压力容器安全系数许用应力

压力容器安全系数许用应力
压力容器安全系数许用应力

作者邓阳春陈钢杨笑峰徐彤

【摘要】压力容器安全系数与材料参数紧密相关,确定材料许用应力值时,需要同时考虑材料抗拉强度和屈服强度更为合理;奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时,需要特殊考虑。压力容器安全系数的选取建立在经验基础上,在保障压力容器安全性前提条件下,为节省材料和降低成本,随着理论研究深入和科学实验的进步,压力容器安全系数有所降低,这是科学设计和实用成功经验结合的结果。

【关键词】压力容器;材料;许用应力;标准;安全系数

0 引言

压力容器广泛用于工业领域及日常生活领域,一旦破坏,往往造成灾难性事故。为确保公众安全,应用科学技术和使用经验,世界各国制订了压力容器标准,并通过法规等形式强制执行。合理选取材料许用应力值是保障压力容器安全、合理使用的科学基础。

1914年,美国制定了世界上第一部压力容器标准,材料许用应力值仅以抗拉强度为基准。直到1943年,英国压力容器标准选取材料许用应力值时首次引入材料屈服强度为基准。为保证压力容器安全,确定材料许用应力值时,同时考虑材料抗拉强度和屈服强度更为合理。奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时需特殊考虑。

目前,确定压力容器材料许用应力值一般取min{σs/n s,σb/n b,σD/n D,σn/n n}。其中,σs,σb,σD,σn 分别为材料的屈服强度、抗拉强度、蠕变强度和疲劳强度,在大多数工况下,压力容器材料主要考虑屈服强度和抗拉强度,在一定条件下,才需考虑材料蠕变强度和疲劳强度;n s,n b,n D,n n为安全系数。

安全系数主要取决于人们对客观规律的理解程度和设备发生事故的危害程度,压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,为节省材料和经济考虑,压力容器安全系数有降低的趋势[1-2]。

欧盟许多国家压力容器标准安全系数过去就较低,2002年制定了统一的压力容器标准,安全系数明显降低[3]。由于国际竞争等原因,美国机械工程师协会在对压力容器标准系统研究基础上,2007年将压力容器标准中的分析设计标准安全系数降低[4-5]。

为保障压力容器安全性与经济性统一[6],针对压力容器标准安全系数降低的国际趋势,笔者提出开展压力容器安全系数方面的研究,重点探讨压力容器材料屈服强度和抗拉强度及其相应的安全系数。

1 材料抗拉强度

美国ASME于1914年制定了世界上第一部压力容器标准,压力容器材料许用应力值仅考虑材料抗拉强度。在20世纪30年代前,该方法为世界各国普遍接受。

20世纪50—60年代,美国ASME针对当时欧洲许多国家压力容器标准材料许用应力值由材料屈服

强度取代材料抗拉强度控制,为确定是否保留材料抗拉强度,研究材料趋势曲线(trend curve)——实质为温度与材料性能的关系[7-8]。研究结论:在蠕变温度以下材料许用应力值仍由抗拉强度σb控制;引入屈服强度σs,同时保留抗拉强度σb。主要依据如下:

1)局部应力主要由材料抗拉强度σb和材料硬化指数n控制。

2)低周疲劳(5000次),压力容器失效发生在应力集中系数较大部位,如压力容器接管处,属应变疲劳,按抗拉强度σb考虑更可靠。

3)压力容器爆破压力与材料硬化指数n和塑性变形率有较大关系,与材料抗拉强度σb有较大关系,对于薄壁容器和低强度材料尤为明显。

4)σs不确定:

①弯曲试验屈服点不明显;

②屈服点σ0.2选取较随意。

2 材料屈服强度

在使用锅炉早期,几乎只有低碳钢材料。当时,ASME材料抗拉强度安全系数为5,蒸汽锅炉温度较低,低碳钢材料具有较好的延性。因而,按材料室温下抗拉强度进行设计,比较粗略的满足使用要求。

然而,高效蒸汽循环需要高的工作温度,需要考虑材料高温下的特点。英国国家物理实验室进行了有价值的早期工作。产生了“弹性极限”概念,尽管当时没有标准规定,实际工作下“弹性极限”安全系数在1.75左右,使用低于以材料抗拉强度为基准的许用应力值[9]。二战前,英国已经获得各种材料在一定温度范围内的基本数据。20世纪40年代末,英国开始考虑屈服强度σs,同时保留抗拉强度σb,在屈服强度σs引入标准前,设计实质上已考虑材料的屈服性能。主要由于:

①高温安全性能考虑;

②国际商业竞争。

1943年,英国BS1113水管锅炉标准采纳了“弹性极限”概念,将材料屈服强度引入确定材料许用应力值。由于采用先进技术和连续有益的经验,材料屈服强度安全系数较低,材料抗拉强度安全系数降低。在500F以上,实际许用应力值选取比仅以材料抗拉强度为基准的许用应力值低。

20世纪20—30年代,德国进行材料塑性性能研究,主要根据使用温度下屈服强度σs确定材料许用应力,放弃考虑抗拉强度σb。

由于压力容器主要以线弹性理论为基础,考虑屈服强度σs,比较合理。因而很快被瑞典、挪威、捷克等许多欧洲国家引用。

由于仅考虑材料屈服强度,在商业利益驱动下,出现了片面追求高屈服强度σs的现象,材料韧性等优良性能下降,塑性储备降低。为了控制不利于压力容器质量的安全因素,采取限制σs/σb的措施。实际上确定材料许用应力值时,间接考虑了材料抗拉强度的影响因素。

欧盟EN13445—2002压力容器标准[3]规定材料许用应力值以材料屈服强度为基准,未考虑抗拉强度值。但对压力容器材料屈服强度与抗拉强度的比值有一定限制。

美国ASMEⅧ-1 2007[10]和ASMEⅧ-2 2007[5]和中国GB150—1998[11]和JB4732—1994[12]确定材料许用应力值同时以材料屈服强度和抗拉强度为基准,分别除以相应的安全系数,结果取其小值。

3 不锈钢材料

奥氏体不锈钢材料具有非常好的韧性和非常高的应变强化能力,具有很好的高温性能、低温性能、抗腐蚀性能,具有非常优良的综合机械性能。奥氏体不锈钢材料抗拉强度很高,屈服强度较低。按碳钢方法确定材料许用应力值往往导致奥氏体不锈钢材料许用应力值偏低,不能充分发挥材料承载能力。为此,世界各国采取不同措施提高奥氏体不锈钢材料许用应力值。

美国ASMEⅧ-1和ASMEⅧ-2针对奥氏体不锈钢材料规定,压力容器如果容许少量变形,许用应力值最高可取设计温度下0.9σ0.2,高于σ0.2/n s。

德国对于奥氏体不锈钢材料,屈服强度一直按σ1.0取值[13]。一般,σ1.0比σ0.2高40MPa,如304材料将提高屈服强度值20%。同时,奥氏体不锈钢材料屈服强度安全系数较碳钢材料低。材料许用应力值比ASME高。该方法在20世纪50—60年代被英国、挪威、瑞典、澳大利亚等许多欧洲国家采用。欧盟EN13445压力容器标准采用该方法。

中国压力容器标准针对奥氏体不锈钢材料,常规设计标准GB150和应力分析设计标准JB4732在温度大于100℃时,许用应力值取值方法与美国ASMEⅧ-1和ASMEⅧ-2基本相同;但是,在低于100℃时,奥氏体不锈钢材料许用应力值取值与碳钢许用应力值取值方法相同,导致对于同类奥氏体不锈钢材料,中国奥氏体不锈钢材料许用应力值最低。

4 压力容器材料安全系数

在压力容器使用初期,由于当时科学技术水平限制,对压力容器研究不完善,为了满足使用需要,保障安全,按理论计算基础上,根据材料抗拉强度值,除以安全系数,得到材料许用应力取值时代入计算公式。安全系数主要作用为使用压力容器时预留一定余量,以弥补理论漏洞和制造时无法检测的缺陷。

安全系数是历史遗留的产物,反应人们对未知世界不确定因素,不得已而采用的保险措施。虽然对安全使用压力容器起到了促进作用,但是,也可能阻碍压力容器的技术进步。虽然从压力容器使用开始,安全系数一直沿用至今,并且在今后很长时间将继续保留,但是,安全系数存在并不一定合理。从材料和力学角度考虑,由于材料取值时存在安全系数,导致增加压力容器厚度,压力容器受力状态恶化,并影响焊接质量。

不能依靠安全系数而降低对压力容器技术的要求;相反,通过技术进步,降低实用安全系数。由于

力学理论深入,有限元技术和计算机技术发展,测试技术进步,对压力容器力学研究日益完善;材料冶炼水平和制造加工水平进步,材料性能得到保障;无损检测技术发展,发现缺陷的能力和可靠性大大提高;管理和监测水平规范提高等多方面的进步和成果……。使压力容器安全系数的取值出现逐渐降低可能。实际使用压力容器时,对核容器安全性要求往往更高,但是,核压力容器安全系数反而比民用压力容器的安全系数更低;航天工业努力减轻设备重量,不能容忍高的安全系数,然而,航天工业对设备安全性要求最高。

美国ASME第一版压力容器标准安全系数取为5。二战期间,ASME将材料抗拉强度安全系数降为4。1955年ASME版本,分析设计方法作为ASME压力容器另一标准,分析进一步完善,材料许用应力值包含材料屈服强度等性能参数,材料抗拉强度安全系数降为3.5。

2007年版本ASMEⅧ-1压力容器常规设计标准,材料抗拉强度安全系数降为3.5;ASMEⅧ-2压力容器分析设计标准,采用分安全系数方法,最大安全系数降为2.4。

中国压力容器标准材料许用应力值考虑抗拉强度,常规设计标准GB150—1998材料抗拉强度安全系数降为3,应力分析设计标准JB4732—1994材料抗拉强度安全系数降为2.7。

欧盟EN13445—2002压力容器标准[3]采用分安全系数方法,材料抗拉强度安全系数最大取2.4。

5 压力容器抵抗爆破实际安全系数

选取压力容器材料许用应力值时的安全系数相当于理论上的安全系数,不同于压力容器抵抗爆破实际安全系数。压力容器实际安全系数为爆破压力值与按材料许用应力计算的压力值之比。

https://www.360docs.net/doc/c24161219.html,nger[14]指出ASME规范圆筒体和球体在内压下所需厚度采用Lame公式计算最大环向应力,不超过材料许用应力,因而,暗示规范具有爆破安全系数同材料许用应力的安全系数。对于碳钢,材料许用应力由材料抗拉强度决定,安全系数为n b。对于厚壁碳钢材料容器比较适合。

https://www.360docs.net/doc/c24161219.html,nger和W.L.Harding[15]对3种如图1所示不同硬化指数的材料压力容器爆破试验,分别依据抗拉强度和屈服强度设计,假设材料韧性足够,得到压力容器抵抗爆破实际安全系数如图2所示。

图1 几种材料应力—应变特性

图2 压力容器抵抗爆破实际安全系数

6 国内外压力容器标准选取材料许用应力值的方法和安全系数比较

世界各国压力容器标准总体设计原则和设计技术差别不大,针对压力容器局部结构有少量差别,但是选取材料许用应力值时,选择材料参数和安全系数有差别较大,导致同一台压力容器按不同标准制造,压力容器厚度相差较大。

如图3所示[16],同一条件的容器,采用同样的材料,采用不同的标准,需要不同的厚度。

图3 不同标准所需容器厚度

下表为国外部分压力容器标准材料许用应力值选取方法和安全系数,其中,选取奥氏体不锈钢材料许用应力值的方法和安全系数差别较大。

部分国内外压力容器标准材料许用应力值选取方法和安全系数表

注:F为碳钢,A为奥氏体不锈钢,δ为延伸率

7 结论

1)确定压力容器材料许用应力值时,以材料的屈服强度和抗拉强度为基准,均有理论依据,应同时考虑。

2)压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,压力容器安全系数逐步降低,节省材料。

3)奥氏体不锈钢材料有非常大的应变强化能力。欧盟EN13445—2002压力容器标准奥氏体不锈钢材料许用应力选取方法和安全系数,建立在理论研究和实验研究基础上,并在欧洲有多年广泛使用经验,经济、实用、合理。

4)压力容器抵抗爆破实际安全系数不同于选取材料许用应力时的安全系数。

5)世界各国压力容器标准总体设计原则和设计技术差别不大,局部结构有少量差别,但选取材料许用应力值时,选择材料参数和安全系数的差别较大。

参考文献

[1] 吴宗之,任彦斌,牛和平等.基于本质安全理论的安全管理体系研究[J].中国安全科学学报,2007,17(7):54~58

[2] 姚安林.石化企业风险管理机制研究[J].中国安全科学学报,2007,17(7):38~45

[3] EN13445,Unfired Pressure Vessels[S],2002

[4] E.Upitis and K.Mokhtarian.Evaluation of design margins for section Ⅷ,Div.1 and 2 of ASME boiler and pressure vessel cede[J].WRC Bulletin,1998,435:1-85

[5] 2007 ASME Boiler &Pressure Vessel Code,Ⅷ-Division 1,Rules for Construction of Pressure Vessels[S],2007

[6] 杜志明,范军政.安全裕度研究与应用进展[J].中国安全科学学报,2004,14(6):6~10

[7] J.H.Gross.PVRC interpretive report of pressure vessel research,section 2--materials considerations[J].Welding Research Council Bulletin,1964,101:1-31

[8] P.M.Brister.Code design criteria in the U.S.A.evaluation of strength properties[A].1977 Design Criteria of Boilers and Pressure Vessels,Papers Presented at the Third International Conference on Pressure Vessd Technology[C].ASME,Tokyo,Japan,1977.4:35-53

[9] W.R.Chipperfield.Design Criteria for Boilers and Pressure Vessels in the United Kingdom[A].Criteria of Boilers and Pressure Vessels,Papers Presented at First International Conference on Pressure Vessel Technology[C].ASME,Delft,the Netherlands,1969.10:33-35

[10] 2007 ASME Boiler & Pressure Vessel Code,Ⅷ-Division 2,Alternative Rules for Construction of Pressure Vessels[S],2007

[11] GB150—1998.钢制压力容器[S],1998

[12] JB4732—1994.压力容器分析设计[S],1994

[13] O.Schmidt.German design criteria including safety factors on tensile strength and yield strength[A].Criteria of Boilers and Pressure Vessels,Papers Presented at First International Conference on Pressure Vessel Technology[C].ASME,Delft,the Netherlands,1969.10:9-13

[14] B.F.Langer.PVRC interpretive report of pressure vessel research,section 1--design considerations[J].WRC Balletin,1964,97:1-53

[15] B.F.Langer and W.L.Harding.Material requiements for long life pressure vessels[J].Translation of ASME,Journal of Engineering for Power,1958,86:403-410

[16] Bernard F.Langer.Design-stress basis for pressure vessels[J].Experimental Mechanics,1971,30:1-11

信息来源:中国安全科学学报2008.6(责任编辑:袁辉)

套管安全系数计算

套管安全系数计算 以下是为大家整理的套管安全系数计算的相关范文,本文关键词为套管,安全系数,计算,套管,安全系数,计算,下表,抗拉,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。 套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??Kn

Kn pp= 拉 额 8 .72 .1110008.9- =:其中浮力系数下深每米重量=浮力系数钢拉ppmρ??? 36.20383

.0791.7== 抗挤系数=抗拉 额 mpa pp p抗挤力=〔()〕50= p抗挤力=〔ρ固井时的泥浆密度-(1-掏空系数)ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 mpa

mpa pp 井底最大内压力=50= p内压力=(ρ下次最大泥浆-ρ地层水)套管下深23.31000 8.9202053.5985.09.3233=抗拉系数=? ??Kn ()[]38.12020 2.165.012.100981.0305.21=抗挤系数=

??--?mpa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φn80 38.41000 8.9175076.2985.08.1903=抗拉系数=???Kn

()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?mpa50.13600 2.100981.036 3.63=抗内压系数=?? 〔s抗挤〕=~ 〔s抗内压〕=~ 〔s抗拉〕=~ 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力;②泥浆密度均采用1.2g/cm;

最新压力容器的强度计算

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。(5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel)

考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立 进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许 多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。

套管安全系数计算

套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??KN KN P P = 拉 额 8 .72 .1110008.9- =: 其中浮力系数下深每米重量=浮力系数钢 拉P P m ρ??? 36.20383 .0791.7== 抗挤系数=抗拉 额 MPa P P P 抗挤力=0.00981×〔1.2-(1-0.65)×1.2〕×50=0.383 P 抗挤力=0.00981×〔×ρ固井时的泥浆密度-(1-掏空系数0.65)×ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 MPa MPa P P 井底最大内压力=0.00981×1.20×50=0.588MPa P 内压力=0.00981×(ρ下次最大泥浆-ρ地层水)×套管下深 23.31000 8.9202053.5985.09.3233=抗拉系数=? ??KN ()[]38.12020 2.165.012.100981.0305.21=抗挤系数= ??--?MPa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φ139.7 N80×9.17

38.41000 8.9175076.2985.08.1903=抗拉系数=? ??KN ()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?MPa 50.13600 2.100981.0363 .63=抗内压系数=?? 〔S 抗挤〕=1.0~1.125 〔S 抗内压〕=1.05~1.15 〔S 抗拉〕=1.60~2.00 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力; ②泥浆密度均采用1.2g/cm ; ③各额定压力查钻井手册表3-8(第160~180页)。

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

压力容器的强度计算

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准 则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。

3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W :在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置 时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa ; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B (标准的附 录),超压泄放装置。) 计算压力P C是GB150-1998新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温 度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应 力计算时设计到的材料物理性能参数。 ?设计温度不得低于元件金属在工作状态可能达到的最高温度; ?当设计温度在0C以下时,不得高于元件金属可能达到的最低温度; ?当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998对钢板、锻件、紧固件均规定了材料的许用应力。 表3钢制压力容器中使用的钢材安全系数 帝训戒讲计盘雇下 的划帶点设计■盧FS4沖万小时祈闿的 iitftiUfS 下坨W H小时U4 + * 1的蒔空權展tr: 169 表2无缝钢管制作筒体时容器的公称直径(mm)

压力容器强度计算(20210201112022)

压力容器强度计算 第一节设计参数的确定 1我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则, 应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的 ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际 最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温 度确定。(详细内容,参考GB150-1998,附录B (标准的附录),超压泄放装置。)

机械设计中的安全系数选择问题

工程中的材料强度、刚度、稳定性。 强度-构件在确定的外力作用下,不发生破坏或过量塑性变形的能力。 杆-拉杆与压杆。 工程中承受拉伸的杆件统称为拉杆,受压的杆件成为杆或柱,承受扭转的杆件称为轴,承受弯曲的杆件统称为梁。 在工程力学中,把一些杆轴交汇于一点的工程结构称为桁架结构,这种结构受力特征是内力只有轴力,没有弯矩和剪力。如:井架的主体桁架、建筑脚手架、三角形屋架梁等。 许用应力与安全系数 最近听到对于建井结构安全的一些言论,有的说安全凭经验即可,我原来怎样用的,现在怎样用是没有问题的;有的说,计算是什么结果,应该遵守。 用伟人毛泽东的哲学思想是“实践—理论—实践”, 我们正常工作中选用的钢丝绳安全系数、钢材安全系数许用应力和安全系数都是比较成熟的,是规范推荐值或强制值。 在非标准或特殊情况下,安全应由自己评估。许用应力与安全系数常常应由自己选取决策。强度—在确定的外力作用下,不发生破坏的能力。 刚度—在确定的外力作用下,变形或位移在工程允许的范围内。 稳定性—在可能的外力作用下不会发生突然转变的能力。例如:建筑施工脚手架,强度、刚度能满足,但由于局部结构不稳定,使整个脚手架倾覆或塌陷。 材料名称屈服点σs抗拉强度σb抗剪强度τ单位材料使用地点 Q235 235 375 MPa或N/mm^2 普通结构 45 355 600 轴类件 30CrMnTi 1470 60Si2CrVA 1678 1865 钢丝 安全系数S应该综合荷载确定的准程度、材料性能数据的可靠性、所有计算方法的合理性、加工装配精度以及所设计的零件的重要性来确定。各行各业都有一些经验的安全系数,目前均偏于保守。目前,流行的安全系数法是部分系数法,他将各个对安全系数有影响的因素分别用一个分系数如:S1、S2、……标示,这些系数的乘积即即为安全系数:S=S1?S2?S3。。。。在实际应用中,取大取小带有一定主观性,即一般取大值或中间值,考虑的因素越多,系数值越大。 名称 S 抗疲劳计算系数 1.5~3 抗变形计算系数 1.2~2 抗断裂计算系数 2~4 抗不稳定计算系数 3~5 工作重要性系数 1.0~1.3 计算误差系数 1.2~1.3 轧制工艺可靠性系数 1.05~1.1 锻造工艺可靠性系数 1.05~1.1 铸造工艺可靠性系数 1.15~1.2 使用磨损系数 1.15~1.25 锈蚀系数 1.15~1.2 钢丝绳结构系数 1.217 案例:凿井提升钩头的安全系数S怎样确定?

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用

理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、

2020年材料的许用应力和安全系数

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 b b n σσ= ][ (5-8) 对于塑性材料,许用应力 s s n σσ= ][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 ][max max σσ≤=A N (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成][σN A ≥ ,

压力容器安全系数许用应力

作者邓阳春陈钢杨笑峰徐彤 【摘要】压力容器安全系数与材料参数紧密相关,确定材料许用应力值时,需要同时考虑材料抗拉强度和屈服强度更为合理;奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时,需要特殊考虑。压力容器安全系数的选取建立在经验基础上,在保障压力容器安全性前提条件下,为节省材料和降低成本,随着理论研究深入和科学实验的进步,压力容器安全系数有所降低,这是科学设计和实用成功经验结合的结果。 【关键词】压力容器;材料;许用应力;标准;安全系数 0 引言 压力容器广泛用于工业领域及日常生活领域,一旦破坏,往往造成灾难性事故。为确保公众安全,应用科学技术和使用经验,世界各国制订了压力容器标准,并通过法规等形式强制执行。合理选取材料许用应力值是保障压力容器安全、合理使用的科学基础。 1914年,美国制定了世界上第一部压力容器标准,材料许用应力值仅以抗拉强度为基准。直到1943年,英国压力容器标准选取材料许用应力值时首次引入材料屈服强度为基准。为保证压力容器安全,确定材料许用应力值时,同时考虑材料抗拉强度和屈服强度更为合理。奥氏体不锈钢材料具有非常好的应变强化能力和韧性,为充分发挥奥氏体不锈钢材料优良性能,选取奥氏体不锈钢材料许用应力值时需特殊考虑。 目前,确定压力容器材料许用应力值一般取min{σs/n s,σb/n b,σD/n D,σn/n n}。其中,σs,σb,σD,σn 分别为材料的屈服强度、抗拉强度、蠕变强度和疲劳强度,在大多数工况下,压力容器材料主要考虑屈服强度和抗拉强度,在一定条件下,才需考虑材料蠕变强度和疲劳强度;n s,n b,n D,n n为安全系数。 安全系数主要取决于人们对客观规律的理解程度和设备发生事故的危害程度,压力容器安全系数的选取建立在经验基础上,随着理论研究和科学实验的进步,在保障压力容器安全性前提条件下,为节省材料和经济考虑,压力容器安全系数有降低的趋势[1-2]。 欧盟许多国家压力容器标准安全系数过去就较低,2002年制定了统一的压力容器标准,安全系数明显降低[3]。由于国际竞争等原因,美国机械工程师协会在对压力容器标准系统研究基础上,2007年将压力容器标准中的分析设计标准安全系数降低[4-5]。 为保障压力容器安全性与经济性统一[6],针对压力容器标准安全系数降低的国际趋势,笔者提出开展压力容器安全系数方面的研究,重点探讨压力容器材料屈服强度和抗拉强度及其相应的安全系数。 1 材料抗拉强度 美国ASME于1914年制定了世界上第一部压力容器标准,压力容器材料许用应力值仅考虑材料抗拉强度。在20世纪30年代前,该方法为世界各国普遍接受。 20世纪50—60年代,美国ASME针对当时欧洲许多国家压力容器标准材料许用应力值由材料屈服

材料的许用应力和安全系数计算三角

第四节 许用应力·安全系数·强度条件. 强度计算。三角函数 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方 面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成 , 由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件 确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的 最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在 b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤= A N ][σN A ≥ ][max σA N ≤

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 b b n σσ= ][ (5-8) 对于塑性材料,许用应力 s s n σσ= ][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 ][max max σσ≤=A N (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成][σN A ≥ ,由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件][max σA N ≤确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在

压力容器的发展趋势

压力容器的发展趋势 一、前言 压力容器基本都是在承压状态下工作,并且所处理的介质多为高温或易燃易爆,危险性极高,因此世界各国均将压力容器作为特种设备予以强制性管理。压力容器的类型和功能也随应用场合的不同而随之变化,其整个设计,制造和使用过程涉及冶金、结构设计、机加工、焊接、热处理、无损检测,自动化等专业技术门类。因此,压力容器的技术发展是在建立在各专业技术综合发展的基础之上。 二、压力容器本体的发展方向: 随着国际经济,技术的贸易交流日渐加强和压力容器的设计,制造及使用管理的成熟化,国内外压力容器的发展逐渐呈现出以下几个方向: 1、通用化与标准化: 压力容器通用化和标准化已成为不可逆转的趋势之一。这是因为通用化与标准化也就意味着互换性的提高,这不仅有利于压力容器使用单位日常维护与后勤保障,而且能够最大限度地减少设计和制造成本。同时,对于像我们这样的出口大国,标准化也意味着获得了走向国际的通行证。从世界范围内的压力容器出口大国的实践分析可以看出,国际化的工程公司可以带动本国的压力容器行业的发展和标准的国际化认可,从而获得更大的国际发言权和丰厚的经济利润。 2,特殊化与专业化: 通用化与标准化虽然有许多优点,但在这类压力容器只能用在一些普通场合,在具有特殊要求的工作环境下必须使用具有特殊功能的压力容器。如核反应容器,水晶加工容器和火箭燃料箱等就要求压力容器必须具备极强的耐腐蚀,耐高压和耐高温能力。正是这些特殊的需求促使压力容器向着特殊化与专业化的方向不断地发展和进步。 (1)超高压容器:它是指工作压力大于或等于100MP的容器,这类容器在乙烯的聚合,人工水晶的制造等方面已经得到了广泛应用。但其依然存在着制造成本高昂和安全性不够理想的问题。现在随着新型材料出现和冶金业的发展超高压容器的耐压能力和强度极限也在逐步提升,这都将促使超高压容器进一步发展。 (2)高温压力容器:所谓高温﹐通常是指壁温超过容器材料的蠕变起始温度(对于一般钢材约为350℃)。火力发电站的锅炉汽包﹑煤转化反应器﹐某些堆型(高温气冷堆和增殖反应堆)核电站的反应堆压力容器等﹐都是高温压力容器。高温压力容器因材料的蠕变会产生形状和尺寸的缓慢变化。材料在高温的长期作用下﹐其持久强度较短时抗拉强度低得多。因此选择材料的主要依据是高温持久强度和耐腐蚀性。高温压力容器的应力分析比较复杂﹐求理论解相当困难。现代实践表明﹐采用有限元法分析是切实可行的。如果容器承受交变载荷(例如反复升压和降压)﹐还应考虑疲劳(见疲劳强度设计)和蠕变的交互作用。

压力容器的强度计算]

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 b b n σσ= ][ (5-8) 对于塑性材料,许用应力 s s n σσ= ][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 ][max max σσ≤=A N (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,

压力容器安全

第五章压力容器安全 5.1压力容器的安全问题 5.1.1压力容器的应用和特点 压力容器是工业生产中必不可少的一类机械设备,压力容器不仅是承受流体压力(包括内压或外压)的密闭容器,从安全使用管理而言,更是一类具有潜在爆炸危险的特种设备。 (1)容器应用的广泛性 压力容器广泛用于石油、化工、医药、冶金、机械、采矿、航天航空、交通运输等工业生产部门,且多半在压力条件下操作。 (2)操作条件的复杂性 压力从真空到高压、超高压;温度从低温到高温。 处理介质包括:爆、燃、毒、辐(照)、腐(蚀)、磨(损)等。 (3)对安全的高要求 压力容器本身要求有足够的强度、刚度和稳定性,密封性好。 5.1.2压力容器的安全问题 压力容器事故有三个主要特征: (1)量大面广; (2)事故率高; (3)危害性大。 发生压力容器事故多是由于制造和操作管理上的原因。 压力容器只要在压力容器的材料、设计、制造、检验、运行、管理等各个环节循其规律,周密防范,完全可做到减少和避免事故发生。 压力容器是具有潜在爆炸危险的特殊承压设备,需要专业技术与专门管理,即技术管理和行政管理。 技术管理是指各种压力容器的安全技术,包括设计、制造、安装、检验的技术、标准与规范等; 行政管理即政府和劳动部门的安全监察机构与技术检验单位,包括各项压力容器、锅炉、气瓶、液化石油气槽车安全监察法规、规程和条例等制度。

5.2压力容器的分类 5.2.1压力容器的定义范围 压力容器从字面上看,凡承受压力的密闭容器都属压力容器范围。 实际中只是将比较容易发生事故,且事故危害性较大的压力容器才作为一种需要实施专门安全监察的设备; 即:最高工作压力≥0.1Ma(不包含液体静压力); 内直径(非圆形截面则指断面最大尺寸)≥0.15m,且容积≥0.025m3; 盛装介质为气体、液化气体或最高工作温度高于或等于标准沸点的液体。 5.2.2压力容器的分类 (1)按使用位置分类: 1)固定式压力容器 即固定安装在使用地点的容器; 2)移动式容器 指气瓶、气桶和槽车等无固定安装和使用地点的容器。 (2)按设计压力分类: 1)低压容器:0.1≤P≤1.6MPa; 2)中压容器: 1.6≤P≤10MPa; 3)高压容器:10≤P≤100MPa; 4)超高压容器:P≥100MPa。 (3)按工艺作用分: 1)反应容器 主要用于完成介质的物理、化学反应的压力容器; 2)换热容器 主要用于完成介质的热量交换的压力容器; 3)分离容器 主要用于完成介质的流体压力平衡和气体净化分离等的容器; 4)储存容器 主要用于盛装生产或生活用的原料气体、液体、液化气体等。 (4)按安全监察管理分: 根据容器在生产过程中的重要性、压力高低和介质危害程度(指易燃介质、毒性介质)

安全系数算法

3 安全度分析 根据标准图的设计说明,隧道按照喷锚构筑法原理,衬砌结构由初支和二次衬砌组成,支护参数主要以工程类比为主,并辅以结构数值分析检算。计算时,初期支护为主要承载结构。Ⅱ~Ⅲ级围岩二次衬砌作为安全储备,按承受围岩荷载的30% 检算;Ⅳ~Ⅴ级围岩二次衬砌作为承载结构,分别按承受围岩荷载的50%~70% 检算,得出荷载与结构安全系数。 3.1 围岩压力计算 衬砌荷载根据隧道的地形和地质条件、埋置深度、结构特征和施工方法等因素,按有关公式计算或按工程类比确定,主要考虑围岩压力、结构自重、围岩约束衬砌变形的弹性反力等,不考虑列车活载、冻胀力、地下水压等附加荷载。当施工发现其与设计不符时,应及时修正。对复杂地质条件的隧道,必要时应通过实地量测确定荷载的计算值及其分布规律,本图考虑在浅埋地段的隧道视具体情况采用加强衬砌。 3.1.1 深埋隧道围岩压力计算 计算深埋隧道衬砌时,围岩压力按松散压力考虑,其垂直及水平匀布压力可按下列规定确定。 (1)竖直压力 10.452S q h γγω-=?=??? (3-1) 式中: q ——围岩垂直匀布压力(kPa ); γ——围岩重度(kN/m3); h ——围岩压力计算高度(m ); S ——围岩级别; ω——宽度影响系数,1(5)i B ω=+-; B ——坑道宽度(m ); i ——坑道宽度每增减1m 时的围岩压力增减率。当B<5m 时,取i =0.2, B>5m 时,可取i =0.1。 (2)侧压力 水平匀布压力可按下式计算确定。

e q λ=? (3-2) 式中:λ——侧压力系数,其取值参照围岩级别分别取值。 3.1.2 浅埋隧道围岩压力计算 地面基本水平的浅埋隧道,所受的荷载具有对称性。其计算为: (1)竖直压力 tan 1h q h B γθγ?? =- ?? ? (3-3) [] θ?θ?ββ?βλtan tan )tan (tan tan 1tan tan tan c c c +-+-= (3-4) θ ????βtan tan ) tan()1(tan tan tan 2-++=c c c c (3-5) a h h 5.2= (3-6) 10.452S a h ω-=?? (3-7) ()10.10.5B ω=+?- (3-8) (2)侧压力 λγi i h e = (3-9) 式中: q ——垂直压力(N/m 2); γ——围岩重度(N/m3); h ——洞顶地面高度(m); θ——洞顶土柱两侧摩擦角(°); λ——侧压力系数,按照围岩级别分别取值; h i ——内外侧任意点至地面的距离(m); c ?——围岩计算摩擦角(°); β——产生最大推力时的破裂角(°); a h ——深埋隧道垂直荷载计算高度(m ); S ——围岩级别; ω——深埋隧道的宽度影响系数; B ——隧道开挖跨度(m )。

相关文档
最新文档