基于多核DSP的图像增强实现

基于多核DSP的图像增强实现
基于多核DSP的图像增强实现

基于dsp的数字图像处理

基于DSP的数字图像处理 时间:2009-12-08 15:40:35 来源:作者:张振福,周江涛国防科技大学 随着计算机、多媒体和数据通信技术的高速发展,数字图像技术近年来得到了极大的重视和长足的发展,并在科学研究、工业生产、医疗卫生、教育、娱乐、管理和通信等方面取得了广泛的应用。同时,人们对计算机视频应用的要求也越来越高,从而使得高速、便捷、智能化的高性能数字图像处理设备成为未来视频设备的发展方向,实时图像处理技术在目标跟踪、机器人导航、辅助驾驶、智能交通监控中都得到越来越多的应用。由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。为了获得足够的计算能力,我们以两片TMS320C6201作为系统的运算中心构筑了实时图像处理系统;为了获取最大的灵活性,在系统体系机构上采用了一种可重构的FPGA计算系统模型。 1 功能强大的TMS320C6x TMS320C6000是美国TI(Texas Instruments)公司于1997年推出的新一代高性能DSP芯片。这种芯片是定点、浮点兼容的DSP。其定点系列是TMS32C62XX,浮点系列是TMS320C67XX。最早推出的C6201芯片的运算速度已经达到1600MIPS,在业界首次突破1000MIPS,在数字信号处理器数里能力上创造了新的里程碑,并因此获得了美国EDN杂志“1997年度创新大奖”2000年3月,TI发布了新的C64XX内核,主频1.1GHz,处理速度接近9000MIPS,总体性能比C62XX提高了10~15倍。其中C6416在2002年3月获得EDN杂志“2001年度创新大奖”。 C6000内部结构的主要特点包括: ①定点/浮点系列兼容DSP,目前CPU主频100MHz~600MHz。 ②具有先进VLI W结构内核。 (1)8个独立的功能单元:6个ALU(32/40bit),2个乘法器(16×16),浮点系列支持IEEE 标准单精度和双精度浮点运算。 (2)可以每周期执行8条32bi t指令,最大峰值速度4800MIPS。 (3)专用存取结构,32/64个32bit通用寄存器。 (4)指令打包技术,减少代码容量。 ③具有类似RISC的指令集。 (1)32bit寻址范围,支持bit寻址。 (2)支持40bitALU运算。 (3)支持bit操作。 (4)100%条件指令。 ④片内集成大容量SRAM,最大可达8Mbit。 ⑤16/32/64bit高性能外部存储器接口(EMIF)提供了与SDRAM、SBRAM和SRAM登同步/异步存储器的直接接口。 ⑥内置高效率协处理器(C64X)。 (1)Viterbi编解码协处理器(VCP),支持500路7.95kb/s AMR。 (2)Turbo码编解码协处理器(TCP),支持6路2Mb/s 3GPP。 ⑦片内提供多种集成外设(不同芯片的资源不同) (1)多通道DMA/EDMA控制器

DSP 在图像处理中的应用

DSP 在图像处理中的应用 (北京科技大学自动化学院北京100081) 摘要:本文以TI TMS320C54X DSP 为例描述了DSP 作为优秀的数字信号处理平台所具备的特点,并在此基础上介绍了利用Altera 公司提供的数字信号处理开发工具DSP Builder 和现代DSP 技术,在 Matlab/Simulink 环境中建立了JPEG 算法模型,并进行了仿真验证,最后将编译代码下载到硬件上进行了在线调试。 关键词:DSP Builder;TMS320C54X图像处理 The Application of DSP in Image Processing College of Automation, University of Science and Technology Beijing, Beijing 100081 Abstract:This paper presents the excellent characteristics of DSP chips using TI TMS320C54X DSP as an example.And it has been introduced in this paper that a JPEG algorithm model is created in the environment of Matlab/Simulinkwith the help of DSP Bulider, a digital signal processing development tool provided by Altera Corporation, and modern DSP technology. Then a simulation verification has been performed, and finally the code is compiled and downloaded to the hardware for thepurpose of on-line debugging. Key words :DSP Builder TMS320C54X Image processin g. 0 前言 数字图像处理在当今工业及医疗领域的应用日益广泛,从而对图像处理系统的实时性和准确性提出了更高的要求。DSP 芯片以其适应于高速数字信号处理的内部结构,在图像处理领域发挥了不可替代的作用。 1 DSP 芯片简介 当前数字信号处理领域并存两大类处理器:通用处理器(GPP) 和专用处理器(DSP) ,通用处理器主要应用于PC 机中,而DSP 器件主要应用于便携式、嵌入式设备中。消费类电子产品对器件成本和功耗要求苛刻,DSP 器件正是在这两方面较通用处理器有优势。DSP 芯片采用能提供多条地址及数据总线的哈佛结构而摒弃了以往的冯·诺依曼结构。由于片内存储器比片外存储器快,在通用处理器中广泛使用的高速缓存也被引入到DSP 芯片中来。另外,为提高处理速度DSP 芯片还使用了流水线技术。TMS320C54x 是TI 公司为实现低功耗、高性能而专门设计的定点DSP 芯片。54x 系列DSP 采用改进的哈佛结构,该结构有8 条总线,使数据处理能力达到了最大限度。通过程序、数据空间的分离可同时进行程序指令和数据的存取并提供了高度的并行性。此外数据还可以在数据空间和程序空间进行传送。这种并行性还持一系列功能强劲的算术逻辑及位操作运算。所有这些运算都可以在单个机器周期内完成。同时,54x 还有包括终端管理、重复操作及功能调用等在内的控制机制。 2 DSP Builder 介绍 DSP Builder 开发工具是Altera 公司提供的数字信号处理平台, 它是一个系统级( 或算法级) 设计工具, 架构在多个软件工具之上,并把系统级和RTL 级两个设计领域的设计工具连接起来,最大程度地发挥了两种工具的优势。DSP Builder 依赖于MathWorks 公司的数学分析工具Matlab /Simulink ,以Simulink 的Blockset 出现,可以在Simulink 中进行图形化设计和仿真,同时通过SignalCompiler 把Matlab/Simulink 的设计文件(.mdl) 转成相应的硬件描述语言VHDL 设计文件(.vhd),以及用于控制综合与编译的TCL 脚本。而对后者的处理可以由FPGA/CPLD 开发工具Quartus II 来完成。 设计人员能够同时进行多个HDL 模型或者QuartusII软件设计工程的设计,为每一个

基于DSP的检测算法实现及优化

基于DSP的检测算法实现及优化 摘要:运动目标检测可以从连续变化的多幅图像中把运动目标提取出来。运动目标的捕捉对于目标分化、采集和动作归类等后续处理相当重要,因为后期过程只处理图像中运动目标周围一定范围内的像素。但由于运动目标所处背景的随机性,比如气候、光线及噪声干扰的影响,检测运动目标实际上是一项比较困难的任务。目前对于运动目标的检测的算法可以划分为两类:基于象素强度的算法及基于运动的算法。细分又包括四种:基于特征的方法、基于帧间差分的方法、基于背景建模的方法和基于光流场的方法。其中前三种属于基于象素强度变化检测的算法,第四种可以看作是基于运动的检测方法。基于强度算法容易实现、效率高,可处理目标跟踪问题比较难。基于运动的算法稳定性强,处理跟踪问题相对简单。该文重点研究目标检测的DSP算法实现,所以在参考大量文献后,选用了传统检测算法中速度较快而且相对便于硬件实现的帧间差分算法,为了取得良好快速的目标检测结果,该文采用Sobel算子与帧间差分结合的方法。 关键词:DSP的检测算法;实现及优化 中图分类号:TP311 文献标识码:A 文章编号: 1009-3044(2014)13-3070-05

1 基于Sobel算子的帧间差分检测算法 1.1 帧间差分法 由于红外图像的目标特性,用灰度变化表述物体的运动轨迹可以获得较高的检测效率,从而满足检测过程的实时性要求。 假设输入图像为: [F={fj(a,b),a∈X,b∈Y,j=0,1,2,....}] 其中,(a ,b)为实际场景中(X ,Y)上一点,[fj (a,b)]为第j帧上(a ,b)点的灰度值,j为图像的编号,以下为图像差分的结果: [D={dj(a,b),a∈X,b∈Y,j=0,1,2,....}] [其中:dj(a,b)={|fj(a,b)-fj-i(a,b)|,j=0,1,2,...;i=0,1,2,3,...}] [dj(a,b)]基本上体现出运动目标的边界和高差异区域。一般选择i=1也就是相邻两幅图像进行差分,如果运动目标的速度小于相邻两幅图像的时间差时,可以增大i值避免检测目标遗失。如i=5时仍然没有目标,则可以认为无检测目标,就换为下一幅图像(j+1)图像进行检测。 选择一个恰当的阈值[Tj],将差分结果[dj(a,b)] 转变为二值图像: [wj(a,b)=0,dj(a,b)≥Tj1,dj(a,b)

DSP数字图像处理实验课设

华东交通大学理工学院 课程设计报告书 所属课程名称DSP原理及应用 题目数字图像处理系统设计分院电信分院 专业班级 12通信2班 学生姓名余志强 指导教师李杰

目录 第一章课程设计内容及要求 第二章程序设计原理 2.1数字图象处理基本原理 2.2数字图像处理常用方法 2.3图象灰度处理的基本原理 2.4图象的反色原理和实现 2.5灰度图象二值化原理及意义第三章程序设计步骤 第四章总结

第一章课程设计内容及要求 一、设计内容 1了解数字图象处理的基本原理 2 学习灰度图象反色处理技术 3 学习灰度图象二值化处理技术 第二章程序设计原理 2、1数字图像处理的基本原理 数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。 2、2 数字图像处理常用方法: 1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有

效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。 4 )图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

基于DSP的图像处理系统的应用研究论文

基于DSP的图像处理系统的应用研究 摘要 本文介绍了一种基于FPGA+DSP结构的具有通用性、可扩充性的高速数字图像处理系统硬件平台。重点介绍了以高速数字信号处理器TMS320DM642和可编程逻辑器件XC2S300E为核心的图象处理系统的硬件实现方案以及通过DSP对FPGA芯片的动态配置来实现软件控制的设计思路。 关键词:可编程逻辑器件;数宇信号处理器;数字图象处理;动态配置 Abstract This paper presents the hardware platform of a high speed digital image processing system.The hardware design is based on the TMS320DM642 of Texas Instruments Corporation and XC2S300E of Xilinx corporation.The FPGA dynamic configuration is also introduced. Key words:DSP;FPGA;digital image processor;dynamic configuration 1、引言 随着科学技术的快速发展,人们对信息的需求越来越大,对信息的处理速度也越来越快。实时数字图象处理系统要求必须具有处理大数据量的能力,以保证系统的实时陛,其次对系统的体积、功耗、稳定性等也有较严格的要求,而数字图象处理处理理论与技术的飞速发展直接导致A/D、D/A、FPGA及DSP等电子集成产品的高速发展与更新,从而使许多复杂、高速的信号处理运算的实现成为可能。 目前,数字图象处理技术已在通信、信息,电子、自动控制、航天及军事等领域中得到广泛应用。软件技术突破了以功能单一、可扩充性差的硬件为核心的设计局限性,强调以开放性,扩充性和软件编程硬件为通用平台,利用系统可升级、可重复配置来实现多功能的设计。动态配置技术为同一硬件平台上实现不同的功能需求、不同的工作模式提供了可能。 本文介绍一种高速数字图象信号处理平台的实现方案,通过FPGA和DSP芯片来构造一个具有通用性、可扩充性、灵活的多功能高速数字信号处理平台。该平台通过动态配置可以进行多模式工作,能够应用在无线接收、卫星接收、图象处理和信号分析等多个领域。 2、信号处理系统的类型和本设计处理机构架 根据数字图象信号处理系统在构成、处理能力以及计算问题到硬件结构映射

DSP图像处理综述

DSP应用综述 摘要:数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。本文概述了数字信号处理技术的发展过程,分析了 DSP 处理器在图像领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。 关键词:数字信号处理; 数学图形处理;DSP平台; DSP发展趋势 引言:在过去的几年中,各种各样的数字信号处理方法层出不穷。数字信号处理器已经成为许多消费、通信、医疗、军事和工业类产品的核心器件。在实际应用中可以选用的数字信号处理实现方法很多。但是,数字信号处理器(DSP)以其在处理速度、价格和功耗上的无以替代的优势赢得了大多数用户的信任。随着信息家电、网络通信和3G移动通信的飞速发展,作为最关键的核心器件的数字信号处理器,将会把人们带人高速信息化的时代。而基于DSP的数字图像处理技术也随之DSP的发展而不断革新。图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU 工作,以提高计算机的图形化处理能力。在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI 技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP)。但基于DSP的图像处理系统以其可降低体积、重量与功耗,同时价格也较低,具有较高的可靠性,且易于维修与测试,对噪声与干扰有较强的抗干扰能力,越来越受到了人们的青睐。 1. DSP发展历史 DSP的历史可分为三个阶段 1.在数字信号处理技术发展的初期(二十世纪50-60 年代),人们只能在微处理器上完成数字信号的处理。直到70 年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978 年AMI 公司发布的S281l。1979 年美国Intel 公司发布的商用可编程器件2920 是DSP 芯片的一个重要里程碑。这两种芯片内部都没有现代DSP 芯片所必须有的单周期乘法器。1980 年,日本NEC 公司推出的mPD7720 是第一个具有硬件乘法器的商用DSP 芯片,从而被认为是第一块单片DSP 器件。 2.随着大规模集成电路技术的发展,1982 年美国德州仪器公司推出世界上第一代DSP 芯片TMS32010 及其系列产品,标志了实时数字信号处理领域的重大突破。Ti 公司之后不久相继推出了第二代和第三代DSP芯片。90 年代DSP发展最快。Ti 公司相继推出第四代、第五代DSP芯片等。 3.随着CMOS 技术的进步与发展,日本的Hitachi 公司在1982 年推出第一个基于CMOS 工艺的浮点DSP 芯片,1983 年日本Fujitsu 公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而使处理吞吐量发生了一个大的飞跃。而第一个高性能浮点DSP 芯片应是A T&T 公司于1984 年推出的DSP32.与其他公司相比,Motorola 公司在推出DSP 芯片方面相对较晚。1986 年,该公司推出了定点处理器MC56001.1990 年推出了与IEEE 浮点格式兼容的浮点DSP芯片MC96002。美国模拟器件公司(AD)在DSP 芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP 芯片。自1980 年以来,DSP 芯片得到了突飞猛进的发展,DSP 芯片的应用越来越广泛,并逐渐成为电子产品更新换代的决定因素。从运算速度来看,MAC(一次乘法和一次加法)时间已经从20 世纪80 年代初的400ns 降低到10ns 以下,处理能力提高了几十倍。DSP 芯片内部关键的乘法器部件从1980 年占模片区的40%左右下降到5%以下,片内RAM 数量增加一个数量级以上。DSP 芯片的引脚数量从1980 年的最多64 个增加到现在的200 个以上,引脚数量的增加,意味着结构灵活性的增加,如外部存储器的扩展和处理器间的通信等。 2. 国内外发展现状 2.1国内发展现状 随着我国信息产业的发展,近年来我国的数字信号处理学科发展较快。DSP处理器已经在我国的数字通信、信号处理、雷达、电子对抗、图像处理等方面得到了广泛的应用,为科学技术和国民经济建设创造了很大价值。全国有很多高校、科研机构的信号处理

数字图像处理在DSP上的实现

数字图像处理在DSP上的实现(旋转) 1 绪论 1.1设计目的 图像旋转是一种应用广泛的数字图像处理技术,随着应用水平的不断提高,对在嵌入式系统中实现高分辨率大图像旋转的需求也越来越高。如在航空领域的高分辨率数字地图图像的显示处理过程中,由于现有的显示芯片均不能支持图像旋转功能,就需要在资源有限的嵌入式平台上实现大幅面地图图像的实时旋转。采用DSP平台是一种实现方式,具体实现时需仔细考虑两个方面的问题,一是选用计算量小的旋转算法,二是充分发挥DSP平台强大的并行计算能力。 1.2设计任务 1.能从计算机上读取图片。 2.编写图像旋转程序,在TMS320C5509上实现。

2 设计原理及分析 2.1设计原理 目前,已经有很多有效降低计算量的图像旋转算法,基于图像线性存储结构的旋转方法就是其中之一。然而,在DSP平台上,有限的高速存储资源限制了这些算法效率的直接发挥,需要针对算法及DSP平台的性能结构特点进行高效的数据调度。对于图像旋转问题而言,数据调度还需要克服由于存在大量非连续图像像素地址访问而严重影响DSP数据存取及CPU效率发挥的问题。这是图像旋转本身的特殊性,在其他图像处理技术中是不存在的。 由DSP的结构特点可知,只有在数据和程序均位于片内存储器当中的条件下,DSP 的效率才能得到最大化的发挥。在大图像旋转算法中,由于涉及的图像数据量远大于DSP 的片内存储器容量,源图像和最终视口图像等数据必须被存放在片外存储器中。在这种情况下,为了保证DSP CPU高速处理能力的发挥,必须优化数据流,将源图像分块,依次搬移至片内处理,并设法保证CPU当前要处理的图像数据块已经事先在片内存储器中准备好了。因此在算法整体优化结构上采用Ping-Pong双缓冲技术,利用EDMA与CPU 并行工作来隐藏图像数据块在片内和片外之间的传输时间,使CPU能连续不断地处理数据,中间不会出现空闲等待。 传统的图像旋转一般通过矩阵乘法实现: 其中,α为旋转角度。 由于图像是线性存储的,各个像素点之间的相对位置关系确定。如图1(a)所示,图像旋转前,任意像素点P(x,y)和P1(x1,y1)、P2(x2,y2)及A(xA,yA)在几何上是矩形的四顶点关系。由于旋转变换是线性变换,如图1(b)所示,图像旋转后,各个像素点之间的相对位置关系不发生变化, 旋转算法的数据调度目的是使算法能够按照一定的规则,将源图像数据有规律地分块,并按次序分别传输到DSP片内存储器中,完成计算后,形成视口图像块,再将视口

(完整版)基于DSP的数字滤波器的设计与仿真

2.1系统功能介绍 一个实际的应用系统中,总存在各种干扰。数字滤波器在语音信号处理、信号频谱估计、信号去噪、无线通信中的数字变频以及图像信号等各种信号处理中都有广泛的应用,数字滤波器也是使用最为广泛的信号处理算法之一。 在本设计中,使用MATLAB模拟产生合成信号,然后利用CCS进行滤波。设定模拟信号的采样频率为48000Hz,。设计一个FIR低通滤波器,其参数为:滤波器名称:FIR低通滤波器 采样频率:Fs=48000Hz 通带截止频率:15000Hz 阻带截止频率:16000Hz 通带最大衰减:0.1dB 阻带最少衰减:80dB 滤波器系数:由MATLAB根据前述参数求得。 2.2 总体设计方案流程图 图1 总体设计方案

主要内容和步骤 3.1 滤波器原理 对于一个FIR 滤波器系统,它的冲击响应总是又限长的,其系统函数可记为: ()()10 N n n H z h n z --==∑ 其中1N -是FIR 的滤波器的阶数,n z -为延时结,()h n 为端口信号函数。 最基本的FIR 滤波器可用下式表示: ()()()10 N k y n h k x n k -==-∑ 其中()x n k -输入采样序列,()h k 是滤波器系数,N 是滤波器的阶数()Y n 表示滤波器的输出序列,也可以用卷积来表示输出序列()y n 与()x n 、()h n 的关系,如下: ()()()y n x n h n =* 3.2 操作步骤 (1)打开FDATOOL ,根据滤波要求设置滤波器类型、通带截止频率、指定阶数、采样频率等。指定完设计参数后单击按钮Design Filter ,生成滤波器系数。 (2)把生成的滤波器系数传到目标DSP 。选择菜单Targets->Export to Code Composer Studio(tm)IDE ,打开Export to C Header File 对话框,选择C header file ,指定变量名(滤波器阶数和系数向量),输出数据类型可选浮点型或32 b ,16 b 整型等,根据自己安装选择目标板板号和处理器号,单击OK ,保存该头文件,需指定文件名(filtercoeff .h)和路径(保存在c :\ti\myprojects\fir 工程中)。 (3)修改CCS 汇编程序,删掉数据前的所有文字,在开头加上.data ,第二行加coeff .word ,在每行的前面加上.word ,比且把每行的最后的逗号去掉。 (4)编译汇编程序,如果有错误,按错误进行修改;没错误,则往下执行。 (5)加载初始化DATA 数据。运行程序,查看输入输出波形,修改相应参数进行调试

DSP在图像处理中的应用

DSP 在图像处理中的应用 The Application of DSP in Image Processing 刘 治3 李 建 田 伟 LIU Zhi LI Jan TIAN Wei 摘 要  本文以TI T MS320C54X DSP 为例描述了DSP 作为优秀的数字信号处理平台所具备的特点,并在此基础上介绍了在DSP 上实现数字图像处理所需的方法及特殊算法。 关键词  DSP 芯片 T MS320C54X 图像处理 Abstract This paper presents the excellent characteristics of DSP chips using TI T MS320C54X DSP as an exam 2 ple.And s ome methods and alg orithms ,which w ould be im plemented on DSP chips in image processing ,are intro 2duced. K eyw ords DSP chips T MS320C54X Image processing. 3山东大学信息科学与工程学院 250100 数字图像处理在当今工业及医疗领域的应用日益广泛,从而对图像处理系统的实时性和准确性提出了更高的要求。 DSP 芯片以其适应于高速数字信号处理的内部结构,在图像 处理领域发挥了不可替代的作用。 1 DSP 芯片简介 当前数字信号处理领域并存两大类处理器:通用处理器 (G PP )和专用处理器(DSP ),通用处理器主要应用于PC 机 中,而DSP 器件主要应用于便携式、 嵌入式设备中。消费类电子产品对器件成本和功耗要求苛刻,DSP 器件正是在这两方面较通用处理器有优势。 DSP 芯片采用能提供多条地址及数据总线的哈佛结构 而摒弃了以往的冯?诺依曼结构(两种结构的简单比较见图 1)。由于片内存储器比片外存储器快,在通用处理器中广泛 使用的高速缓存也被引入到DSP 芯片中来。另外,为提高处 图1(a )冯?诺依曼结构 (b )哈佛结构 理速度DSP 芯片还使用了流水线技术。 T MS320C54x 是TI 公司为实现低功耗、高性能而专门设 计的定点DSP 芯片。54x 系列DSP 采用改进的哈佛结构,该结构有8条总线,使数据处理能力达到了最大限度。通过程序、数据空间的分离可同时进行程序指令和数据的存取并提供了高度的并行性。此外数据还可以在数据空间和程序空间进行传送。这种并行性还支持一系列功能强劲的算术逻辑及位操作运算。所有这些运算都可以在单个机器周期内完成。同时,54x 还有包括终端管理、重复操作及功能调用等在内的控制机制。图2为c54x 的内部功能框图。 2 DSP 系统设计 2.1 有关数据传输的处理 一幅未经处理的CC D 图像大约有5M 左右,这已超出 DSP 的寻址能力,而DSP 在绝大多数情况下不能以全速访问 外部存储器,于是提出对中间缓冲区的要求,而缓冲区又不宜过大,解决的办法之一是将图像数据转换成数据流进行传送。首先是将像素进行横向滤波,在处理某一像素的时间内,FIR 滤波器必须同时接收下一个要处理的像素并将本次处理结果传送至下一单元,这一过程就是一个简单的流水线操作。其中滤波器纵向宽度决定能够存储的行数。对于TI T MS320c54X 系列的DSP 片内存储器为16k ~64k ,对于动辄 几兆的图像数据显得杯水车薪,但它已基本满足非实时应用的要求,譬如对静态图像的处理。 另一方法是在系统中使用DM A 技术,即当原始的CC D 图像数据进入外部存储器后,以DM A 方式将数据由速度较慢的外部存储器传送至DSP 片内存储器。由于DSP 没有和 外部存储器之间的直接通道,因此首先应在算法上将数据分 7 5

毕业设计--基于双边滤波的图像去噪的方法

学号:1008431110 本科毕业论文(设计) (2014届) 基于双边滤波的图像去噪方法 院系电子信息工程学院 专业通息工程 姓名 指导教师讲师 2014年4月

双边滤波是非线性的滤波方法,是结合图像的像素值相似度空间邻近度和空间领近度的一种折衷处理,同时考虑灰度相似性和空域信息,达到保边去噪的目的。双边滤波具有简单、非迭代、局部的特点。双边滤波器的好处是可以做边缘保存,一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波比高斯滤波多了一个高斯方差,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息对于彩色图像里的高频噪声,双边滤波器不能够彻底的滤掉,只能够对于低频信息进行较好的滤波。其具体的操作方法有两个,第一个是高斯模版,用个模板对图像中的每一个像素值进行扫描,然后把某一点和其邻域内像素的加权平均值代替那一个中心的值高斯滤波器是根据高斯函数的形状来选择其权值的线性平滑滤波器,高斯滤波是线性平滑滤波的一种,最适合去除的噪声类型是服从正态分布的噪声。第二个是以灰度级的差值作为函数系数生成的模板。然后这两个模板点乘就得到了最终的双边滤波模板,最后得到双边滤波处理后的图像。 关键词:图像;去噪;双边滤波;高斯滤波

The bilateral filter is a nonlinear filtering method, is the combination of image pixel value similarity space proximity and space brought a compromise approach degree, considering the gray similarity and spatial information, to achieve the purpose of edge preserving denoising. The bilateral filter has the advantages of simple, non iterative, local. The bilateral filter is good to do edge preservation,generally used Wiener filtering or Gauss filter to denoise, will obviously fuzzy edge, for the protection of high frequency detail is not obvious. Bilateral filtering than Gauss filter has a Gauss variance, it is Gauss filter function based on the spatial distribution, so near the edge, the pixel will not affect the farther to the pixel on the edge of the value, thus ensuring the preservation of edge pixel values. But because of the high frequency information saved too much for the high frequency noise in the color image, the bilateral filter can not be completely filtered out, can only be better filtering for the low frequency information. The specific operation method has two, the first is Gauss template, scanning for each pixel in the image with a template, and then the weighted one point and its neighborhood pixels instead of the average value of a central value Gauss filters are linear smoothing filter to select the weights based on the Gauss function the shape, the Gauss filter is a linear smoothing filter for noise removal, the type is subject to normally distributed noise. The second is the difference of gray level as function coefficients generated templates. Then the two template dot get bilateral filtering template final, finally get the image after bilateral filtering. Key words: Image ;Denoising;Bilateral Filtering;Gauss Filtering

基于dsp的图像去噪实现

摘要 数字图像在产生、传输、处理、储存的过程中,不可避免地受到各类噪声的干扰导致信息难以获取,这就直接影响后期处理的效果。因此在对图像进行后续操作前必须进行提前加工处理,而图像去噪就是一种重要的方法之一。 图像噪声有很多种类,本文主要研究椒盐噪声和高斯噪声。中值滤波是一种非线性数字滤波器技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,从而消除孤立的噪声点。 本文以灰度图像去噪为研究课题,通过使用DSP平台对图像分别加入椒盐噪声和高斯噪声,再进行中值滤波处理对比仿真结果,得出中值滤波能有效去除椒盐噪声的结论。也提出了一些中值滤波的优化改进算法思想。 关键词: 图像去噪;DSP;椒盐噪声;高斯噪声;中值滤波

目录 摘要......................................................错误!未定义书签。 1 设计方案 (1) 1.1 设计目的 (1) 1.2 设计内容及要求 (1) 2 数字图像基础 (1) 2.1 数字图像 (1) 2.2 数字图像灰度化 (2) 2.3 噪声的分类与特点 (3) 2.4 灰度图像噪声的清除 (7) 2.5 图像去噪效果的评价方法 (10) 3 中值滤波 (11) 3.1 标准中值滤波 (11) 3.2 中值滤波的改进算法 (14) 4 算法及DSP仿真 (18) 4.1 算法 (18) 4.2 仿真 (22) 5 设计总结 (30) 参考文献 (31) 致谢 (32)

1设计方案 1.1设计目的 通过对课程设计任务的完成,使学生理解课程教学的理论内容,并且能够掌握和熟悉DSP的开发流程和基本的编程方法。同时,由于设计中涉及到各种器件的使用,可以提高学生综合运用各种技术和知识的能力。 1.2设计内容及要求 基于DSP技术完成图像取反设计,具体要求如下: (1)总体方案设计。 (2)设计出软件编程方法,并写出源代码。 (3)仿真与结果分析。 (4)论文格式要符合学院的统一规定,结构要合符逻辑,表达要得体。 2 数字图像基础 2.1 数字图像 在人们的视界里,图像分为彩色和黑白。对于彩色图像,按照色度学理论:任何颜色都可由红、绿、蓝三种基本颜色按不同的比例混合得到。这样,自然界的图像可以用基于位置坐标的三维函数来表示,即:利用 f 表示空间坐标错误!未找到引用源。点的颜色函数,fred、fgreen、fblue分别表示该点颜色的红、绿、蓝三种原色的分量值。由于平面上每一点仅包括两个坐标(x, y),所以我们可以将空间三维函数转化为二维函数。对于黑白图像,就比彩色图像简单多了,只需要用错误!未找到引用源。表示该点图像的灰度(强度)即可。 我们所说的数字图像是相对于模拟图像而言的。是将图像按空间坐标和明暗程度的连续性分类得到的: (1) 模拟图像指空间坐标和明暗程度都是连续变化的图像,计算机无法对其直接处理。即错误!未找到引用源。是空间的连续函数,错误!未找到引用源。为连续的空间,即在连续空间内,每一个点都有一个精确的值与之相对应。

DSP 图像处理算法的实现-III要点

本科毕业论文 (科研训练、毕业设计) 题目:DSP 图像处理算法的实现-III 姓名:翁彬彬 学院:信息技术与科学学院 系:电子工程系 专业:电子信息工程专业 年级:2004 学号:04140059 指导教师(校内):杨涛职称:教授 指导教师(校外):职称: 2008 年 5 月20 日 1

摘要本文研究的是基于TI 公司DSP 硬件平台的数字图像处理技术。考虑到可移植性,采用C 语言编写代码。采用空域法设计图像处理的算法,所涉及运算包括卷积,相关,中值滤波等。由于图像处理要处理大量的数据,需用DSP 处理器来提高效率。TMS320C6000 系列DSP 是TI 公司最新推出的一种并行处理的数字信号处理器,其特有的代码优化器也使得C 优化更加方便。我们根据TMS320C6000 系列的结构特点,对C 代码进行一系列优化,例如:选用适当的编译器选项,内联函数的使用,字处理技术,打开循环,流水线技术,线性汇编等一系列方法对C 代码进行优化,从而极大地提高了数字图像处理的工作效率。 关键字数字图像处理TMS320C6000 系列DSP C 语言优化 Abstract: In this thesis, based on the DSP hardware platform of TI Co., the algorithms of digital image processing were studied. C language was used to program these algorithms for the purpose of maximizing the portability of program modules. These algorithms, which include convolutions, correlations and medium filters, were designed based on spatial patterns. To make real-time image processing possible, DSP processors are used to process the massive data in images. The TMS320C6000 DSPs from TI Co. are parallel digital image processors, of which the C-complier makes the compilation and optimization of C-codes seamless and highly efficient. The C-code optimization was highly improved based on the unique designing features of TMS320C6000 series, such as proper choices of compiling options, the utility of intrinsics, the word processing technology, loop opening, pipeline technologies, linear assembly and etc. Keywords: Digital image processing technology TMS320C6000 C code optimization 2

基于DSP(数字信号处理)的音频处理

基于DSP(数字信号处理)的音频处理 在过去20年中音频技术已经取得了长足的进步。从20年前首先引入的激光唱盘(CD)开始,进而发展到超级音频CD (SACD)、DVD音频唱盘和MP3 多媒体播放器,数字形式的音频技术越来越流行。可是一旦音频信号离开存储媒体,如何对它们进行处理呢?它们是如何到达系统的输出端的呢?现在所谓的"数字系统"完全达到数字化了吗?实际上很大多一部分音频系统都不是数字化的。 现在大多数音频处理仍然在模拟领域进行,因为早期的数字处理解决方案--基于通用的DSP和外部的模数转换器(ADC)和数模转换器(DAC)使得在硬件和软件编程上的额外费用明显增加。因此实现这样的解决方案很困难、耗时而且成本又很高。 现在已经出现了在一片集成电路上集成了一个音频专用DSP 和高性能音频数据转换器的解决方案。可以提供专业品质的数字声音处理,具有112 dB 信噪比(SNR)、完全图形用户界面开发和编程工具以及较好的性价比,允许传统的模拟系统采用数字技术而具有上乘的声音品质。 AD1954 SigmaDSP就是一个实例,它带有内置DSP功能的一个完整的26-bit、单片、3个声道的数字音频播放系统。其主要特性包括:3个数字音频声道;一个7频段48-bit 的立体声均衡器;用于扩音器位置调节的延时器;Phat Stereo空间增强模块;一个双频段结构专业品质的动态处理器。它的3 个DAC 的SNR在48 kHz更新速率下可以达到112dB。 图1 AD1954内部程序模块图(略) 图2 针对音频处理要求优化后的用户配置DSP内核结构框图(略) 图3 图形用户界面(略) AD1954 的内部程序模块图如图1所示。它适合用于2.0 (左右声道)和2.1 (左右声道和超重低音)配置。系统设计工程师可以对该器件的所有参数进行配置,这样在缩短设计周期的同时充分保证了使用灵活性。从而可根据每一个市场和用户的特定需求对系统进行调整。 音频专用DSP 内核 图 2 示出的是针对音频处理要求进行优化后的一种DSP 内核。这种用户配置DSP内核比通用DSP 内核具很明显的优势,因为它能提供很多特点,例如用于双精度滤波器计算的硬件加速器和动态处理。这些特点能够显著减少对给定音频算法所需要的指令周期数。这个DSP 内核基于一个带双48-bit累加器的26 x 22 乘法累加引擎。当输入字长是24 bit时,该内核的内部分辨率按照3.23 格式(3 bit指数和23 bit 尾数)是26 bit。许多音频算法要求+12 dB 增益,额外2 bit 提供高达+12 dB 的增益,从而确保大多数应用中不需要增加增益。 所有滤波器都是利用专用硬件加速器以48-bit 双精度分辨率进行计算。双精度操作确保低频的无限长脉冲响应(IIR) 滤波器可以正确工作,避免有限周期问题的困扰,否则会产生人为杂音。 图形用户界面 不论是有经验的数字电路工程师,还是熟悉自己的音频系统但不想陷入到对"bit和byte"进行低级DSP 编程中去的模拟电路工程师,图形用户界面(GUI)都能使他们很容易将DSP加入到系统中。这种工具不仅

相关文档
最新文档