北斗卫星森林防火系统可行性方案

北斗卫星森林防火系统可行性方案
北斗卫星森林防火系统可行性方案

北斗卫星森林防火系统方案

二〇一二年八月二十八日

1

一、北斗卫星系统介绍

北斗卫星系统是基于我国自主知识产权的"北斗导航系统"而建立起来的卫星通信导航系统,能够全天候、全天时提供卫星导航和通信服务。系统主要由空间卫星、地面中心站和用户终端等部分组成。

空间卫星:空间卫星部分由2~3颗地球同步卫星组成,负责执行地面中心站与用户终端之间的双向无线电信号中

继任务。每颗卫星的主要载荷是变频转发器,以及覆盖定位通信区域点的全球波束或区域波束天线。

地面中心站:地面中心站连续地产生和发射无线电测距信号,接收并快速捕获用户终端转发来的响应信号,完成全部用户定位数据的处理工作和通信数据的交换工作,把计算机得到的用户位置和经过交换的通信内容,通过空间卫星分别送给有关用户。所以,一切计算和处理集中在地面中心站。

用户终端:完成用户端与卫星之间上、下行数据的处理;发送用户业务请求,接收用户数据;提供必要的显示及数据接口。根据使用终端的客户类型,用户终端分为车载型用户终端、船载型用户终端、遇险报警型用户终端、手持型用户终端、通信型用户终端、授时型用户终端、管理型用户终端、双模型用户终端和增强型用户终端。

2

北斗卫星系统具有三大功能:快速定位、短报文通信、精密授时。

快速定位:地面中心站发出的测距信号(具体为格式化的帧结构及其伪码)含有时间信息,经过卫星-用户终端站-卫星,再回到中心站,由出入站信号的时间差可计算出距离,可在秒级之内完成。

短报文通信:北斗卫星系统是双向闭合环路系统,每个用户终端都有专用识别码,用户终端通过该专用识别码发送和接收信息。通过网管中心,用户终端与固定用户之间也可以进行信息的发送和接收。

精密授时:精密授时与通信、定位都是在同一信道中完成的。地面中心站产生标准时间和标准频率,通过询问信号将时标的时间码送给终端。

北斗卫星系统可以根据不同行业的不同应用需要,提供包括定位信息、导航服务、信息通信、精密授时和GPS差分信息广播在内的基本服务业务,以及群、组呼、遇险安全告警、同陆地用户双向信息通信、同其他移动终端(CDMA/GSM等终端)的双向信息通信等增强服务业务在内的多种应用服务。例如:针对需要大区域、大量自动数据采集系统的应用要求,基于北斗卫星系统的通信服务功能,

3

可以建立与水文自动测报系统应用模式相似的自动数据采集系统;根据现代物流应用需求,结合北斗系统所提供的强大的定位导航和通信服务功能,可以实现车辆调度监控指挥系统、集装箱调度监控系统以及船舶调度监控系统等多种应用系统;针对森林防火部门对林火扑救指挥以及日常管理的应用要求,利用北斗系统所提供的定位和通信功能,可以实现基于北斗卫星系统的森林防火调度指挥应用。

二、应用可行性分析

在森林防火扑救指挥中,不仅需要有精确的定位设备对火源、火场进行精确定位,还要为参加林火扑救的队伍进行精确的定位导航,以保证在林火发生时能使得扑救队伍能够选择最佳路径在最短时间内抵达火场并实施扑救;此外,还要为扑救队员与森林防火指挥中心之间提供有效的通信手段,已保证指挥中心下达的各种指挥调度信息能够及时准确的传达到各级扑救指战员,同时也要使得扑救一线的火场火势以及其他信息能够及时有效地上报到指挥中心,为指挥人员进行科学合理的决策提供准确的信息。此外,在森林防火的日常巡护巡查过程中,也需要行之有效的定位工具和通信手段,保持流动巡护人员及时准确到位,并与指挥中心保持

4

流畅的通信联络以及时传递巡查过程中发现的各种有效信息。

简而言之,无论是林火发生时的扑救指挥还是日常管理中的巡查,都需要有精确的定位工具和有效的通信手段,保证森林防火中心与森林防护人员保持密切的联系,并随时掌握一线人员的动态位置。

众所周知,GPS手持设备可以为森林防火队员和巡护人员提供高精度的定位导航信息,卫星电话、甚高频对讲机或超短波电台可以为防火人员提供移动通信手段,但由于甚高频以及超短波通信的通信距离及受地形限制的因素,极大的制约了其使用范围,无法保证防火人员能够与指挥中心之间保持畅通无阻的通信,而卫星电话设备造价高,通信费用高昂,也极大的限制了其在森林防火中的广泛应用。由于通信手段的限制,尽管一线防火人员配备了高精度的定位导航设备,也无法使得指挥部门实时动态地掌握前方人员的位置,进而不能有效的实施指挥调度控制,不能实现科学高效的林火扑救。

北斗运营系统是同时提供定位和通信功能的卫星系统,将其应用于森林防火中,它不仅可以解决甚高频或超短波通信中的通信有效距离受限制的问题,还可以为防火队员提供

5

高精度的位置信息,实现定位导航;在使用北斗系统卫星终端进行定位的过程中,终端在获得本地位置信息的同时,防火指挥中心通过北斗指挥型终端也可以监收到该终端的位置信息,或者通过登录到网管中心获得该终端同样的位置信息。北斗系统卫星终端的最大特点是其可以同时提供数据通信与定位功能,这不同于以往的任何设备,仅提供定位功能或仅提供通信功能,定位和通信功能被集成在一个设备当中;北斗系统卫星终端设备小型化、集成度高、设备紧凑简单、低功耗和操作简单等特点,并且可采用电池供电,与其他卫星电话设备相比,设备和通信费用相对都比较便宜,因此可以在森林防火部门进行广泛应用;北斗系统卫星终端有车载、机载以及手持等各型终端,可非常简便可靠地安装在扑救车辆、航空护林飞机上,并提供给防火队员个人使用,从而使得森林防火部门能够全面动态的掌握所有相关车辆、飞机以及人员的状态信息,更加及时有效地实现科学合理的调度指挥和控制。由此可见,北培系统可以为森林防火部门提供有效的定位和通信手段,非常适合在森林防火中应用。依托北斗系统,结合森林防火部门用户需求,可以为森林防火指挥部门实现并提供及时、高效、可视化的人员、车辆调度监控系统。此系统不仅可以在森林火灾发生时,能够实现森林火灾的快速定位,及时了解详实的火场及其周围的地理

6

和资源环境,在辅助决策系统的支持下,制定合理的扑火方案,实现扑火力量的最优配置,缩短扑火出动时间,提高扑火效率,把森林火灾造成的损失尽可能地减少到最低限度,还可以为森林防火的日常管理提供服务。

北斗手持型终端

指挥型终端

7

三、通信组网方案

3.1点到点通信组网方案

对于中小规模用户,所管理的人员车辆有限,数据量较小,可采用点到点传输结构模式,即指挥中心通过指挥型终端采用无线卫星通信方式交换信息,完成对车辆的调度监控。

指挥型用户终端与手持/车载终端构成一点对多点的传输模式,其中:手持/车载终端采用普通型用户终端,由防火队员随身携带或安装在车辆上;指挥中心与指挥型用户终端相连接。所有手持/车载终端车辆的状态和数据信息以及通信电文发送到移动目标调度指挥中心由指挥型用户终端接收所有数据和信息;指挥型用户终端所发出的指令或信息以广播方式播发至所有手持/车载终端或单独发送到某一指定手持/车载终端。

8

9

3.2 专线通信组网方案

对于中大规模用户,其所管辖的人员、车辆较多,人员、车辆调度、监控的数据量大,因此用专线如(DDN 、帧中继、VPN 、PSTN 等)连接传输模式,即设立森林防火指挥部的指挥中心与北斗民用运营商的运营平台通过专线连接完成与手持/车载终端的数据信息传输,完成对人员、车辆的调度监控。

指挥中心与北斗民用运营商的运营平台通过专线连接完成与手持/车载终端的数据信息传输,其中:手持/车载终端采用普通型用户终端,与车辆机的传感器相连接,由防火队员随身携带或分别安装于车辆上;指挥中心与北斗民用运营商的运营平台通过专线直接连接。所有手持/车载终端将车辆机状态和数据信息以及通信电文发送到北斗民用运营商

的运营平台,再由运营平台将所有数据信息通过专线发送到指挥中心;指挥中心所发出的指令或信息将通过专线发送到北斗民用运营商的运营平台,然后再以广播方式播发至所有手持/车载/机载终端或单独发送到某一指定手持/车载/机载终端。

四、系统功能

4.1移动目标的定位、地图轨迹显示

实现人员、车辆的实时定位功能,可设定为自动间隔定位、被动定位等;通过与地理信息系统功能相结合,可以将人员、车辆的位置信息直观反映在电子地图上。同时,可以

10

根据用户的需求,将人员、车辆的动态轨迹展现在电子地图上。

4.2火源、火场快速定位

通过使用终端的定位功能,可以对火源、火场进行快速定位。在林火扑救指挥中通过使用终端设备,可以实现火源、火场的快速定位,进而将火源、火场的定位信息与专用GIS 系统相结合,可以为指挥部门提供直观的电子地图显示,同时通过辅助决策及专家系统,及时准确模拟火灾行为,预测火势发展,从而形成科学合理的扑火兵力部署及扑火调度决策。

4.3移动目标行进方向、速度

使用系统终端,与专用GIS系统相结合,方便指挥部实时动态了解扑火力量的兵力部署和行进方向、速度。

4.4移动目标的智能监控

通过短信息功能,指挥监控中心发出控制指令,通播所有车载/手持终端或指定某一手持/车载终端的位置、状态等信息传送到指挥中心;通过系统的通信功能,可以实现某些自动监测设备工作状态数据的自动回传。

11

4.5移动目标调度控制

指挥中心可以根据人员、车辆当前所处的位置,根据需要发出相关调度控制指令给所辖手持/车载终端,实现人员、车辆的调度指挥。指挥中心可以通过终端双向数据通信功能,完成指挥调度任务的下达,同时,前线队伍也可将指令执行情况通过终端返回。在扑救任务完成时,顺利指引扑火队员的返回,以避免出现不必要的损失。

4.6移动目标信息通信

指挥中心与人员/车辆之间可以进行双向信息通信,相互传递有价值的信息报文,以满足森林防火的要求。通过系统终端,可以借助其双向通信功能实现指挥部与前线队伍的双向数据通信。

4.7导航、选择最佳路径

通过电子地图可实现对各扑火力量的动态监控,指挥中心还可以实现对扑火队伍的导航和最佳路径选择,指引扑火队伍以最快速度抵达火场周围。同时,根据前期到达火场的扑火队伍的行进轨迹,指挥中心可以指引后续队伍沿同一路径抵达火场。指挥中心可以预先设置人员、车辆行进路线,当人员、车辆偏离预定线路时,控制中心将触发偏航告警,同时将告警信息显示出来。

12

4.8移动目标紧急告警

手持/车载终端设置紧急告警按钮,当人员、车辆发生紧急情况,需要救助时,可通过简单按钮操作发送紧急告警信息,及时通知指挥中心或安全、救援单位当前人员/车辆所处位置以及遇险性质,并显示在电子地图(GIS)上,以方便有关部门高效实施救援和抢险工作。

4.9火源地抵达告警

当人员、车辆即将抵达火源地后,由防火队员、车辆驾驶员在本地终端上触发报警按钮,火源地抵达告警信息将自动回传到指挥中心,并在电子地图上显示人员、车辆位置轨迹信息并弹出告警信息。

4.10强大的数据管理

具有用户历史定位、通信数据库,轨迹文件等,以便存档备查。通过轨迹回放,再现历史情况,为各种分析提供科学依据。

4.11自动漫游

对车辆进行同屏多窗口监控时,每个窗口可对一个运动目标实施动态监控,实现自动漫游功能。

13

4.12面积测量

在火场周围适当部署北斗系统终端,通过其快速定位可以对火场面积进行及时测算。通过轨迹生成可完成对过火场地的圈定,在火灾过后对过火面积进行精确的测量计算。

4.13防火设施的规划、验收

在林火预防中通过使用北斗系统的快速定位功能,并与森林防火部门专用的地理信息系统相结合,可以促进防火通道的科学规划和建设。在防火通道建设验收过程中,也可以利用系统的精确定位功能,结合其轨迹生成能力,以较高效率和准确度完成防火通道的验收工作,节省大量的人力和物力。

通过对防火设备进行定位并在电子地图上显示,可以准确的对防火设备布局进行分析,为防火设备的规划提供科学依据。为了望塔的建设提供精确的规划图与建设中的精确定位。

4.14日常巡查管理、车辆管理

通过使用终端的定位功能,可以完成对了望哨以及护林巡查人员的流动定位,监督巡查人员是否巡查到位;可以完成对车辆的管理和调度,为日常管理工作中提供方便。

14

五、系统应用特点

5.1自主知识产权、国内政策主导

北斗系统是基于我国自主的第一代卫星导航定位系统而建立的,我国拥有该系统的自主知识产权。因此,相比于国外GPS/Inmarsat-C/OmniTracs等系统,北斗森林防火信息管理应用系统将保证国内用户的利益不受国外政策和形势的变化而影响。

北斗系统是受我国政策的主导。国家发展改革委与国防科工委2007年11月16日颁布《关于促进卫星应用产业发展的若干意见》,要求:加快形成建立以北斗卫星导航系统为核心的民用导航产业体制;建立统筹协调机制,研究制定北斗卫星导航系统民用应用政策,促进北斗卫星导航系统的产业化应用;对于涉及国家经济、公共安全的重要行业领域须逐步过渡到采用北斗卫星导航兼容其它卫星导航系统的服务体制,鼓励其他行业和领域采用北斗卫星导航兼容其它卫星导航系统的服务体制。2009年11月,国家有关部门对“第二代卫星导航专项应用与产业化推广计划”进行了正式的批复,这标志着北斗大规模民用产业化推进工作,已经拉开了序幕。

15

5.2高并发处理能力、覆盖区域范围大

系统具有高并发处理能力;系统覆盖范围为北纬5度至55度、东经70度至145度,覆盖中国大陆所有地区和海区,与电信蜂窝网络或集群网络相比为真正意义上的无缝隙覆盖。

5.3系统稳定、可靠性高

“512”汶川地震中来自汶川县城的第一条灾区信息就是通过北斗卫星传输出来的。地震后,汶川县城内所有的手机、网络通信瘫痪,灾情无法掌握。中国卫星导航应用管理中心为救援部队紧急配备了一千多台终端机,这种终端机不但能接收北斗卫星的导航信号,还可以用短报文的形式与指挥中心取得联系。指挥人员在监控中心随时通过监控屏幕关注每个救援小组的位置信息,必要时以短报文形式发出指令。救援队伍在赶往灾区的过程中,通过卫星定位可得知自己所处的位置,并判断离救援目的地的距离,从而选择最佳路线,保证以最快的速度到达灾区开展救援工作。在玉树地震救援中,北斗卫星系统同样发挥了非常大的作用。

从2003年12月15日、北斗卫星导航试验系统建成并正式开通运行以来,已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产

16

生显著的经济效益和社会效益。系统现有用户数量约十万,累计提供定位服务2.5亿次,通信服务1.2亿次,授时服务2500万次,系统运行可靠性达到99.98%。

5.4实时监控

查询移动目标的导航信息(经度、纬度、速度等)并在电子地图上直观地显示出来。

5.5双向通信

监控中心可与移动目标进行数字报文通信。移动目标通过相应的终端,将报告信息反馈到指挥中心,或发送个人信息、E-mail等。

5.6动态调度功能

调度人员能在任意时刻由指挥中心发出文字调度指令,调度所辖防火队员、车辆作业,并得到确认信息。

5.7数据存储、分析功能

实现路线规划及优化,预先或实时规划防火队员、车辆的运行路线、运行区域,估计到达时间(ETA)等。依据储存的轨迹信息,可随时随地调阅各个移动目标的以往运行轨迹,并可根据要求复现或查询途中各项记录信息。

17

5.8数据共享

提供灵活、完善地数据库查询接口,实现与其它信息管理系统的无缝连接,组成完整的企业、部门信息管理系统。

5.9系统兼容

系统采用模块化设计,底层平台与上层应用系统分离,可兼容网络、GSM、集群通讯等多种通讯网络。采用开放接口终端控制模块,兼容各种主流监控终端设备。

六、结语

该系统的设计应当采用当前先进、成熟的技术,充分参考我国各地森林火灾监控监测预警以及应急指挥的各种手段,结合各地的自然情况和森林防火工作实际情况,能实现对森林火灾的自动监控、火险预警、信息通信和应急指挥等。系统搭建后应当能够极大地消除森林火灾的监控盲区,大大缩短发现火灾的时间,并能在必要时为森林火灾的扑救指挥提供强大的通信支持和辅助决策服务,从而为有效遏制森林火灾的发生、提高综合防控能力、改善防火基础设施、完善防火信息标准化体系、加大森林防火工作的科技含量打下良好的基础。

18

北斗卫星通信在水利行业中的应用(DOC)

北斗卫星通信在水利行业中的应用

目录 1.北斗卫星系统简介 (3) 2.水利行业应用需求 (4) 2.1.水利工程测量 (4) 2.2.水情监测 (5) 2.3.水利设备监控 (6) 3.短报文通信在水情监测数据传输中的应用 (6) 3.1.短报文通信介绍 (7) 3.1.1.通信方式 (7) 3.1.2.通信优点 (8) 3.1.3.通信缺点 (8) 3.2.应用方案 (9) 3.2.1.硬件配置 (9) 3.2.2.服务提供 (9) 3.2.3.通信保障 (9) 3.2.4.系统整体结构 (10) 3.3.实际应用项目介绍 (10)

1.北斗卫星系统简介 北斗卫星是一个提供全中国范围内的卫星定位系统。它是中国自主开发的用于地面定位的卫星系统,现在已发展成为可供民用定位和数据通信的系统。系统包括“北斗一代”和“北斗二代”,北斗一代空间部分由两颗静止轨道卫星和一颗备份星组成;北斗二代空间部分由5 颗静止轨道卫星、27 颗中地球轨道卫星和3 颗倾斜同步轨道卫星组成。 北斗卫星系统由三个主要部分组成:空间卫星,地面站(LES)及分理平台(河南北斗卫星导航平台)和用户终端。 图1 北斗卫星系统结构 (1)空间卫星:空间卫星部分由2~3颗地球同步卫星组成,负责执行地面中心站与用户终端之间的双向无线电信号中继任务。每颗卫星的主要载荷是变频转发器,以及覆盖定位通信区域点的全球波束或区域波束天线。每颗卫星都有2个波束,定位在太平洋、印度洋二个区域。两颗工作卫星的波束分别为1、2、3、4。一颗备用星的波束为5、6。两颗卫星都可以覆盖中国全境。覆盖范围:北纬5~55度,东经70~145度。系统组成如图1所示。 (2)地面站:终端与终端之间相互通信的中转站。其功能是完成与卫星之间上、下行数据的处理;对各类用户发送的业务请求进行响应处理,完成全部用户定位数据的处理工

北斗卫星定位系统工作原理

北斗卫星定位系统工作原理 北斗卫星定位系统是全球卫星定位系统的一种,他工作的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当北斗卫星行为系统的卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。北斗卫星定位系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于30 0m;P码频率10.23MHz,重复周期266.4天,码间距0. 1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,

其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见北斗卫星定位系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。 工作原理1 北斗卫星定位系统接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及北斗卫星定位系统信息,如卫星状况等。 北斗卫星定位系统接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精

北斗卫星导航系统介绍整理材料

北斗卫星导航系统 (一)概述 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 (二)发展历程 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供

服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。2035年前还将建设完善更加泛在、更加融合、更加智能的综合时空体系。 (三)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (四)建设原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。 ——渐进。分步骤推进北斗系统建设发展,持续提升北斗系统服务性能,不断推动卫星导航产业全面、协调和可持续发展。 (五)发展计划 目前,我国正在实施北斗三号系统建设。根据系统建设总体规划,2018年底,完成19颗卫星发射组网,完成基本系统建设,向全球提

铱(北斗)卫星通信终端使用说明_透传功能_

CT2013-0822-V1.0 铱卫星数据通讯终端使用说明 version1.0 2013-8-22 <图1>

声明 Copyright ? 2013 <>版权所有,保留所有权利未经北京xxxx通讯设备有限公司明确书面许可,任何单位或个人不得擅自仿制、复制、誊抄或转译本书部分或全部内容。不得以任何形式或任何方式(电子、机械、影印、录制或其他可能的方式)进行商品传播或用于任何商业、赢利目的。 本手册所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。除非有特殊约定,本手册仅作为使用指导,本手册中的所有陈述、信息等均不构成任何形式的担保。

目录 1产品概述 (4) 1.1产品简介 (4) 1.2产品特征 (4) 2硬件描述 (4) 2.1设备尺寸及重量 (4) 2.2正面面板 (4) 2.3右侧面板 (4) 2.3.1电源 (5) 2.3.2铱卫星天线 (5) 2.3.3GPS天线 (5) 2.4左侧面板 (5) 2.4.1用户串口 (6) 2.4.2LED指示灯 (6) 3快速使用指南 (7) 3.1GPS定位功能 (7) 3.1.1GPS定位功能信息详解 (7) 3.1.2GPS定位功能设置指令详解 (7) 3.2数据透明传输功能 (9) 3.2.1用户透传数据格式详解 (9) 4系统管理员指令 (11)

1产品概述 1.1产品简介 本产品是基于铱卫星系统的数据传输模块9602集成开发的一款卫星数据传输设备,可实现远程位置信息定时传输、短数据透明传输。支持远程更改发送时间间隔指令,支持无发送时休眠、自存储功能。 可应用于海洋环境下的浮标定位、短数据传输,无人区气象监测参数的数据传输,高空探测飞艇(气球)环境监测参数的数据传输,无人驾驶汽车的GPS定位监控,偏远地区特种车辆的GPS定位监控和指令互通等等。 我司也可根据客户具体需求集成定制设备(核心模块有9602、9603、9522B、9523等)。 1.2产品特征 宽电源输入:DC 9V-30V 采用卡口式电源连接方式,使用便捷,锁紧可靠 内部采用防电源反接电路,有效防止内部元器件的损坏 LED状态指示 上电待GPS信号可用后即发送一条定位信息,表明设备工作状态良好 提供了一个用户串口,通过串口,用户可轻松掌握设备运行状态以及进行数据透传 回传位置信息的时间间隔可根据需求设置 铱卫星信号强度实时检测功能 可以根据铱卫星信号强度的不同,决定信息是否发送,确保信息发送成功 在铱卫星信号强度不好的情况下,系统可自动存储100条用户信息,待铱卫星信号强度达到要求时依次发送 具有GPS秒连续检测功能,有效防止系统误动作 2硬件描述 2.1设备尺寸及重量 尺寸:100mm*50mm*23mm 重量:90g 2.2正面面板 <图2> 2.3右侧面板 <图3>

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

中国北斗卫星导航系统(全文)

中国北斗卫星导航系统 (2016年6月) 中华人民共和国 国务院新闻办公室 目录 前言 一、发展目标与原则 二、持续建设和发展北斗系统 三、提供可靠安全的卫星导航服务 四、推动北斗系统应用与产业化发展 五、积极促进国际合作与交流 结束语

前言 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 一、发展目标与原则 中国高度重视北斗系统建设,将北斗系统列为国家科技重大专项,支撑国家创新发展战略。 (一)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (二)发展原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。

北斗卫星导航系统测量型终端通用规范(预)要点

北斗卫星导航系统测量型终端通用规范(预) 2014.08.14 1 范围 本标准规定了北斗卫星导航系统测量型终端(以下简称北斗测量型终端)的技术要求、检验方法、检验规则以及标志、包装、运输和贮存等。 本标准适用于利用载波相位观测值进行静态测量、后处理动态测量、RTK测量的北斗测量型终端的研制、生产和使用。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图标志 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 6388 运输包装收发货标志 ?GB 9254—2008 信息技术设备的无线电骚扰限值和测量方法 ?GB/T 9969—2008 工业产品使用说明书总则 ?GB/T 12267-1990 船用导航设备通用要求和试验方法 ?GB/T 12858-1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB/T 15868—1995 全球海上遇险与安全系统(GMDSS)船用无线电设备和海上导航设备通用要求、测试方法和要求的测试结果 ?GB/T 16611—1996 数传电台通用规范 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 ?GB/T 19391—2003 全球卫星定位系统(GPS)术语及定义 ?GB/T 20512 GPS接收机导航定位数据输出格式

北斗卫星导航系统常识简介

北斗卫星导航系统常识 简介 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

北斗卫星导航系统常识简介一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,经过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,而且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,能够灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容当前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。

四、设计方案 (一)设计原则 1、先进性和适用性相结合 系统采用成熟的高新科技,以当前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。 3、安全可靠性 在经济条件允许范围内,从系统结构、设计方案(考虑到非法用户及病毒入侵,数据采用纠错冗余技术)、技术保障等方面综合考虑;系统尽可能地采用成熟的技术、商品化的软硬件产品,保证系统可靠稳定运行。 4、实用性 整个系统的操作以方使、简捷、高效为目标,多操作平台整体设计,统一操作,既充分体现快速反应的特点,又能便于工作人员进行业务处理和综合管理,便于运输交通管理层及时了解各项统

北斗GPS卫星导航系统建设方案

北斗GPS卫星导航系统 建 设 方 案 贵州迪辰安信科技发展有限公司 二〇一三年五月

目录 目录 (2) 第一章建设背景 (4) 第二章北斗GPS卫星导航系统简介 (7) 2.1、什么北斗卫星导航系统 (7) 2.2、北斗卫星定位原理 (8) 2.3、北斗卫星工作原理图 (8) 2.3、北斗GPS卫星导航技术指标 (9) 第二章系统设计原则 (10) 第三章系统总体设计 (11) 3.1系统架构 (11) 3.2 技术架构 (12) 3.3 平台运行环境配置 (13) 3.4 服务端程序平台 (13) 3.5 GPS数据接入公安内网 (14) 3.6 北斗GPS监控客户端功能设计 (14) 3.7系统安全 (19) 第四章项目实施 (21) 4.1实施进度 (21) 4.2实施和验收方法 (21) 4.2.1项目的实施 (21) 4.2.2项目的验收 (21) 4.3项目管理及质量控制 (22) 4.3.1项目责任制 (22) 4.3.2项目质量控制 (22) 第五章运行维护体系 (23) 5.1系统的维护 (23) 第六章经费预算 (24) 6.1 硬件配置及费用预算 (24)

6.2 软件系统费用预算 (24)

第一章建设背景 1. 概述 随着我市城市建设规模的扩大,车辆日益增多,交通运输的经营管理和合理调度,警用车辆的指挥和安全管理已成为公安、交通系统中的一个重要问题。过去,用于交通管理系统的设备主要是无线电通信设备,由调度中心向车辆驾驶员发出调度命令,驾驶员只能根据自己的判断说出车辆所在的大概位置,而在生疏地带或在夜间则无法确认自己的方位甚至迷路。因此,从调度管理和安全管理方面,其应用受到限制。北斗GPS定位技术的出现给车辆、轮船等交通工具的导航定位提供了具体的实时的定位能力。通过车载GPS接收机使驾驶员能够随时知道自己的具体位置。通过车载电台将GPS定位信息发送给调度指挥中心,调度指挥中心便可及时掌握各车辆的具体位置,并在大屏幕电子地图上显示出来。目前,用于公安、交通系统的主要是车辆GPS定位与无线通信系统相结合的指挥管理系统。 2. 车辆GPS定位管理系统 车辆GPS定位管理系统主要是由车载GPS自主定位,结合无线通信系统对车辆进行调度管理和跟踪。已经研制成功的如车辆全球定位报警系统,警用GPS 指挥系统等。分别用于城市公共汽车调度管理,风景旅游区车船报警与调度,海关、公安、海防等部门对车船的调度与监控。监控中心部分的主要功能有:?数据跟踪功能。将移动车辆的实时位置以贞列表的方式显示出来。如车号、经度、速度、航向、时间、日期等

中国北斗卫星导航系统——世界第三套全球卫星导航系统(图)来自网络

北斗卫星导航系统 ——世界第三套全球卫星导航系统 工程总投资:100亿元 工程期限:1994年——2020年 北京时间2007年2月3日凌晨零时28分,中国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第四颗北斗导航试验卫星送入太空。 北斗卫星导航定位系统是由中国自行研发的区域性有源三维卫星定位与通信系统(CNSS),

是继美国的全球定位系统(GPS)、俄罗斯的格洛纳斯(GLONASS)定位系统之后世界第三个成熟的卫星导航系统。 该系统分为“北斗一代”和“北斗二代”,分别由4颗(两颗工作卫星、两颗备用卫星)和35颗北斗定位卫星、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,定位精度可达数十纳秒(ns)的同步精度,其精度与GPS相当。中国在2000年至2007年先后发射了四颗“北斗一号”卫星,这种区域性(中国境内)的卫星导航定位系统,正在为中国陆地交通、航海、森林防火等领域提供着良好服务。 北斗一号导航定位卫星由中国空间技术研究院研究制造,四颗导航定位卫星的发射时间分别为: 日期火箭卫星轨道 2000年10月31日长征三号甲北斗-1A 地球静止轨道140°E 2000年12月21日长征三号甲北斗-1B GEO 80°E 2003年05月25日长征三号甲北斗-1C GEO 110.5°E 第三颗是备用卫星 2007年02月03日长征三号甲北斗-1D GEO 86°E 第四颗是备用卫星 2007年04月14日长征三号甲北斗-2A 中地球轨道(21500KM) 北斗二代首颗卫星

军用新型北斗卫星导航手持机 北斗卫星导航系统的历史 我国早在60年代末就开展了卫星导航系统的研制工作,但由于多种原因而夭折。在自行研制“子午仪”定位设备方面起步较晚,以致后来使用的大量设备中,基本上依赖进口。70年代后期以来,国内开展了探讨适合国情的卫星导航定位系统的体制研究。先后提出过单星、双星、三星和3-5星的区域性系统方案,以及多星的全球系统的设想,并考虑到导航定位与通信等综合运用问题,但是由于种种原因,这些方案和设想都没能够得到实现。 1983年,“两弹一星”功勋奖章获得者陈芳允院士和合作者提出利用两颗同步定点卫星进行定位导航的设想,经过分析和初步实地试验,证明效果良好,这一系统被称为“双星定位系统”。双星定位导航系统为我国“九五”列项,其工程代号取名为“北斗一号”。 双星定位导航系统是一种全天候、高精度、区域性的卫星导航定位系统,可实现快速导航定位、双向简短报文通信和定时授时3大功能,其中后两项功能是全球定位系统(GPS)所不能提供的,且其定位精度在我国地区与GPS定位精度相当。整个系统由两颗地球同步卫星(分别定点于东经80度和东经140度36000公里赤道上空)、中心控制系统、标校系统和用户机4大部分组成,各部分间由出站链路(即地面中心至卫星至用户链路)和入站链路(即用户机至卫星

《“北斗卫星导航系统”》阅读练习及答案

阅读下面的文字,完成各题。 材料一: 材料二: 2005年,当时正在建设的北斗二号系统的“原子钟”突遇问题。 原子钟就如同一块“手表”,为卫星导航用户提供精确的时间信息服务。事实上,高精度的时间基准技术是卫星导航系统最核心的技术, 直接决定着系统导航定位精度,对整个工程成败起着决定性作用,其重要性如同人的心脏。 当时还想引进,但人家就不给你。因为这是个高精度的东西,他 们要对我们进行技术控制。没有原子钟,这个系统基本上就是空中楼阁。 国外的技术封锁,坚定了科研人员自力更生的信念。大家有了一 个共识,核心关键技术必须要自已突破,不能受制于人。当时北斗人 有一句话,“六七十年代有原子弹,我们北斗人一定要有我们自己的原子钟”。 他们成立了三支队伍同时开展研发,并在基础理论、材料、工程 等领域同步推进。就这样,仅仅用了两年的时间,科研团队就攻克了

原子钟这个最大技术屏障。不仅如此,现在用在北斗三号上的原子钟,已提升到每300万年才会出现1秒误差的精度,完全满足了我国的定位精度要求。 (摘编自“央视网”)材料三: 2018年7月29日9时48分,我国在西昌卫星发射中心用长征三号乙运载火费,以“一箭双星”的方式成功发射第33、34颗北斗导航卫星。 这是北斗三号全球组网卫星的第四次发射。两颗卫星均属于中圆 地球轨道卫星,是我国北斗三号系统第9、10颗组网卫星。 根据计划,2018年年底前将建成由18颗北斗三号卫星组成的基本系统,为“一带一路”沿线国家提供服务。从这次发射开始,北斗 卫星组网发射进入前所未有的高密度期。 (摘编自“新华网”)材料四: 据俄罗斯《劳动报》网站2018年8月26日报道,中国已与美国的全球定位系统(GPS)和俄罗斯的“格洛纳斯”全球卫星导航系统 展开激烈竞争。今年北斗系统将开始向“一带一路”沿线国家和地区 提供基本导航服务。两年之后,北斗将向全球提供导航服务。 报道认为,中国对太空领先地位的积极争夺令美国等太空强国感 到不安。尽管中国每年对太空项目的60亿美元投入与美国的400亿美元相差甚远,但中国发射的卫星数量却与美国不相上下。此外,中

北斗二号卫星导航系统介绍与应用.

北斗二号卫星导航系统介绍及应用 南京工业大学工业工程 北斗二号卫星导航系统是中国自行研制的全球卫星定位与通信系统(BDS ,是继美全球定位系统(GPS 和俄 GLONASS 之后第三个成熟的卫星导航系统。系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度 10m ,授时精度优于 100ns 。 2012年 12月 27日,北斗二号系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。 北斗二号卫星导航系统由空间端、地面端和用户端三部分组成。空间端包括 5颗静止轨道卫星和 30颗非静止轨道卫星。地面端包括主控站、注入站和监测站等若干个地面站。用户端由北斗用户终端以及与美国 GPS 、俄罗斯 GLONASS 、欧盟 GALILEO 等其他卫星导航系统兼容的终端组成。 北斗二号卫星导航系统是在北斗一号的基础上建设的卫星导航系统, 但其并不是北斗一号的简单延伸, 完整构成的北斗二号卫星导航系统是一个类似于 GPS 和GLONASS 的全球导航系统。 一.研发背景 1. 重要的战略意义 战略意义一:建设北斗卫星导航系统, 是提高我国国际地位的重要载体战略意义二:是促进和推动经济社会发展的强大动力。战略意义三:是推动我国信息化建设的重要保证。战略意义四:是应对重大自然灾害的生命保障。战略意义五:是增强武器效能,维护国家安全的根本命脉 v 战略意义七:是我国履行航天国家国际责任的需要。战略意义八:对提升中国航天的能力, 推动航天强国建设意义重大。 2. 北斗一号卫星导航系统及其不足

北斗卫星导航系统

北斗卫星导航系统- 简介 北斗卫星导航系统 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国独立发 展、自主运行,并与世界其他卫星导航系统兼容互用的全球卫星导航系统。 北斗卫星导航系统既能提供高精度、高可靠的定位、导航和授时服务,还具备短报文通信、差分服务和完好性服务特色,是中国国家安全、经济和社会发展不可或缺的重大空间信息基础设施。 北斗卫星导航系统包括北斗一号和北斗二号两代导航系统。其中北斗一号用于中国及其周边 地区的区域导航系统,北斗二号是类似美国GPS的全球卫星导航系统。[1] 北斗卫星导航系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的中国卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。[2] 三步走 按照“质量、安全、应用、效益”的总要求,坚持“自主、开放、兼容、渐进”的发展原则,北斗卫星导航系统按照“三步走”的发展战略稳步推进。具体如下: 第一步,2000年建成北斗卫星导航试验系统,使中国成为世界上第三个拥有自主卫星导航系统的国家。 第二步,建设北斗卫星导航系统,2012年左右形成覆盖亚太大部分地区的服务能力。 第三步,2020年左右,北斗卫星导航系统形成全球覆盖能力。[3][4] 北斗卫星导航系统- 系统组成

北斗导航卫星应用战略图 北斗卫星导航系统包括北斗一号和北斗二号的2代系统,由空间段,地面段,用户段三部分 组成。 空间段 空间段包括五颗静止轨道卫星和三十颗非静止轨道卫星。地球静止轨道卫星分别位于东经5 8.75度、80度、110.5度、140度和160度。非静止轨道卫星由27颗中圆轨道卫星和3颗同步 轨道卫星组成。 地面站 地面段包括主控站、卫星导航注入站和监测站等若干个地面站。 主控站主要任务是收集各个监测站段观测数据,进行数据处理,生成卫星导航电文和差分完好性信息,完成任务规划与调度,实现系统运行管理与控制等。 注入站主要任务是在主控站的统一调度下,完成卫星导航电文、差分完好性信息注入和有效载荷段控制管理。 监测站接收导航卫星信号,发送给主控站,实现对卫星段跟踪、监测,为卫星轨道确定和时间同步提供观测资料。 用户段 用户段包括北斗系统用户终端以及与其他卫星导航系统兼容的终端。系统采用卫星无线电测

北斗卫星定位车载终端技术设计方案

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,通过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,并且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,可以灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容目前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。 四、设计方案 (一)设计原则 1、先进性和适用性相结合

系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。 3、安全可靠性 在经济条件允许范围内,从系统结构、设计方案(考虑到非法用户及病毒入侵,数据采用纠错冗余技术)、技术保障等方面综合考虑;系统尽可能地采用成熟的技术、商品化的软硬件产品,保证系统可靠稳定运行。 4、实用性 整个系统的操作以方使、简捷、高效为目标,多操作平台整体设计,统一操作,既充分体现快速反应的特点,又能便于工作人员进行业务处理和综合管理,便于运输交通管理层及时了解各项统计信息和决策信息,便于执法部门的远程监督。 5、可扩展性 考虑到业务功能在不断发展、变化,因此要求系统在结构、容量、通信和处理能力等方面具有可扩充性和升级能力。 (二)设计依据 1、多样化的完备的授权模式能够满足账户和权限管理上的各种需求 2、中华人民共和国道路交通安全法 3、公安部道路交通违法信息代码

北斗卫星通信概述及应用领域

目录 一、北斗卫星通信概述 (2) 二、北斗卫星通信应用领域 (2) 2.1北斗卫星通信在水利行业中的应用 (2) 2.2北斗卫星通信在水情监测数据传输中的应用 (3) 三、北斗卫星通信方式 (4) 3.1点对点双向通信 (4) 3.2多点对一点通信 (4) 四、北斗卫星通信的优缺点 (5) 4.1北斗卫星通信的优点 (5) 4.2北斗卫星通信的缺点 (5)

北斗卫星通信概述应用及优缺点 一、北斗卫星通信概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 二、北斗卫星通信应用领域 2.1北斗卫星通信在水利行业中的应用 在水利工程勘测和设计中,经常会遇到山岭、江河、峡谷等自然环境的阻隔,传统测量仪器很难找到合适的测量点,工作量也比较大,影响测量的精确度和工程进度。 北斗是完全由我国自行研制的定位系统,目前已经广泛运用到各项我国基础工程各项测量和定位中,基于北斗定位的RTK(实时动态差分)测量相比较传统观的水利工程测量而言,

北斗卫星导航系统测量型终端通用规范

北斗卫星导航系统位置报告/短报文型终端通用规 范(预) 2014.08.14 1 范围 本通用规范规定了北斗卫星导航系统位置报告/短报文型终端(简称为北斗通信终端)的技术要求(包括一般要求、功能要求、性能要求、环境适应性要求)、试验方法、检验规则、以及包装、运输和储存等要求。 本标准适用于北斗通信终端的研制、生产和使用,也是制定北斗通信终端产品标准、检验产品质量和产品应用选型的依据。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图示标志 ?GB 2312—1980 信息交换用汉字编码字符集基本集 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 12267—1990 船用导航设备通用要求和试验方法 ?GB/T 12858—1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB 15702—1995 电子海图技术规范

?GB 15842—1995 移动通信设备安全要求和试验方法 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 3 术语、定义和缩略语 3.1 术语和定义 下列术语和定义适用于本标准。 3.1.1 北斗卫星导航系统 BeiDou navigation satellite system 中国的全球卫星导航系统,简称北斗系统(BeiDou)。具有卫星无线电测定(RDSS)和卫星无线电导航(RNSS)两种业务,可以提供导航、定位、授时、位置报告和短报文服务。 3.1.2 北斗终端 BeiDou terminal 北斗系统各种用户应用终端的总称。北斗终端按照应用北斗卫星业务的不同服务模式,分为北斗RDSS终端和北斗RNSS终端两种类型;按其用途主要分为导航型终端、测量型终端、定时型终端和位置报告/短报文型终端。 3.1.3 北斗RDSS终端 BeiDou RDSS terminal 利用北斗RDSS业务,可以提供定位、导航、定时、位置报告和短报文通信全部或部分功能的终端。 3.1.4 指挥管理型终端 command and management terminal 利用北斗RDSS业务兼收下属用户的定位和通讯信息的多用户地址码,一般具有用户信息管理、通播、组播、单播、查询、调阅、指挥调度和管理功能的北斗通信终端。

北斗卫星一代短报文通信技术原理和关键技术

北斗卫星一代短报文通信技术原理和关键技术【文章摘要】 介绍北斗卫星一代短报文通信技术原理和关键技术以及应用 【关键词】 北斗卫星一代;短报文;通信技术;应用 0 前言 北斗卫星的短报文通信功能是美国GPS 和俄罗斯GLONASS 都不具备的特殊功能,是全球首个在定位、授时之外具备报文通信为一体的卫星导航系统。 北斗卫星短报文通信具有用户机与用户机、用户机与地面控制中心间双向数字报文通信功能,一般的用户机可一次可传输36 个汉字,申请核准的可以达到传送120 个汉字或240 个代码。短报文不仅可点对点双向通信,而且其提供的指挥端机可进行一点对多点的广播传输,为各种平台应用提供了极大便利。 指挥端机收到用户机发来的短报文,通过串口与服务器连接并且以JAVA 或其它语言编写的通信服务解析数据,通过短信网关转发至普通手机,以及通过通信服务可实现普通手机往用户机发送短报文功能。 1 短报文通信特点 北斗报文通信相比较其它的卫星通信方式具有以下特点: (1)北斗通信申请的信道的分析 通信申请的用户机端通过“北斗”卫星与其他的用户机建立通信申请的链接,类似互联网通信的链路层,只不过北斗通信是通过卫星无线互连。“卫星TCP/IP 传输技术”中定义的链路层不仅仅指整个系统的通信链接,而是在其的基础上高了一个层次。“北斗”卫星通信的实际链路中并没有实现链路控制功能,类似与互联网的物理层。可以类比,数据丢失率类似链路的差错率,通信频度类似于传播延迟,信息往返同样也存在信道的不对称性。 (2)通信频度和通信量的限制 根据北斗卡的不同级别,北斗卡可以支持的报文通信可分为两个级别,普通用户通信频率为120 汉字/ 次;三级北斗卡发送短报文时间频率为1 分钟一次。 (3)数据格式的种类 根据需要,可以选择北斗通信申请的短报文两种数据类型,一种是通常汉字通信采用的ASCII 码的方式,另一种为BCD 码方式。

北斗卫星通信原理

简介 北斗卫星定位系统是由我国建立的区域导航定位系统。 该系统由三颗(两颗工作卫星、一颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。 北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。 美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。 北斗一号导航定位卫星由中国空间技术研究院研究制造。 三颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,第三颗是备用卫星。 北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。 北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。

北斗一号系统的基本功能包括:定位、通信(短消息)[glow=255,red,2][/glow]和授时。 北斗二代系统的功能与GPS相同,即定位与授时。 系统工作原理: 北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。 另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。 从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。 “北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ), 设立标校站之后为20米 (类似差分状态)。 工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。

相关文档
最新文档