,并产生如下信号: (1) 正弦信号f1(t),频率为100Hz,幅度为1;正弦信号f2(t),频率为10kHz,幅度 为2; (2) 方波信号f3(t),周期为1ms,幅度为1; (3) 锯齿波信号f4(t),周期为0.1ms,幅度为2.5; 2.学会使用虚拟示波器,通过虚拟示波器观察以上四个波形,读取信号的幅度和频率,并用坐标纸上记录信号的波形。 3.采用实验系统的数字频率计对以上周期信号进行频率测试,并将测试结果与虚拟示波器的读取值进行比较。 4.构建无零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。 5.构建有零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。

四、实验原理 1.描述信号的方法有多种,可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。对于各种信号可以分为周期信号和非周期信号;连续信号和离散信号等。 2.无零点的一阶系统 无零点一阶系统的有源和无源模拟电路图如图1-1的(a)和(b)所示。它们的传递函数均为+1G(S)= 0.2S 1 (a) (b) 图1-1 无零点一阶系统有源、无源电路图 3.有零点的一阶系统(|Z|<|P|) 图1-2的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:2++0.(S 1)G(S)= 0.2S 1 (a) (b) 图1-2 有零点(|Z|<|P|)一阶系统有源、无源电路图 4.有零点的一阶系统(|Z|>|P|) 图1-3的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:++0.1S 1G (S )= S 1

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置内导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线内部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机内专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元内部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

RFID分拣系统方案2016

杭州紫钺科技有限公司https://www.360docs.net/doc/c18667458.html, 一引言 随着全球经济的迅猛发展,全世界范围内的贸易量不断加大,对整个的物流 行业提出了更高的要求。货物自动分拣系统作为现代物流中的一个重要组成部 分,同样面临着严峻的挑战。 在货物自动分拣系统中,作业速度、效率及出错率将直接影响配送中心的整 体效率及运营成本和效益,历来在分拣随着物流行业的发展,大致可以分解为以 下的几个阶段: 人工分拣阶段,早期技术落后,工业普遍都是才用人工的方式的来进行所有 的工作,即使到了目前的时代也有相当的企业任然采用这种方式,需要耗用 大量的劳动力,同时效率低下,很难满足发展的需求; 机械化分拣阶段,随着科学技术的发展,大量的机械设备出现并应用到物流 领域,大大的省下了很多人力; 自动化分拣阶段,计算机技术的引入使分拣系统进入到自动化控制阶段,通 过计算机,机械设备,数据采集系统,服务器等之间的相互连接产生了自动 化管理系统,大大的减少了人工成本,提高效率,并且准确性更加的好; 网络化分拣阶段,跨行业的物流过程开始使用统一的物品识别标准,所有系 统能够对每个物品的位置,状况等信息进行实时的监控,实现物品的追踪和 溯源,这个阶段,物品的识别技术起到了及其重要的作用。 现阶段的物流配送中心广泛采用图像识别和条形码识别技术,这类技术与装备对于实现普通商品的识别与分拣可以有效应付,但对商品的标准化包装要求较 高,传统的检测方法存在着信息不准确、传输速度慢等缺点,此外,许多自动分 拣系统物流速度极快,采用常规分拣控制技术很难实现动态快速准确识别,所以 物联网的RFID技术才能及时解决这个问题,RFID技术具备读写距离远,扫描速 度快,多标签信息同时采集,无方位限制,抗环境因素强等优点,使得在整个物 流行业,RFID远距离射频识别技术备受各大公司的亲睐。在系统拣货上,安装 在流水线上的RFID读写器能在第一时间采集到物品上的RFID电子标签信息,并上传到上位机,上位机给出信号到控制器端,对物品的处置也可以根据我们的实 际需求来进行操作,方便快捷,而且准确性极高,大大的减少人为因素误差,减 低管理成本,提升效率。

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

基于Matlab的信号与系统实验指导2

基于Matlab 的信号与系统实验指导 实验一 连续时间信号在Matlab 中的表示 一、实验目的 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉这些信号的波形和特性 二、实验原理及实例分析 1、信号的定义与分类 2、如何表示连续信号? 连续信号的表示方法有两种;符号推理法和数值法。 从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。 3、Matlab 提供了大量生成基本信号的函数。如: (1)指数信号:K*exp(a*t) (2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi) (3)复指数信号:K*exp((a+i*b)*t) (4)抽样信号:sin(t*pi) 注意:在Matlab 中用与Sa(t)类似的sinc(t)函数表示,定义为:)t /()t (sin )t (sinc ππ= (5)矩形脉冲信号:rectpuls(t,width) (6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表示信号的占空比

DUTY%,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。占空比默认为0.5。 (7)三角波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。 (8)周期三角波信号:sawtooth(t, width) (9)单位阶跃信号:y=(t>=0) 三、实验内容 1、验证实验内容 直流及上述9个信号 2、程序设计实验内容 (1)利用Matlab 命令画出下列连续信号的波形图。 (a ))4/3t (2cos π+ (b ) )t (u )e 2(t -- (c ))]2()(u )][t (cos 1[--+t u t π (2)利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。 四、实验报告要求 1、格式:实验名称、实验目的、实验原理、实验环境、实验内容、实验思考等 2、实验内容:程序设计实验部分源代码及运行结果图示。

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

计算机组成原理实验指导书

计算机组成原理实验指导书 山东财经大学

第一节计算机组成原理常用部件实验 一、实验目的 1、掌握计算机组成原理常用部件的结构原理。 2、掌握常用部件的设计过程。 3、熟悉常用部件的功能与应用。 4、掌握常用部件的测试方法。 5、熟悉组成原理实验台和图形输入法软件的使用方法。 二、计算机组成原理中的常用部件 计算机组成原理中的常用部件通常指的是:加法器、数据选择器、译码器、寄存器和计数器等,这些常用部件均为运算器、总线、控制器、存储系统及数据通路的组成部分。熟练掌握常用部件对后续实验将有极大帮助。 三、实验系统置分调模式时,ispLSI1032E的输入、输出资源连接示意图 图1为本实验系统中ispLSI1032E的输入输出资源连接示意图。 ●输入开关:K15-8和K7-0共2组; ●发光管显示:LED15-8、LED7-0共2组; ●时钟脉冲:连续时钟和单脉冲2个; ●复位输入:RET2为ispLSI1032E的复位输入按键。 凡实验系统置分调模式时,以上输入、输出资源可任意编程使用。 图1 ispLSI1032E与输入、输出资源的连接示意图 四、常用部件实验 实验1 数据选择器 1、实验内容及说明 数据选择器是指从多路数据输入中选择一路作为输出,本实验要求设计一个三选一的数据选择器。图2所示为三路数据选择器的框图,图中:A= a3a2a1a0,B=b3b2b1b0,C=c3c2c1c0,E=e3e2e1e0。

2、实验步骤 (1)原理图输入:根据图3电路,采用图形输入法在计算机上完成实验电路的原理图输入。 (2)管脚定义:根据图1中的管脚连接示意图完成原理图中输入、输出管脚的定义。 其中a3a2a1a0定义在k15-k12(33-30),b3b2b1b0定义在k11-k8(29-26),c3c2c1c0定义在k7-k4(60-57),e3e2e1e0定义在LED3-LED0(79-76)。 图3 数据选择器原理图 (3)原理图编译、适配和下载:将实验系统中的模式开关(K23)置于分调模式;在图形输入软件环境中选择ispLSI1032E器件,进行原理图的编译和适配,无误后完成下载。 (4)数据选择器的调试:使用输入开关在数据选择器输入端预置任意数值,然后使AE、BE、CE 分别有效(高电平有效,即开关向上),观察输出E的值是否和相应的输入值相同。 (5)生成元件符号,以备以后使用。 实验2 寄存器 1、实验内容及说明 本实验要求设计一个8位的寄存器,其中d7—d0、q7—q0分别为寄存器的输入和输出,cp为寄存器的时钟脉冲。 图4为8位寄存器的框图。 图5电路为8位寄存器的线路原理图。

自动控制原理实验指导书(2017-2018-1)

自动控制原理实验指导书 王娜编写 电气工程与自动化学院 自动化系 2017年11月 实验一控制系统的时域分析

[实验目的] 1、熟悉并掌握Matlab 操作环境和基本方法,如数据表示、绘图等命令; 2、掌握控制信号的拉氏变换与反变换laplace 和ilaplace ,控制系统生成模型的常用函数命令sys=tf(num,den),会绘制单位阶跃、脉冲响应曲线; 3、会构造控制系统的传递函数、会利用matlab 函数求取系统闭环特征根; 4、会分析控制系统中n ζω, 对系统阶跃、脉冲响应的影响。 [实验内容及步骤] 1、矩阵运算 a) 构建矩阵:A=[1 2;3 4]; B=[5 5;7 8]; 解: >> A=[1 2;3 4] A = 1 2 3 4 >>B=[5 5;7 8] B = 5 5 7 8 b) 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A 的特征值、特征多项式和特征向量. 解:>> A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]; >> [V ,D]=eig(A) V = 0.4181 -0.4579 - 0.3096i -0.4579 + 0.3096i -0.6044 0.6211 -0.1757 + 0.2740i -0.1757 - 0.2740i 0.0504 0.5524 0.7474 0.7474 -0.2826 0.3665 -0.1592 - 0.0675i -0.1592 + 0.0675i 0.7432 D = 13.0527 0 0 0 0 -4.1671 + 1.9663i 0 0 0 0 -4.1671 - 1.9663i 0 0 0 0 2.1815 >> p=poly(A) p = -6.9000 -77.2600 -86.1300 604.5500 2. 基本绘图命令 a) 绘制余弦曲线y=cos(x),x ∈[0,2π] 解:>> x=linspace(0,2*pi); >> y=cos(x); >> plot(x,y)

计算机组成原理实验指导书

SAC-T3D 计算机组成原理教学实验仪 实验指导书 电气与信息学院

SAC-T3D 计算机组成原理教学实验仪 实验指导书 电气与信息学院

目录 第一章概述 (1) 第二章实验部分 (3) 实验一时序电路组成、控制原理实验 (3) 实验二运算器组成实验 (6) 实验三半导体存贮器原理实验 (10) 实验四数据通路实验 (14) 实验五微程序控制器实验 (17)

第一章概述 SAC—T3C计算机组成原理实验仪是根据理工科院校计算机组成原理课程大纲的要求和计算机教学迅速发展的需要,在吸收了国内外先进教学成果的基础上设计定型的。 系统采用模块化组合结构,为大学本科、专科、成人高校等层次的《计算机组成原理》、《计算机组成与结构》、《逻辑设计》,等课程提供了实验条件。 整个系统由运算器电路、存贮器电路、数据通路电路、时序发生器电路、微程序控制器电路、模拟输入逻辑开关、脉冲发生电路、电平脉冲测试电路等组成。 由于系统的模块化,学生可通过一系列积木式实验,对CPU 内部的运算功能、控制功能、总线结构、指令系统的设计和微指令的实现以及CPU内部如何工作有直观、深刻的认识。在各项分实验的基础上,通过自己设计并实现一台模型机的运行。从而对计算机的原理、结构,从部件到分系统,直到整机有一个形象的、生动的、本质的认识。有利于培养学生的动手能力,创造性分析问题和解决问题的能力。 SAC-T3C计算机实验仪布局框图如图1。 其中存贮器、运算器及数据通路、时序、微程序控制电路将在今后逐一详细介绍和使用。前四个实验UMBIN和UMAOUT之间的扁平通信线不用插。 作为辅助电路主要有:脉冲电平测试电路用来进行电平测试和脉冲测试,脉冲产生电路用来产生单拍脉冲和连续脉冲,单拍脉冲输出为P和/P常用作实验中的单拍脉冲信号源。连续脉冲输出为Q1、Q2、Q3、Q4其中Q1~Q4为倍频关系,频率决定于晶体频率,如晶体频率为2M,Q1~Q4分别为1MHZ、500KHZ、250KHZ、125KHZ,在实验中可任选一频率作为时序电路中H的连续脉冲输入。

相关文档
最新文档