传感器实验 (1)

传感器实验 (1)
传感器实验 (1)

实验一电子秤实验——金属箔式应变片全桥搭建

一、实训目的:

了解金属箔式应变片。

了解全桥测量电路的性能,掌握其接线方法。

二、实训仪器:

实训台、应变传感器实验模块、托盘、砝码、万用表(自备)。

三、实验原理:

应变片是最常用的测力传感元件。当用应变片测力时,应变片要牢固地粘贴在测试体表面,当测试体受力发生形变时,应变片的灵敏栅随之变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图b,当应变片初始值相等,变化量也相等时,其桥路输出:Uo=KEε,E为电桥电源电压,公式表明,全桥输出灵敏度比半桥又提高了一倍,非线性误差得到进一步改善。

四、注意事项

1. 加在应变传感器上的压力不应过大,以免造成应变传感器的损坏。

2. 应变传感器实验模块上,电路连接线中的四个电阻实际上并不存在,仅作为一种标记,让学生组桥容易。

五、实验步骤

1.应变传感器已安装在应变传感器实验模块上,可参考图a。

图a 应变传感器安装图

2.差动放大器调零。从实训台接入±15V电源,检查无误后,合上实训台电源开关,将差动放大器的输入端Ui短接并与地短接,输出端Uo2接数显电压表(选择2V档)。将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V。关闭实训台电源。(Rw3、Rw4的位置确定后不能改动)

3.按图b所示进行接线,将受力相反(一片受拉,一片受压)的两对应变片分别接入电桥的邻边。

图b 全桥电路接线图

4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。

5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下数显表值,填入数据记录表,关闭电源。

六、实验数据处理

数据记录表

重量(g)

电压(mV)

记录表1-1的数据,并以此为据,计算灵敏度L=ΔU/ΔW(ΔU输出电压变化量,ΔW 重量变化量)和非线性误差δf=Δm/y F..S ×100%,式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差;y F·S为满量程(200g)输出平均值。

七、思考题

1. 引起全桥测量时非线性误差的原因是什么?

2.本实验电路对直流稳压电源和放大器有何要求?

实验二电涡流传感器的位移特性测试

一、实验目的

了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器

电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表、测微头。

三、实验原理

通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

四、实验步骤

1.按下图15-1安装电涡流传感器。

图15-1

2.在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。

图15-2

3.传感器连接按图15-2,将电涡流传感器连接线接到模块上标有“”的两端,实验范本输出端Uo与数显单元输入端U i相接。数显表量程切换开关选择电压20V档,模块电源用连接导线从主控台接入+15V电源。

4.合上主控台电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止。将结果记录在实验数据表中。

五、实验数据处理

实验数据记录表

X (mm ) U O (V)

表15-1

根据记录的数据数据,画出U -X 曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,并计算量程为

1mm 、3 mm 及5mm 时的灵敏度和线性度(可以用端点法或其它拟合直线)。

六、思考题

1. 电涡流传感器的量程与哪些因素有关?

2. 用电涡流传感器进行非接触位移测量时,如何根据量程选用传感器?

实验三 速度测量实验——光电传感器测转速

一、实验目的

1. 通过本实验了解和掌握采用光电传感器测量的原理和方法。

2. 通过本实验了解和掌握转速测量的基本方法。 二、实验仪器

转动源、光电传感器、直流稳压电源、频率/转速表、示波器

三、实验原理

光电式转速传感器有反射型和透射型二种,本实训装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。 四、实验注意事项

1.认真预习实验指导书,理解实验原理后方可进行实验。

2.检查接线无误后,请实验教师查看线路,经确认后合上主机箱电源开关 3.实验完毕后清理实验接线,将实验器件放回原处,关闭实验台电源开关。 五、实验步骤

1.光电传感器已安装在转动源上,如下图所示。2~24V 电压输出接到三源板的“转动电源”输入,并将2~24V 输出调节到最小,+5V 电源接到三源板“光电”输出的电源端,光电输出接到频率/转速表的“f in ”。

2.合上主实训台电源开关,从最小每间隔1V 逐渐增大2~24V 输出,使转动源转速加快,记录频率/转速表的显示数值,同时可用示波器观察光电传感器的输出波形。

六、实验数据处理

实验数据表

驱动电压U(V)

转速n(r/min)

根据测的驱动电压和转速,绘制出其曲线。

七、思考题

光电转速传感器测速与磁电转速传感器测速、霍尔式传感器测速比较哪种方法最简单、方便。

传感器实验

传感器实验 精04 张为昭 2010010591

实验二电涡流传感器变换特性 一、实验目的 1. 了解电涡流传感器的结构、工作原理及应用; 2. 了解电涡流传感器调频电路的特点,测试电涡流传感器变换特性。 二、实验装置及原理 1.装置 图2.1 电涡流传感器装置 2.原理 涡流传感器是七十年代以后发展较快的一种新型传感器。它广泛应用在位移振动监测、金属材质鉴别、无损探伤等技术领域中。 涡流传感器通常由扁平环形线圈组成。在线圈中通以高频(通常为2.5MHz 左右)电流,则在线圈中产生高频交变磁场。当导电金属板接近线圈时,交变磁场在板的表面层内产生感应电流即涡流。涡电流又产生一个反方向的磁场,从而减弱了线圈的原磁场,也就改变了原线圈的自感量L、阻抗Z及Q值。线圈上述参数的变化在其它条件不变的情况下仅是线圈与金属板之间距离的单值函数。 实验中采用了测量线圈自感量L的调频电路,即把线圈作为谐振回路的一个电感元件。当线圈与金属板之间距离h发生变化时,谐振回路的频率f也发生变化,再用鉴频器将频率变化转换成电压变化输出。 图2.2 电涡流传感器原理 三、实验内容及步骤 1. 测量前置器输出频率f与距离h之间的关系;输出电压V与距离h之间

(1)被测金属板先采用铝板。转动微调机构或千分尺使金属板与传感器端面接触即h=0,记下相应的输出信号频率,然后改变h并记下相应的输出频率f 的数值于表2-1中。 (2)改变h并记下涡电流传感器相应的输出电压峰峰值于表2-2中。 (3)改变h并记下测量电路最终的输出电压于表2-3中。 2. 换上钢板重复1的步骤,注意钢板在与传感器距离很小时传感器无输出,调整距离至有输出时作为零点,再开始进行后续测量。 3. 估测电涡流传感器的工作测量范围: 铝板:1.5mm 钢板:1.5mm(相对零点的位移) 四、数据整理及问题分析 1.实验数据整理

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

传感器实验报告.doc

实验一金属箔式应变片性能—单臂电桥 1、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、实验方法在CSY-998传感器实验仪上验证应变片单臂单桥的工作原理 3、实验仪器CSY-998传感器实验仪 4、实验操作方法 所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、F/V表、主、副电源。 旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。 实验步骤: (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。 (3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V 档,F/V表置20V档。开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 (4) 将测微头转动到10㎜刻度附近,安装到双平行梁的右端即自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5) 往下或往上旋动测微头,使梁的自由端产生位移记下V/F表显示的值,每旋动测微头一周即 压值的相应变化。

传感器实验报告1

机 械 工 程 测 试 实 验 报 告 学 院: 机电工程学院 系 专业班级: 机制122 学生姓名: 黄余林 龙杰 李刚 孙龙宇 朱国帅 实验日期: 备,

目录 实验一箔式应变片性能—单臂电桥??????????????????????????????????????????????????????????????????????1 1 .1 实验目的????????????????????????????????????????????????????????????????????????????????????????????????????????1 1. 2 实验原理????????????????????????????????????????????????????????????????????????????????????????????????????????1 1. 3 实验原理????????????????????????????????????????????????????????????????????????????????????????????????????????1 1. 4 实验步骤????????????????????????????????????????????????????????????????????????????????????????????????????????1 1. 5 注意事项????????????????????????????????????????????????????????????????????????????????????????????????????????3 1. 6试验数据?????????????????????????????????????????????????????????????????????????????????????????????????????????3

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

2015下传感器实验手册(1)详解

传感器综合实验指导书 电子电气工程系 2015.6.2

目录 实验一金属箔式应变片单臂电桥性能实验1实验二金属箔式应变片半桥性能实验3实验三金属箔式应变片全桥性能实验4实验四金属箔式应变片单臂、半桥、全桥性能比较6实验五直流全桥的应用—电子秤实验6实验六电容式传感器的位移实验7实验七电涡流传感器位移实验8实验八被测体材质对电涡流传感器特性影响实验10实验九被测体面积大小对电涡流传感器的特性影响实验11实验十直流激励时接触式霍尔位移传感器特性实验11实验十一霍尔转速传感器测速实验13实验十二磁电式转速传感器测速实验14实验十三热电偶测温性能实验14实验十四热电阻测温特性实验16实验十五集成温度传感器温度特性实验17实验十六气敏(酒精)传感器气体浓度测量实验20实验十七湿度传感器湿度测量实验20

实验一金属箔式应变片单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μm 近红外波长域具有最大的辐射强度。例如汽油燃烧时的火焰辐射强度的波长。 火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。 火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。 火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。 理; 2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序; 2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1; 3、用按键KEY1控制ZIGBEEN是否发送数据。 6.4.1硬件部分 1、ZIGBEE调试底板一个; 图6-1 ZIGBEE调试底板 2、20PIN转接线一条和带USB的J-Link仿真器一个; 图6-2 J-Link仿真器 3、转接板一个; 实验内容 6.3 实验设备 6.4 电 源 开 关 电 源 传感器C端口 指示灯 2 J-LINK接 ZigBee_DEBUG 复位键 节点按键 拨码开关 ZigBe按键 红 外 发 射 指 示 灯 1 ZigBee复位键 可 调 电 阻传 感 器 A 端 口 传感器B端口 方口USB线,另一端连接电上电指示灯 20PIN转接线,另一端接转接板 20PIN转接线接口 10PIN转接线接口 串口接口

传感器实验

一 金属箔式应变片――半桥搭建 一、实训目的:比较半桥与单臂电桥的不同性能,掌握其接线方法。 二、实训仪器:同项目一 三、相关原理: 不同受力方向的两只应变片接入电桥作为邻边,如图2-1。电桥输出灵敏度提高,非线性得到改善,当两只应变片的阻值相同、应变数也相同时,半桥的输出电压为 Uo=EK ε/2 = R R E ??2 (2-1) E 为电桥电源电压,式2-1表明,半桥输出与应变片阻值变化率呈线性关系。 四、实训内容与操作步骤 1.应变传感器已安装在应变传感器实验模块上,可参考图1-1。 2.差动放大器调零,参考实训项目一步骤2。 3.按图2-1接线,将受力相反(一片受拉,一片受压)的两只应变片接入电桥的邻边。 4.加托盘后电桥调零,参考实训项目一步骤4。 5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g 砝码加完,计下数显表值,填入下表,关闭电源。 五、实训报告 根据表2-1的数据,计算灵敏度L=ΔU/ΔW ,非线性误差δf 2 六、思考题 引起半桥测量时非线性误差的原因是什么? 图2-1 双臂电桥接线图

二金属箔式应变片――全桥搭建 一、实训目的: 了解全桥测量电路的性能,掌握其接线方法。 二、实训仪器: 同项目一。 三、相关原理: 全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图3-1,当应变片初始值相等,变化量也相等时,其桥路输出:Uo=KEε(3-1)E为电桥电源电压,式3-1表明,全桥输出灵敏度比半桥又提高了一倍,非线性误差得到进一步改善。 四、实训内容与操作步骤 1.应变传感器已安装在应变传感器实验模块上,可参考图1-1。 2.差动放大器调零,参考实训项目一步骤2。 3.按图3-1接线, 将受力相反(一片受拉, 一片受压)的两对应变 片分别接入电桥的邻边。 4.加托盘后电桥调 零,参考实训项目一步骤4。图3-1 5.在应变传感器托 盘上放置一只砝码,读取 数显表数值,依次增加砝 码和读取相应的数显表值 ,直到200g砝码加完, 计下数显表值,填入下表3-1,关闭电源。图3-1 全桥电路接线图 五、实训报告 根据记录表3-1的数据,计算灵敏度L=ΔU/ΔW,非线性误差δf3 三扩散硅压阻压力传感器差压测量 一、实训目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实训仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V、±15V。 三、相关原理

实验一(电容式传感器的位移特性实验)

电容式传感器的位移特性实验 一、实验目的: 了解电容式传感器结构及其特点。 二、基本原理: 利用平板电容C=εA/d和相应的结构及测量电路,在ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(变d)和测量液位(变A)等多种电容传感器。利用电容传感器的动态响应特性和可以非接触测量等特点,可进行动态位移测量。 电容传感器具有结构简单、灵敏度高、分辨力高(可达0.01mm甚至更高)、动态响应好、可进行非接触测量等特点,它可以测量线位移、角位移,高频振动振幅,与电感式比较,电感式是接触测量,只能测低频振幅,电容传感器在测量压力、差压、液位、料位成分含量(如油、粮食中的水份)、非金属涂层、油膜厚度等方面均有应用。目前半导体电容式压力传感器已在国内外研制成功,正在走向工业化应用。 三、需用器件与单元: 电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。 四、实验步骤:

1、按图2-1将电容传感器装于电容传感器实验模板上。 图2-1 电容传感器安装示意图 2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-2。 图2-2 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。 4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔

0.2mm记下位移X与输出电压值,填入表2-1。 X(mm) V(mv) 5、根据表2-1数据计算电容传感器的系统灵敏度S和非线性误差δf。 五、思考题: 图2-3为同心圆筒式电容位移传感器结构图,D为屏蔽套筒。若外圆筒半径R=8mm,内圆柱半径r=7.25mm,外圆筒与内圆柱覆盖部分长度L=16mm。根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量。 图2-3 同心圆筒式电容位移传感器结构图 如有侵权请联系告知删除,感谢你们的配合!

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

传感器心得体会

传感器心得体会

传感器心得体会 【篇一:传感器实验总结】 《传感器及检测技术》教学实践工作总结 本学期,担任《传感器及检测技术》课程的理论和实践教学内容。本课程的实践教学主要是教学实验,在全体同学的大力配合下,比较圆满的完成了实践教学任务,达到了实验的预期目的。现将此课程的实践教学工作总结如下: 1、实验计划的制定 为更好的完成实践教学环节,使学生能够真正的在实践环节学到更多的东西,在学期初我就认真研究教材内容和教学大纲要求,针对教学内容和学生特点制定了详细的实验安排,并与实验室老师进行了认真的沟通,充分做好教学实践前的各项准备工作。 2、注重理论和实践的结合 每讲授一段内容,就组织同学们做一次实验,让学生把课堂上获得的理论知识及时的得到验证和应用,从而加深对所学内容的理解。同时鼓励同学们利用课余时间多到实验室做一些创造性的实验,提高他们的知识迁移能力和思维能力。 3、实验过程的安排 (1)每次实验前,提前下达实验任务,让学生做好实验前的各种准备工作。由班长做好分组工作,每组指定一名组长,实行组长负责制,负责本组的组织和协调工作,。 (2)进实验室时,讲清实验室纪律,不得随意摆弄实验用品,要严格遵守实验章程,在老师的指导下进行各种实验。

(3)实验过程中,认真抓好学生的纪律,不得无故迟到、早退,杜绝做与实验无关的事情。实验过程中教师要不断巡 视及时发现学生们遇到的各种问题,并给与指导或启发。尽量多鼓励、少批评,培养学生的自信心,提高学生学习的积极性。 (4)实验完毕,及时清查实验物品,并督促学生摆放好实验物品,做到物归原位。另外,每组展示实验成果,并派代表做出总结,谈谈实验中遇到的各种问题,并说明做出了怎样的处理,有哪些收获。小组成员之间先进行互评,然后由教师作出补充,并适当给与鼓励。同时督促同学课下认真完成实验报告。 4、反思改进 在每次实验完毕后,我都把实验中发现的问题进行归纳整理,进行反思,同时向有经验的教师请教,争取在下次实践课中加以改进。 总之,这一个学期的实践教学,总的来说基本上能够按照要求保质保量的完成教学任务,但从中我也发现了一些问题,在今后的教学工作中,我会努力的改进不足的地方,争取把以后的实践教学工作做得更好。 【篇二:实验心得体会】 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样, 做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

传感器实验

传感器实验

实验一金属箔式应变计性能——应变电桥 实验目的: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。 实验原理: 本实验说明箔式应变片及直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也 随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时, ∑ ? = R R R;当二个应变片组成差动状态工作,则有∑ ? = R R 2 R;用四个应变片 组成二个差动对工作,且R1= R2= R3= R4=R,∑ ? = R R 4 R。 实验所需部件:(括号{ }内为2001B型内容) 直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表 实验步骤: 1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1) 2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。 将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。 3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的W D电位器,使桥路输出为零。 4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm记录一个输出电压值,并记入下表: 位 移 mm 电 压V 根据表中所测数据在坐标图上做出V—X曲线,计算灵敏度S:S=X V? ?。 / 注意事项: 1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。 2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。 3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器实验报告

实验一 箔式应变片性能 一、实验目地: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、了解实际使用的应变电桥的性能和原理。 二、实验原理: 本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R = ∑;当二个应变片组成差动状态工作,则有R R R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,R R R Δ4=∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无

关。 三、实验所需部件: 直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。 四、实验步骤: 1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 2、按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图 (1) 3、确认接线无误后开启仪器电源,并预热数分钟。 +-

《传感器与检测技术》实验指导书(四个实验)

实验一金属箔式应变片单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,英电阻值发生变化,这就是电阻应变效应,描 述电阻应变效应的关系式为: △R/R=K£ 式中AR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,t =Al/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,输出电压UO=EK£(E为供桥电压),对单臂电桥而言,电桥输出电压,U01=EK e /4o (E为供桥电压)。 三、器件与单元:应变式传感器实验模板、应变式传感器、磁码(每只约20g)、数显表、±15V电 源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的 Rl、R2、R3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=35OQ,加热丝阻值约为50Q左右。 应变片托盘 图1-1应变式传感器安装示意图 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上 主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调丹到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱而板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电 桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块已连接好),接好电桥调零电位器Rwl,接上桥路电源±4V(从主控箱引入),检査接线无误后,合上主控箱电源开关,先粗调VTRwl,再细调RW4使数显表显示为零。

传感器实验

传感器综合实验 前提:电阻应变式传感器 电阻应变式传感器以电阻应变计为转换元件的电阻式传感器。电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。 一.实验目的 (1)加深对应力和应变概念的理解; (2)了解金属箔式应变片,单臂单桥的工作原理和工作情况; (3)验证单臂,半桥,全桥的性能及相互之间关系; (4)了解温度对应变测试系统的影响; (5)了解传感器(电阻应变片)在检测中的应用。 二.实验仪器: 直流稳压电源,15V不可调直流稳电源,差动放大器,电桥,F/V表,测微头,双平行梁,双孔悬臂梁称重传感器,应变片,砝码,加热器,水银温度计(自备),主,副电源。 三.实验原理 要测量模拟金属梁的应力,首先引入描述物体变形的物理量“应变”。设模拟金属梁原长为l的一段,在变形时发生“伸长”或“缩短”量为,则应变为 应变的大小,即与外力F的大小及应用位置有关,也与材料本身的弹性有关。根据胡克定律, 由上式可知,应变最大处,应力也最大。但应力是内力,无法直接测量,应先测量应变后换算出应力。而应变又可用电阻应变片将转换成易于放大的电压、电流或功率的变化进行测量。 因此,应力就可以测出。 (1)模拟金属梁的设置 如图,它是用长150毫米、宽17毫米的钢尺做成,其上下表面各贴有3片电阻应变片。上表面的应变片受力,下表面的应变片受压。拉区电阻值增大,压区电阻值变小。

传感器实验

传感器实验 实验十四差动变压器性能 一、实验目的: 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。二、实 验原理: 差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。差动变压器是开磁路,工作是建立在互感基础上的。其原理及输出特性见图(9) 图(9) 三、实验所需部件: 差动变压器、音频振荡器、测微头、示波器。四、实验步骤: 1.按图(10)接线,差动变压器初级线圈必须从音频振荡器LV 端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv /格。 2.音频振荡器输出频率5KHZ ,输出值V P -P 2V 。 3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变 两个次级线圈的串接端。 示波器 图(10) 4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压V P -P 值,读数过程中应注意初、次级波形的相位关系。 5.仔细调节测微头使次级线圈的输出波形至不能再小,这就是零点残余电压。可以 看出它与输入电压的相位差约为π/2,是基频分量。 6.根据表格所列结果,画出Vop-p -X 曲线,指出线性工作范围。 五、注意事项: 示波器第二通道为悬浮工作状态。 实验二十激励频率对电感传感器的影响

一、实验目的: 说明在不同的激励频率影响下差动螺管式电感传感器的不同特性。二、实验所需部件: 图(15) 三、实验步骤: 1.按图(15)接线,音频振荡器置5KHZ ,幅值居中,差动放大器增益适度。 2.装上测微头,调整衔铁处于线圈中间位置,调节电桥使系统输出为最小。 3.旋动测微头, 移动衔铁,每隔1mm 从示波器读出V P-P 值,填入表格 4.改变音频振荡器频率,并重新调好零位,重复2-3步骤,将结果填入下表。 5.根据所测数据在同一坐标上做出V -X 曲线,计算灵敏度,并做出灵敏度与频率 的关系曲线。 由此可以看出,差动螺管式电感传感器的灵敏度与频率特性密切相关,在某一个特定 频率时,传感器最为灵敏,在其两边,灵敏度都有所下降,故测试系统中应选用这个激励 频率。 实验二十一热电式传感器――热电偶 一、实验目的: 观察了解热电偶的结构,熟悉热电偶的工作特性,学会查阅热电偶分度表。二、实 验原理: 热电偶的基本工作原理是热电效应,当其热端和冷端的温度不同时,即产生热电动势。通过测量此电动势即可知道两端温差。如固定某一端温度(一般固定冷端为室温或0℃),则另一端的温度就可知,从而实现温度的测量。CSY 系列实验仪中热电偶为铜一康铜(T 分度)和镍铬-镍硅(K 分度)。三、实验所需部件: 热电偶、加热器、差动放大器、电压表、温度计(自备)四、实验步骤: 1.打开电源,差动放大器增益放100倍,调节调零电位器,使差放输出为零。 2.差动放大器双端输入接入热电偶,打开加热开关,迅速将差动放大器输出调零。 3.随加热器温度上升,观察差动放大器的输出电压的变化,待加热温度不再上升时(达到相对的热稳定状态),记录电压表读数。 4.本仪器上热电偶是由两支铜-康铜热电偶串接而成,(CSY 10B 型实验仪为一支K 分度热电偶),热电偶的冷端温度为室温,放大器的增益为100倍,计算热电势时均应考

实验三 电磁式传感器

实验三电磁式传感器 (一)差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 图3-2 双线示波与差动变压器连结示意图

相关文档
最新文档