钢栈桥设计与施工要点

钢栈桥设计与施工要点
钢栈桥设计与施工要点

钢栈桥设计与施工

2007-10-27 20:09:05| 分类:施工技术| 标签:|字号大中小订阅

摘要:介绍了苏通大桥B1标1854m钢栈桥设计和施工过程中以及使用期遇到的问题

关键词:涌潮水深冲刷第一长栈桥设计施工试验

备注:《2006年全国桥梁学术会议论文集》发表,作者:林树奎

1、工程概况

苏通大桥B1标桥位区河段江中沙洲发育,槽深滩宽,江心沙洲中的新通海沙位于桥位线上,属心滩地貌。新通海沙北侧支汊发育迅速,已基本贯通,可通行小型船舶。北引桥穿过新通海沙夹槽河段,为双向潮流,潮流平均流速为2.0m/s,水深达8m左右,风浪大,地质条件复杂。

北引桥B1合同段全长2010m,江中桥墩距离长江大堤最远距离达1600m,基础工程量大、施工工期紧,要求施工栈桥能覆盖整个B1合同段,以便减少航运和水位对本合同段下部构造施工的干扰和限制。

架空栈桥总长1854m,宽7m,起于长江大堤,止于45墩中心线后约324m。桥中心线与苏通大桥引桥轴线一致。应急码头前沿线距B1标引桥终点45墩中心线约337m,码头平台通过喇叭口与栈桥相接。

水上钢栈桥承担着繁重的交通运输任务。水上钢栈桥不仅承担着大量材料、机械设备的运输任务,而且还承担着水上各个桥墩下部构造施工操作平台的任务,变水上施工为陆上施工,同时也是应急船只和撤离人员的通道。钢栈桥通航孔要求满足最高通航水位时有5m的净空、30m宽航道通航要求。

2、钢栈桥设计与验算

2.1钢栈桥使用要求:

2.1.1钢栈桥承载力应满足:650kN履带吊在桥面行走及起吊20t要求、300kN混凝土罐车错车要求。

2.1.2钢栈桥的调头平台宽度设置应满足车辆掉头的要求。

2.1.3钢栈桥的平面位置不得妨碍钻孔桩施工、钢吊(套)箱及承台施工,能够满足B1标整个施工期间的要求。

2.1.4钢栈桥跨度、平面位置及高程应满足通航要求。

2.1.5钢栈桥应急平台需满足应急船只的停靠和人员的撤离要求。

2.2钢栈桥施工区域划分

2.2.1浅滩区

钢栈桥起始墩(14#~15#墩之间,长江大堤旁)至18#墩止,全长约180m,为栈桥浅滩区。河床高程在+0.5~+2.5m之间,绝大部分河床高程为+2.4m左右。

2.2.2深水区

18#墩至30墩止,即新通海沙夹槽河段,为深水区,全长约600m,河床高程在-3~-7m之间,平均河床高程在-5m以下;从45#墩至应急平台,为深水区,全长约320m,河床高程在-3m以下。

2.2.3浅水区

30#墩至45#墩,全长约750m为浅水区,该区域河床高程在-2.0m~-0.5m之间,平均河床高程-1.2m左右。

钢栈桥施工区域划分如图2.2-1所示。

图2.2-1 栈桥施工区域划分示意图(单位:m)

2.3钢栈桥拟定布置形式

2.3.1平面布置

钢栈桥从长江大堤起,沿桥轴线一直通至45#桥墩,最后沿桥轴线延伸约324m至应急平台,钢栈桥全长1854m。钢栈桥平面布置示意见图2.3-1所示。

图2.3-1 栈桥平面布置示意图(单位:m)

2.3.2纵向布置

钢栈桥从长江大堤起(桥面高程▽+7.2m),至23#墩附近(桥面高程▽+9.9m)段设一上坡,坡度0.70%;

23#墩(▽+9.9m)至24#墩(▽+9.9m)为通航孔;

24#墩(▽+9.9m)至41#墩(▽+6.5m)为下坡(坡降1.53%);

41#墩(▽+6.5m)至45#墩(▽+6.5m)为平坡;

45#墩(▽+6.5m)再延伸324m至应急平台(▽+6.5m)。

2.4钢栈桥拟定构造

2.4.1总体结构拟定

钢栈桥桥面宽7.0m,高程+6.5m~+9.9m。钢栈桥桩采用φ800mm×8mm的Q235a钢管桩。下横梁采用H600mm×200mm或H606mm×201mm。主纵梁一种是采用1.5m高的321普通型贝雷梁,共三组,每组两榀,贝雷梁上依次铺设I25a的横向分配梁、间距1.5m,I12.6的纵向分配梁、间距40cm;另一种是采用12m跨和16m跨的万能杆件,上方依次铺设I28b 的横向分配梁、间距2.0m,I16的纵向分配梁、间距40cm;桥面δ=10mm花纹钢板,最后安装栏杆、照明和管线等附属结构。

栈桥通航孔跨度布置为30m,其余部分根据履带吊车起重能力和位情况跨度定为12m、15m、16m、18m交替分布。钢栈桥断面结构图如图2.4-1所示:

图2.4-1 栈桥断面结构图(单位:mm)

2.4.2车辆调头平台

沿钢栈桥每间隔300m左右设一车辆调头平台,共5个。调头平台由长度为15m的钢栈桥加宽5m而组成。调头平台断面图如图2.4-2所示。

图2.4-2调头平台断面图(单位:mm)

2.4.3钢栈桥通航孔布置

航道位于23#、24#墩之间,钢栈桥钢管桩分别靠近23#、24#墩,在钢管桩上下游设置通航孔钢栈桥防撞设施。通航孔处钢栈桥在最高通航水位净高5m、跨度为30m,为减小钢栈桥桥面标高,做成下承式形式。桥面标高+9.90m,底标高为+9.30m。通航孔断面图如图2.4-3所示。

图2.4-3通航孔断面图(单位:mm)

2.4.4应急平台

应急平台是根据整个苏通大桥所有标段的需要而设置的。应急平台是中小型交通船停靠的码头,需设置人员上下通道。栈桥由45#墩向前延伸324m(B2标范围),使平台前沿水下河床标高为-6.0m~-7.0m,以保证足够的水深。应急平台断面图如图2.4-4所示。

图2.4-4 应急平台断面图

2.4.5活动钢栈桥

受19#墩~30#墩哑铃型承台施工的影响,此位置的栈桥将妨碍承台吊箱的施工,越过墩位的栈桥设计为可拆卸式。为尽量减少栈桥中断的时间,尽量降低栈桥中断对全桥施工的影响,该段栈桥设计为用650kN履带吊可整体吊移形式,即活动栈桥。为减轻重量,活动栈桥布置为15m或18m跨度,以方便起吊。活动栈桥布置图如图2.4-5所示。

图2.4-5 活动钢栈桥布置示意图

如果在水上大范围的施工,拆除栈桥影响了全桥的施工,那么将不拆除栈桥,解决承台和系梁的施工主要办法就是在系梁模板加工时将每块模板高度定为 1.5m~2.0m,栈桥底标高+4.6m,施工水位为2.0m左右,套箱拼装即为分节拼装、分节下放,虽然施工时较麻烦、

时效低,但不影响其他工序施工,所以特别注意在套箱系梁模板设计时要为组拼式,每节模板高度为1.5m~2.0m。

2.4.6钢栈桥温度伸缩缝设置

为适应栈桥钢构件温度变化,栈桥每隔150m左右设一道温度缝,缝宽6cm,现场施工时根据实际温度调整伸缩缝宽度。主纵梁为贝雷梁的栈桥温度伸缩缝处下横梁采用H606×201翼缘焊牛腿加宽至40cm,温度缝处栈桥所有钢构件均需断开,贝雷梁的阴阳头断开,但阳头仍套在阴头内;主纵梁为万能杆件或万能杆件和贝雷梁交界处采用双排桩。交界墩温度伸缩缝构造图如2.4-6所示。

图2.4-6 交界墩温度伸缩缝构造图

主纵梁为万能杆件的栈桥温度伸缩缝构造图如2.4-7所示。

图2.4-7 栈桥温度伸缩缝构造图

主纵梁为贝雷梁的栈桥温度伸缩缝构造图如2.4-8所示。

图2.4-8 栈桥温度伸缩缝构造图

2.5钢栈桥结构受力验算

2.5.1钢栈桥荷载形式

根据施工现场实际情况, 栈桥荷载形式如下:

钢材容重 78.5kN/m3

设计风速32.0m/s

水流流速 2.17m/s

波浪力波高 1.5m,波长60m

65t履带吊(考虑吊重20t):30m跨段行走比压0.07MPa

其它跨段行走比压0.18MPa

30t砼运输车错车(按汽-20重车考虑力的分布)

施工荷载4kN/m2

2.5.2特征参数

设计高潮位 4.30m(20年一遇)

设计低潮位-1.46m(20年一遇)

泥面高程见各典型断面

设计冲刷深度深水区考虑3m,浅水区考虑2m

排架横梁底标高见断面图

通航孔栈桥底标高 +9.30m

应急平台顶标高+6.50m

2.5.3地质条件

见《苏通大桥STXKZK2合同段工程地质勘察报告》。

2.5.4钢管桩基础承载力计算

(1) 单桩最大需承力(仅以12m跨为例)。

650KN履带吊作用时钢管桩所承受的压力显然大于砼车作用时的荷载,因此计算时只需考虑履带吊作用与上层结构自重荷载组合时的工况,且650KN履带吊的承重较大的一条履带作用在一侧钢管桩正上方时,此时该侧桩的承载力最大:

q=30KN/m Q1=600KN Q2=200KN 则:

最大承载力P=30×7/2+600+(5.5-4.4)×200/5.5=745 KN

按单桩承载力750kN计算

(2) 桩的嵌固点计算:

其中I=1.56×103m4

取桩嵌固点深度为4.5m (冲刷后泥面以下)

(3) 钢管桩入土深度:(考虑冲刷深水区冲刷3m,浅水区冲刷2m)

1) 根据《公路桥涵地基与基础设计规范》JTJ024-85第4.3.2条

[P]=

式中:u—周长u=2.513m

k—安全系数,取k=1.55

—影响系数,对于锤击沉桩,=1.0

τ—极限侧磨阻力

A—桩的截面积,A=0.5m2

—桩尖承载力=120kPa

—开口桩桩尖承载力影响系数,取=0.696

查看地质资料可得,12m跨栈桥下的桩,在17号墩处的地质资料最为不利,则有: [P]=

={2.513×1.0×[(2.4-2.0)×20+(12.85-2.4)×30+(H-12.85)×40]+0.5×0.696×120)}/1.55≥750则H≥15.95m

取桩的入土深度为泥面以下16.5m(包含冲刷2.0m)

2) 根据《港口工程桩基规范》JTJ254-98第4.2.4条

据P=(UΣqili+qR A)/1.55 则:

π×0.8×[(2.4-2.0)×20+(12.85-2.4)×30+ (H-12.85)×40]/1.55≥750

H≥16.35m取H=17.0m(包含冲刷2.0m)

3) 入土深度复核结果:

设计桩底标高为-15.0m,河床标高为+2.47m,则入土深度为17.47m,

与我部计算的最大入土深度17.0m多0.47m,基本相吻合。

2.5.5钢栈桥18米跨主纵梁受力计算(计算跨径为L计=18m简支计算)。

(1) 弯矩M:

1) 30t砼车(一辆)布置在跨中时

Mmax1=0.25×120×18+5×30+60×7.6=1146kN.m

在跨中错车时:

Mmax1=1146+0.25×60×18+7.6/18×60×18/2+5/18×30×18/2=1719.0kN.m

2) 履带-65布置在跨中时

Mmax2=1/4×(600+200)×18=3600.0kN.m

3) 施工荷载及人群荷载

Mmax4=0.125×4×7.0×182=1134.0kN.m

4) 恒载M=0.125×16.5×182=668.3kN.m

(2) 对支点剪力Q:

1) 30t砼车行驶临近支点时:

Qmax1=120+120×16.6÷18+60×12.6÷18=272.3 kN

在临近支点错车时:

Qmax1=272.3+60+60×(16.6÷18)=387.6kN

2) 履带-65前方临近支点时:

Qmax2=800×15.35/18=682.2kN

3) 施工荷载及人群荷载:

Qmax3=0.5×4×7.0×18=252KN

4) 恒载内力:

Qmax4=16.5×18/2=148.5kN

(3) 荷载组合:

贝雷梁上最大内力为65t履带吊与恒载组合:履带吊在吊重200KN的情况下不考虑错车及桥面施工荷载和人群荷载。

Mmax=3600+668.3=4268.3kN.m <[M]=1576.4×3kN.m=4729.2KN.m

Qmax=682.2+148.5=830.7kN <[Q]= 490.5×3=1471.5 kN

满足。选用3组,每组2片,单排。

2.5.6钢栈桥30米跨主纵梁受力计算(计算跨径为L计=30m简支计算)。

(1) 弯矩M:

1) 30t砼车(一辆)布置在跨中时

Mmax1=0.25×120×30+13.6/30×120×30/2+11/30×60×30/2=2046KN.m

在跨中错车时:

Mmax1=2046+0.25×60×30+13.6/30×60×30/2+11/30×30×30/2=3417.0

2) 履带-65布置在跨中时,不考虑吊重,只考虑履带吊通过:

Mmax2=1/4×600×30=4500kN.m

3) 施工荷载及人群荷载

Mmax4=0.125×4×7.0×302=3150kN.m

4) 恒载M=0.125×16.5×302=1856.3kN.m

(2) 对支点剪力Q:

1) 30t砼车行驶临近支点时:

Qmax1=120+120×28.6÷30+60×14.6÷30=263.6KN

在临近支点错车时:

Qmax1=263.6+60+60×(28.6÷30)=380.8kN

2) 履带-65前方临近支点时,考虑吊重200KN:

Qmax2=800×27.35/30=729.3KN

3) 施工荷载及人群荷载:

Qmax3=0.5×4×7.0×30=420KN

4) 恒载内力:

Qmax4=16.5×30/2=247.5kN

(3) 荷载组合:

贝雷梁上最大内力为65t履带吊与恒载组合:履带吊在吊重200KN的情况下不考虑错车及桥面施工荷载和人群荷载。

Mmax=4500+1856.3=6356.3kN.m <[M]=3375.0×2KN.m=6750.0KN.m

Qmax=729.3+247.5=976.8kN <[Q]=490.5×2=981kN

满足。30m跨采用2组,每组2片加强型贝雷梁。

2.5.7 下横梁、横向分配梁、纵向分配梁和面板验算简单,略。

3、钢栈桥施工

3.1 钢栈桥施工工艺流程

图3.1-1 钢栈桥施工工艺流程图

3.2 主要施工方法

3.2.1 钢栈桥0#墩

0#墩砌筑宽9.75m的砼基础,在大堤顶部延斜坡开挖1.3m深,为避免破坏大堤,保证防汛,在开挖的地方浇注30cm厚、宽80cm的砼基础,竖直面砌筑红砖,浇砼时,固定型钢的预埋件一定要埋设准确。加宽平台向栈桥下游延伸2.75m,将横向分配梁连通,上铺I12.6及面板,作为栈桥桥头错车、转弯的平台。0#桥台施工完毕后及时对大堤进行恢复。钢栈桥0#桥台断面图见图3.2-1。

图3.2-1 钢栈桥0#桥台断面图

3.2.2 浅滩区施工

浅滩区栈桥跨度为12m,栈桥的架设采用650kN履带吊、DZ60型振动锤逐跨打桩搭设栈桥。施工时注意履带吊悬出长度不准超过2.5米,现场要根据吊机的实际性能进行施工。浅滩区栈桥搭设示意图如图3.2-2所示。

图3.2-2 浅滩区栈桥搭设示意图

3.2.3 深水区施工

深水区采用航工桩1#打桩船,600kN起重船配合搭设栈桥,直接沉桩到位。打桩船采用抛锚定位,抛锚时考虑尽量能多打桩,减少抛锚次数,以加快施工进度。打桩船吊桩入导向架然后通过铰锚机将船移到准确位置后沉桩。

钢管桩施沉前根据桩位图计算每一根桩中心的平面坐标,直桩直接确定其桩中心坐标,斜桩通过确定一个断面标高后,再计算该标高处钢管桩的桩中心坐标,同时确定好沉桩顺序,防止先施打的桩妨碍后续的桩施工。

沉桩顺序:钢管桩施沉总体按照先上游后下游,先岸侧后江侧的施工顺序进行。

按照沉桩顺序进行打桩船的抛锚定位,抛锚方法是:打桩船的首、尾各抛两只锚,成“八”字形,另外在船首、尾各抛设一只带前进缆的锚,桩位的调整依靠6根锚缆进行。抛锚定位总原则:因为红线范围内有C1标的水下电缆,所有锚缆均应远离桥幅红线范围,同时应方便运桩船喂桩,否则,打桩船需要重新抛锚定位。

引桥红线范围示意图如3.2-3所示。

图3.2-3引桥红线范围示意图

打桩船抛锚定位后,打桩船后退让出空档。运桩船将桩运至打桩船船首处,打桩船上吊钩将桩采用两点起吊、吊立,然后拉入龙口,合拢机械手,测量控制,通过调整桩架的垂直度来调整钢管桩垂直度。

钢管桩平面位置及垂直度调整完成后,开始压锤,依靠钢管桩及打桩锤的重量将其压入土层,测量复测桩位和垂直度,偏差满足要求后,开始锤击。

钢管桩的最终桩尖标高由入土深度控制,若钢管桩无法施打至设计标高,及时汇报、分析原因,拿出解决办法,直至钢管桩的入土深度满足设计要求和已证明钢管桩达到了设计承载力。另外一种情况时达到了设计入土深度,但钢管桩还是急速下沉,要以锤击度来复核。

当现有打桩船船位不能满足继续施沉钢管桩要求时,应起锚,起锚尽量使用起锚艇,将打桩

船重新抛锚定位,进行下一跨的沉桩。打桩船沉桩示意图如图3.2-4所示。

图3.2-4 深水区沉桩示意图

3.2.4 浅水区沉桩

根据河床情况,河床高程-2.0m~-0.5m,打桩船在浅水区水域低水位时无法进入打桩,需乘高潮位+1.5m以上沉桩。采用航工桩1#打桩船,600kN起重船配合搭设栈桥,或采用65t 履带吊上方驳沉桩,方法同深水区施工。如果船舶无法进入浅水区施工区域施工则按浅滩区施工方法施工。

3.2.5 联系梁安装

每排钢管桩下沉到位后,应及时进行钢管桩基础之间的连接,增加桩的稳定性,避免潮汐来时发生意外事件,连接材料采用Φ600×6钢管,钢管尺寸需根据现场尺寸下料,采用哈佛接头形式连接,高程位置根据施工时实际水位情况确定,一般控制在+2.0m。焊缝质量满足设计及规范要求。

3.2.6 下横梁处理、安装和桩顶处理

下横梁在与主纵梁接触部分加焊加劲板,增强局部刚度。

下横梁安装需经测量准确放线后进行,下横梁直接嵌入钢管桩内40cm,露出桩顶20cm。桩顶搁置下横梁的位置需要焊接耳板加强,并与下横梁连接成整体。

3.2.7 主纵梁及横、纵向分配梁拼装

主纵梁首先在陆上或已搭设好的栈桥上按每组规格、尺寸拼装好,然后运输到位,安装在下横梁上。主纵梁的位置需放线后确定,以保证栈桥轴线不偏移。主纵梁安装到位后,横向、竖向均需焊定位挡块及压板,将其固定在下横梁上。

主纵梁安装完毕,其上铺设横向分配梁,横向分配梁与主纵梁间采用Ф16“U”型螺拴固定,每个节点1套螺栓。然后在横向分配梁上铺设纵向分配梁,如遇与“U”型螺栓、螺母冲突时,可适当调整其间距。纵向分配梁要花焊在横向分配梁上。

3.2.8桥面板铺装及附属结构施工

桥面面板宽6.9m,点焊在纵向分配梁上,桥面板采用10mm厚的花纹钢板,上方不焊防滑条,主要是防止车辆在上方行驶产生震动和异响。

栈桥栏杆高0.8m,采用Φ48×3mm焊接钢管焊接,立柱间距2.0m,焊在栈桥横向分配梁上,栏杆统一用红白油漆涂刷,交替布置,达到简洁、美观。

电缆等搁置托架用∠50角钢焊接在横向分配梁上,每根分配梁上焊一根,主要是电缆和输水管等设施搁置在上面,减少对栈桥交通的干扰。管线托架图如图3.2-5所示。

图3.2-5 管线托架图

在栈桥上隔一段距离设置车辆限速行驶警示牌,限制车速8km/h。在栈桥入口设置岗亭和调度员,以及车辆限重标志牌。栈桥要安排专门的卫生打扫人员,保证栈桥的清洁。在栈桥的上下游安装航标指示灯,在栈桥上两边每隔15m交替布置路灯,供夜间照明。

栈桥车道标志线按四级公路双车道标准施画,行车道6m宽,栈桥边缘50cm,不允许行车。

3.2.9 应急码头施工

同深水区钢栈桥施工。

4、结束语

4.1 苏通大桥B1标钢栈桥长度为1854m,是目前长江上最长的钢栈桥,同时位于长江入海口处,地质条件和水文条件及其复杂和恶劣,在保证安全的前提下满足钢栈桥使用的要求,同时尽量优化设计与施工,降低成本。

4.2 施工到通航孔时,贝类梁挠度过大,理论计算承载力没有问题,但在构造上还需加强,针对这一情况,及时的改成2组,每组3片加强型贝类梁,同时在此跨下承式钢栈桥构造上进行了加强,将横向分配梁延长焊斜撑支撑贝类梁,很好的解决了贝类梁挠度过大问题,60t 履带吊空载安全顺利的通过。

4.3 对于60t履带吊在吊重20t的情况下履带的比压合理取定,过于保守将对栈桥的钢材用量大大增加,增加成本并造成浪费,同时本钢栈桥通过验算纵向分配梁需采用I14,间距35cm,根据经验同时通过计算采用了I12.6,间距40cm,节约钢材约150t型钢。而在实际使用过程中个别地方还是遭到破坏,主要原因是荷载过大,进行了修补。

4.4 桥面花纹钢板铺装,单块钢板定尺1.5m×6.9m,栏杆直接焊在横向分配梁上,同时钢板之间间隔5cm,虽然看起来属于细节,但算下来比满铺节约花纹钢板近50t。

4.5 施工过程中曾多次出现钢管桩入土只有8m左右,没有达到设计入土深度,DZ60KW振动锤无法将钢管桩下沉到位,根据DZ60KW振动锤的激振力复核钢管桩基础承载力应该没有问题,没有进行补桩,在使用的过程中没有出现沉降,满足使用要求。

4.6 现在很多项目都需要搭设钢栈桥,供同仁参考。

钢栈桥验收方案

浠水二桥钢栈桥验收方案 一、工程概况 为满足县政府目标工期要求,根据现场情况,拟定搭钢栈桥施工。 钢栈桥宽度为8m,跨径组合为6*12m,总长为72m,采用φ630*10的钢管桩。栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。 二、执行标准和依据 1、工程施工合同文本 2、工程设计施工图及设计变更联系单 3、《建筑工程施工质量验收统一标准》GB50300-2013 4、《建筑地基基础工程施工质量验收规》GB50202-2002 5、《建筑桩基检测技术规》JGJ106-2014 6、《城市桥梁工程施工与质量验收规》(CJJ-2008); 7、《公路桥涵施工技术规》(JTG/T F50-2011); 8、《建筑桩基技术规》(JGJ 94-2008); 9、《建筑施工扣件式钢管脚手架安全技术规》(JGJ 130-2011)。 三、验收围 钢栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。验收围包括钢栈桥全部施工容。 四、验收人员 1、总承包单位和分包单位技术负责人或授权委派的专业技术人员、项目负责人、项目技术负责人、专项施工方案编制人员、项目专职安全生产管理人员及相关人员; 2、监理单位项目总监理工程师及专业监理工程师; 3、有关勘察、设计和监测单位项目技术负责人。

4、安装施工单位技术负责人。 五、验收检查方法 按照浠水二桥钢栈桥施工验收表和《钢栈桥静载试验方案》的容进行验收。 六、验收程序 验收由生产经理主持,请监理工程师、测量工程师及有关人员参加。验收的结果及时填写相关工程验收记录表格,并请相关人员签认。 附件: 钢栈桥静载试验方案 一、试验目的 1、检验钢管桩单桩承载力; 2、检验钢栈桥结构焊接质量; 3、检验钢栈桥结构整体稳定性; 4、实测贝雷梁及钢管桩桩身弹性变形。 二、试验方法概述 本次试验选取浠水二桥钢栈桥作为试验对象,利用平板车、载重汽车作为加载平台,荷载物可以选择袋装水泥或各类型钢,分三级加载(卸载)。第一级加载(卸载)60%设计荷载,第二级80%,第三级100%。加载点位于跨中纵横桥轴线交叉处,以此模拟贝雷梁在最不利的位置受到最大汽车荷载作用效应,具体布置如图2-1所示:

钢栈桥专项设计施工方案

目录 一、概述 (2) 二、设计标准 (3) 三、钢桥设计及施工方法 (3) 四、钢便桥各部位受力验算 (5) 五、栈桥主要材料计划 (9) 六、机具使用计划 (10) 七、劳力资源计划 (10) 八、施工进度计划 (10) 九、钢桥施工质量保证措施 (10) 十、钢桥施工安全保证措施 (11) 十一、文明施工、环境保护保证措施 (11) 十二、其它事项 (13) 十三、栈桥的拆除 (13)

钢栈桥专项施工方案 一、概述 由我局承建的铁路工程因施工需架设两座经济实用又安全的钢栈桥。根据现场地形地貌并结合荷载使用要求,经过现场勘查我部架设的钢桥规模为:1#便桥长约150米(即鸡角屿大桥1#-5#墩栈桥),2#便桥长约80米(即鸡角屿特大桥35#-38#墩栈桥),桥面净宽均为4.5米,标准跨径为12米。桥位布置形式:考虑到下部结构(承台)套箱施工需要,两座便桥内边距离承台1.5米。 钢便桥结构特点如下: 1、基础结构为:钢管桩基础 2、下部结构为:工字钢横梁 3、上部结构为:贝雷片纵梁 4、桥面结构为:装配式公路钢桥用桥面板 5、防护结构为:小钢管护栏 如下图所示: ( 桥面板4.5×1.26m 贝雷片纵梁3.0×1.5m 工字钢横梁 钢管桩

便桥横向草图 二、设计标准 ①、计算行车速度:5km/h ②、设计荷载:载重500KN施工车辆 ③、桥跨布置:12m连续贝雷梁桥 ④、桥面布置:净宽4.5m 三、钢桥设计及施工方法 1、基础及下部结构设计 (1)钢便桥钢管桩基础布置形式: 单墩布置3根钢管(桩径ф32.5cm,壁厚6 mm),横向间距2.5m,桩顶布置2根28cm工字钢横梁,管桩与管桩之间用10cm槽钢水平向和剪刀向牢固焊接。如果个别墩位入土深度不足应施打6根钢管,设置成排架桩基础。 栈桥施工采用50t履带吊机配合振动打桩锤施打桩基础(如下图),利用履带吊分块吊装至栈桥顶进行组拼后,在栈桥顶利用履带

重型钢栈桥的设计及施工技术

裸露岩层地质条件下 重型钢栈桥的设计及施工技术 摘要通过广东省平远(赣粤界)至兴宁公路项目第五标段潭头河重型钢栈桥的设计及施工实例,重点介绍了在裸露岩层地质条件下,重型钢栈桥的设计及施工的特点。 关键词裸露岩层重型钢栈桥设计及施工技术 1、工程简介 1.1线路及栈桥概况 新建广东省平远(赣粤界)至兴宁高速公路是济广国家高速公路的一部分,全线呈北至南走向,起于梅州市平远县,止于梅州兴宁市。 我部施工的第五合同段起于平远县石正镇,终于梅县梅西镇。设计为双向四车道高速公路,设计速度100km/h,路基宽26m。项目线路起止里程:K1610+700~K1617+000,全长6.3公里,以路基为主,兼有桥涵。 主线K1613+400处,高速公路设计为潭头河大桥与潭头河正交,结构形式为9×20m小箱梁;为保证桥梁施工便利,同时疏通主线路基前后施工便道,须在潭头河上游20m处设置施工重型钢栈桥。 潭头河重型钢栈桥位置示意图图1 潭头河钢栈桥桥面宽度为4.5m,全长24.0m,桥梁荷重为50t。栈桥小里程端直接与乡道Y153相接,为保证车辆的转弯半径,将桥台位置前移3.0m;该处先填土至设计标高,压实后再进行桥台基础及台背砌筑。

1.2气候及水文情况 工程区域为亚热带季风型气候,是南亚热带和中亚热带气候区过渡地带,受海洋季风的影响,气候温暖潮湿,雨量丰沛,雨季长,区内雨量充沛,潮湿系数大于1,年降雨量在1540.3~1637.0mm,其中夏季雨季占年降雨量的41.5%。 潭头河虽然宽度较小,水流量不大,但雨季河水流速较快,且上游存在较多的河流漂浮物;由于钢栈桥受河岸两侧路面影响,主体钢结构在汛期将位于河面以下,故应随时注意漂浮物的清理,以免横向冲击力对钢栈桥造成影响。 1.3地质情况 潭头河钢栈桥位置地质情况是影响该桥设计及施工的重要因素,该区域岩土性以砂质黏性土为主,一般含有较多分布不均匀的砂、砾石层,厚度变化较大。由于潭头河常年受山区流水冲刷严重,除两侧桥台有部分填土外,其余位置均为裸露的岩层,且强风化岩层较薄,钢管桩基础入土深度较小,因此,在进行钢栈桥设计时,应充分考虑基础的稳定性。 综上,潭头河重型钢栈桥属于急水、裸露岩层施工,施工技术难度较大,施工安全要求高。 2、重型钢栈桥的设计 2.1栈桥设计原则 结合本重型钢栈桥施工的工况为水中、支架作业,且桥梁区域内岩层强度较大,基础入土深度浅,因此,栈桥设计时要注意以下原则: 2.1.1栈桥基础稳定 栈桥施工中,最为重要的就是基础部分,将直接影响栈桥的实际承重与稳定性能,在上述地质水文情况下,栈桥的设计重点便是保证基础稳定性。为此,我们采用“板凳法”设计,即将基础Φ630mm钢管桩在纵向短距离布置,然后四根钢管桩依次相连,形成“四脚板凳”,确保其整体稳定性。 潭头河重型钢栈桥基础及纵梁示意图图2 2.1.2满足实际水流要求

(完整版)贝雷梁钢栈桥方案

阜阳市茨淮新河大桥 钢栈桥施工组织设计 编制: 复核: 审批: 日期: 舒城县汇众建筑工程劳务有限公司 茨淮新河大桥项目经理部 二00九年六月

第一章总体概述 (1) §1.1、工程总体概况 (1) §1.1.1项目所在地理位置 (1) §1.1.2工程范围及规模 (1) 第二章、设备、人员动员周期和设备、人员、材料运到施工现场的方法 (1) §2.1、投入本工程的设备、人员 (1) §2.2、人员动员周期 (1) §2.3、机械设备动员周期 (2) §2.4、材料组织 (2) §2.5、设备、人员、材料运到施工现场的方法 (3) 第三章钢栈桥施工组织方案 (3) §3.1 项目施工组织安排 (3) §3.1.1施工组织管理机构组成 (3) §3.1.2项目施工基地建设 (5) §3.1.3栈桥施工进度 (6) §3.2钢栈桥施工工艺 (7) §3.2.1栈桥结构设计 (7) §3.2.2栈桥施工 (9) §3.2.3栈桥施工过程质量控制 (15) §3.2.4栈桥质量验收标准 (18) §3.2.5栈桥工程质量检验报告单 (24) §3.3组织保证措施 (24) §3.3.1施工计划的保证 (26) §3.3.2人员的保证 (26) §3.3.3技术保证措施 (26) §3.3.4 施工设备和材料的保证 (26) 第四章、质量、安全保证体系 (27) §4.1、质量保证体系 (27) §4.1.1 质量目标 (27) §4.1.2 质量保证体系的建立 (27)

§4.1.3 质量保证体系的运行 (27) §4.2、安全保证措施 (28) §4.2.1安全生产目标 (28) §4.2.2安全保证体系及组织机构设置 (28) §4.2.3栈桥施工过程中安全管理措施 (29) §4.2.4栈桥使用过程中安全管理措施 (29) §4.2.6常规安全管理措施 (30) §4.2.7特殊安全管理措施 (30) §4.2.8安全管理其他措施 (31) 第五章、其他应说明的事项 (32) §5.1、管线保护措施 (32) §5. 2、环境保护 (33) §5.2.1原则 (33) §5.2.2环境保护措施 (33) §5.2.3水保措施 (36) §5.4、文明施工 (36) §5.5栈桥运行、维护和检修及拆除 (37) §5.5.1栈桥的运行、维护和检修 (37) §5.5.2栈桥的拆除 (38)

官洲河特大桥钢栈桥施工技术交底

官州河特大桥钢栈桥施工技术交底

官州河特大桥钢栈桥施工技术交底 一、水文情况 桥区水域处于珠江三角洲河网区。桥区水域水位呈周期变化,潮流为往复流,即桥区水域既受径流作用,又受潮流影响,具有水丰沙少和潮汐为主的特性。桥区天然深槽稳定性好,冲淤基本平衡。 官洲河水道径流来自西江、北江和流溪河,其年际变化和年内分配与西江、北江的变化一致。根据下游大虎站资料统计,桥址处水道年平均径流量为81.4亿m3,年平均径流量为258.1m 3/s,小潮和大

潮的全潮下泄量分别是27.484 Xl06m3和14.568 Xl06m3,平均径流量分别为296.0 xi06m3和166.8 xi06m3。 桥位区多年平均潮差为 1.69m ,最大为 3.64m ;平均高潮位 5.974m ,平均低潮位4.334m ,最高潮位7.564m ,最低潮位3.264m。 二、栈桥施工 为满足现场主墩施工需要,拟在官洲河水道南、北两侧分别设置 213.0m 、418.0m 钢栈桥,钢栈桥顶宽6.0m ,跨径主要为15.0m ,伸缩缝处跨径为 3.0m ,其余跨径均小于15.0m 。上部构造由贝雷架、型钢构成,其中承重结构采用双排单层上下加强的贝雷架形式,贝雷下弦杆处每一联内均布设置 3 道横梁和斜撑,左右幅贝雷桁架之间每3m 设一道剪刀撑,采用[20a 型钢;贝雷下弦杆与钢管桩顶2I32a 分配梁之间采用[14a 型钢设置限位装置,上弦杆与I25a 分配梁之间通过垫板与拉杆进行固定,具体详见《钢栈桥细部构造加工图》;贝雷架上横桥向采用I25a 的型钢作为分配梁,其间距为 75cm ,分配梁上铺设顺桥向铺设[20a 型钢做面板,其相邻两型钢之间的间距为5cm ,桥面两侧设置1.2m的安全护栏,护栏采用 ①48mm , S2.5mm的钢管构成, 护栏设置照明用路灯和警示灯。钢栈桥基础采用单排钢管桩,规格为①63cm、S8mm的螺旋钢管,横向中心距离为 4.00m ;钢管桩顶横桥向采用2132a设置分配梁,并在钢管桩采用S =12mm 钢板焊设牛腿,分配梁与牛腿之间要密贴并进行间断焊固定。为了加强钢管整体稳定性,在钢管桩与顶端分配梁之间采用 [14a 型钢设置短斜撑。钢管桩振沉拟采用DZ60 型振桩锤悬打, 采用悬臂式钢管导向平台作为振沉钢管桩的导向设置。

钢栈桥专项设计施工方案[优秀工程方案](14页)

目录 一、概述 (3) 二、设计标准 (4) 三、钢桥设计及施工方法 (4) 四、钢便桥各部位受力验算 (6) 五、栈桥主要材料计划 (10) 六、机具使用计划 (11) 七、劳力资源计划 (11) 八、施工进度计划 (11) 九、钢桥施工质量保证措施 (11) 十、钢桥施工安全保证措施 (12) 十一、文明施工、环境保护保证措施 (12) 十二、其它事项 (14) 十三、栈桥的拆除 (14)

钢栈桥专项施工方案 一、概述 由我局承建的铁路工程因施工需架设两座经济实用又安全的钢栈桥。根据现场地形地貌并结合荷载使用要求,经过现场勘查我部架设的钢桥规模为:1#便桥长约150米(即鸡角屿大桥1#-5#墩栈桥),2#便桥长约80米(即鸡角屿特大桥35#-38#墩栈桥),桥面净宽均为4.5米,标准跨径为12米。桥位布置形式:考虑到下部结构(承台)套箱施工需要,两座便桥内边距离承台1.5米。 钢便桥结构特点如下: 1、基础结构为:钢管桩基础 2、下部结构为:工字钢横梁 3、上部结构为:贝雷片纵梁 4、桥面结构为:装配式公路钢桥用桥面板 5、防护结构为:小钢管护栏 如下图所示: 贝雷片纵梁3.0×1.5m 工字钢横梁 钢管桩

便桥横向草图 二、设计标准 ①、计算行车速度:5km/h ②、设计荷载:载重500KN施工车辆 ③、桥跨布置:12m连续贝雷梁桥 ④、桥面布置:净宽4.5m 三、钢桥设计及施工方法 1、基础及下部结构设计 (1)钢便桥钢管桩基础布置形式: 单墩布置3根钢管(桩径ф32.5cm,壁厚6 mm),横向间距2.5m,桩顶布置2根28cm工字钢横梁,管桩与管桩之间用10cm槽钢水平向和剪刀向牢固焊接。如果个别墩位入土深度不足应施打6根钢管,设置成排架桩基础。 栈桥施工采用50t履带吊机配合振动打桩锤施打桩基础(如下图),利用履带吊分块吊装至栈桥顶进行组拼后,在栈桥顶利用履带吊机完

钢栈桥施工方案

钢栈桥施工方案 1、编制依据 1.1、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工图纸; 1.2、由建设单位提供的施工文件; 1.3、国家、行业、泉州市有关的建筑施工和施工质量、施工安全、文明 施工等方面的规范、规程、规则、标准等文件; 1.4、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工组织设计; 1.5、现场考察情况; 1.6、本单位的施工能力、经验; 1.7、主要技术标准及规范 1.7.1《公路桥涵设计规范》(JTJ021—89) 1.7.2《公路桥涵钢结构及木结构设计规范》(JTJ025—86) 1.7.3《公路桥涵地基及基础设计规范》(JTGD063—2007) 1.7.4《公路桥涵施工技术规范》(JTJ041—2000) 1.7.5《装配式公路钢桥制造及检验、验收办法》 2、工程概况 2.1、工程概况 泉三高速公路泉州支线(南安至惠安)NHA1合同段仙石大桥左线桥有0#台~22#台,共23排墩台,其中:11#墩~20#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台;右线桥有0#台~21#台,共22排墩台,其中:11#墩~19#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台。钢栈桥搭设总长度为330米,工作钢平台19座。 2.2、地质状况

仙石大桥大桥桥址区位于晋江的现代河床及I级阶,墩位处属冲积平原地貌,河床标高为-1.1m~3.4m,晋江水位标高为6.6m左右,晋江水深7.7m~10m,上部岩性为亚砂土、亚粘土、粉细砂,局部分布软土层,流塑~软塑状,厚度较小;其下为中砂、圆砾、卵石层,呈密实状;下伏基岩为花岗岩,桥址区基岩面和其风化面起伏较大。 根据仙石大桥两阶段施工图纸,钢栈桥及钢平台所属区共有8个钻孔点,各钻孔点的岩性及厚度为: ZKS17-1(右线12#墩) 亚砂土(1.8 m)、亚粘土(7.9 m)、细砂(11.1 m) ZKS19(右线14#墩) 中砂(2.8 m)、卵石(12.9 m) ZKS21(右线16#墩) 中砂(3.9 m)、卵石(6.1 m) ZKS23(右线18#墩) 砾砂(10.4m) ZKS17(左线12#墩) 亚砂土(3.0 m)、亚粘土(5.3 m)、细砂(4.3 m) 、中砂(4.1 m) ZKS18(左线14#墩) 细砂(4.8 m)、含细砂淤泥质亚粘土(3.7m)、中砂(7.9 m)、砾砂(6.1 m) ZKS20(左线16#墩) 中砂(7.7 m)、卵石(4.5 m) ZKS22(左线18#墩) 中砂(2.7 m)、卵石(6.5 m) 2.3、总体设计 钢栈桥桥面宽度6.0m,栈桥每9m间隔设置单排和双排钢管桩组成的桥墩,双排钢管桩间距为2.2 m,栈桥每跨跨径为9m。 钢栈桥基础采用φ630mm×8mm钢管桩,单桩入土深度在河床处计划9m、在岸边淤泥层较厚处计划16m,振动沉桩时根据实际情况确定打入深度,横梁采用I36b双拼工字钢,纵梁采用321钢桥贝雷梁,I36b 工字钢和[14b槽钢分配梁,面板采用10mm的钢板。贝雷片间的连接采用销接,贝雷片与横梁用U型箍扣锁。栈桥每隔9m在右侧安装1盏路

钢栈桥施工技术

钢栈桥施工技术 1.工程概况 海南东环线位于海南省东海岸,北起海南省省会海口市,南至著名热带滨海旅游度假胜地三亚市,途经文昌、琼海、万宁和陵水等四市县,线路全长308.11正线公里。 万泉河双线特大桥位于琼海,桥全长3971.92m,其中0#台~50#墩、71#墩~122#台为陆地墩台,51#墩~70#墩跨越万泉河,为水中墩。基础均为群桩钻孔桩基础、矩形承台,结构尺寸如表1-1: 桥址百年一遇河道设计洪(潮)水位为10.47m,设计流量为17060m3/s,断面平均流速2.23m/s;设计测时水位3.0m,施工水位考虑3.0m。本桥位于近海地带,受季节降雨、台风及上游水库影响,河道水位值相差较大,现场实测水位落差可达4.0m,56~63#墩深水基础施工难度大。 水中桥址区域地层岩性从上而下主要为:细砂、中砂、粗砂、全风化、强风化、弱风化砂岩,部分墩位岩层直接过渡桥址区域砂层厚。本桥主墩承台基础属高桩承台,承台置于河床面,拟采用搭设钢栈桥及“先桩后堰”工法施工桩基及承台。 2.钢栈桥设计 对于钢栈桥设计,我国目前尚没有可以遵循的规范。为此,在钢栈桥设计中,我们遵循相关要求和规定,同时遵守国家及相关行业标准、当地水文地质资料和有关设计手册。 2.1钢栈桥构造形式 考虑历年洪水水位,桥面标高设置为9m,在特大洪水来临之时,本桥不通行。栈桥设计采用多跨连续梁方案,全长453m,共计42跨,每7跨为一联,其中26跨长12m,15跨长9m,1跨长6m。 贝雷梁结构:施工钢栈桥采用“321”型贝雷桁架,每联之间设立双墩,采用2组单层双排贝雷桁架,其间距采用4.5m;桥面全宽6.0m; 桥面系:由防滑钢板和型钢组成的,桥面板厚度为10mm,横梁为I40b工字钢,间距1.5m;纵梁为I12.6工字钢,间距40cm; 桩基础:f550,d=10mm厚钢管桩,材质为Q235,采用钢板卷焊。 栈桥设计使用期为24个月,为保证施工车辆行驶安全沿栏杆出顺桥向设置通长I28工字钢作为路缘保护以防止车辆坠落。 栈桥设计荷载参数:汽-超20(单列);设计行车速度为15km/h。

钢栈桥施工方案

钢栈桥施工方案 1.1编制依据 (1)、成都二绕城高速西段B2合同工程施工合同及招标文件(2)、成都二绕城高速西段B2合同工程二阶段施工图设计文件(3)、公路桥涵设计通用规范(JTG D60-2004); (4)、公路桥涵地基与基础设计规范(JTJ D63-2007);(5)、公路桥涵钢结构设计规范(GB50017-2003); (6)、公路工程水文勘测设计规范(JTG C30-2002); (7)、港口荷载规范(JTJ215-98); (8)、装配式公路钢桥多用途使用手册(广州军区工程科研所);(9)、公路桥涵施工技术规范(JTJ041-2000); (10)、公路工程质量评定标准(JTG F80/1-2004);

(11)、港口工程设计手册。 (12)、本公司在大海、长江、黄河项目施工中的栈桥设计与制安经验 1.2工程概况 1.2.1项目环境基本情况 成都二绕城高速西段B2合同工程府河特大桥工程,主桥为三跨连续箱梁桥,跨越府河。府河为季节性河流,河水较浅,常规深度约4~5米;水流湍急,估计2m/s左右;河中丁坝和溢流坝较多,多横跨府河;河滩较宽较平缓;河床淤积层估计约2~3米,其下为较厚的稍密实砂卵石层,卵石粒径2~40cm。 工程所在地外围交通较发达,需建设顺路线方向施工便道进入各个施工点。 1.2.2项目总体构造 府河特大桥主桥采用72+120+72m变截面连续箱梁。本栈桥为主桥施工和对岸引桥施工服务。 本栈桥考虑河床覆盖层浅、砂卵石层厚的特点,将栈桥桥跨布置为4×9+3+12+3+4×9m=90m布置。中间2个3米跨的钢管桩,各自4根连接成单元整体桥墩,以抵抗栈桥受水流冲击、河流漂浮物阻力、钢管桩埋置河床深度不足的影响。 1.2.3工程地质

装配式钢栈桥设计施工新技术

中国港湾建设 New technology for design and construction of fabricated steel trestle LIU Zhong-you (CCCC Second Harbor Engineering Consultants Co.,Ltd.,Wuhan,Hubei 430071,China ) Abstract :For speeding up steel trestle construction speed,reducing construction cost and energy consumption,we researched and implemented the assembly of steel trestle during the steel trestle design and construction in Nanjing -Gaochun railway project.The foundation of fabricated steel trestle used the locking type clip pile hold hoop,bearing plug,and self -lock connecting rods pieces,its structure used factory of processing,the site construction only need for structure installation;the panel system for standard,and general structure design,all welding works were completed in factory,only need with card board connection in Bailey beam in the site.The fabricated steel trestle successfully implemented can savings over 30%cost compared with conventional steel trestle,its structure is safe and reliable,and efficiency increased by more than 1time.Practice proved fabricated steel trestle should have good application prospects.Key words :steel trestle;fabricated;bailey beam;hold hoop;U-shape steel plate 摘 要:为加快钢栈桥施工速度,降低施工成本,降低能源消耗,在宁高项目钢栈桥设计施工中对钢栈桥的装配化 进行研究与实施,装配式钢栈桥基础采用了锁固式夹桩抱箍、承插、自锁连接杆件,结构采用工厂化加工,现场施工只需要进行结构安装;面板系统为标准、通用结构设计,全部焊接工作在工厂内完成,现场只需要用卡板连接在贝雷梁上即可。装配式钢栈桥在宁高项目成功实施,与普通钢栈桥相比可节省成本30%以上,结构安全可靠,施工效率提高1倍以上。实践证明装配式钢栈桥具有较好的应用前景。关键词:钢栈桥;装配;贝雷梁;抱箍;U 形钢板卡中图分类号:U445.55;U448.218文献标志码:A 文章编号:2095-7874(2017)01-0046-04 doi :10.7640/zggwjs201701010 收稿日期:2016-08-30 修回日期:2016-10-22 作者简介:刘忠友(1963—),男,江苏沛县人,教授级高级工程师, 主要从事水运工程的施工与管理。E-mail :lzy630906@https://www.360docs.net/doc/c37786182.html, 装配式钢栈桥设计施工新技术 刘忠友 (中交第二航务工程勘察设计研究院有限公司,湖北武汉 430071) 第37卷第1期 2017年1月 Vol.37No.1 Jan.2017 0引言 水上工程结构,特别是桥梁工程的施工,为了方便施工,需要搭设临时栈桥作为施工通道,搭设临时钢平台作为施工场地。目前国内桩基式钢栈桥、钢平台,桩基部分除采用钢管桩外,也有采用PHC 桩的报道;栈桥面层部分除采用钢结构面层外,也有部分栈桥采用预制、安装的钢筋混凝土板结构。钢结构面层也有很多的结构组合, 但基本都没走出旧有的框架,不具有装配化性能。 采用钢管桩作为基础的常规钢栈桥、钢平台,通过焊接剪刀撑、钢横梁,上面摆放贝雷梁、面板系统。上述结构基本都是采用焊接加螺栓连接,现场的焊接工作量大,安装、拆除费时费工,剪刀撑等材料不具有周转性,材料损耗大,成本高。对于需多次周转的材料经过重复的焊接,造成钢材局部损伤从而降低钢材的力学性能,形成结构使用期间的安全隐患。 栈桥面板系统与贝雷梁的连接通常采用的是骑马螺栓连接方式,采用骑马螺栓连接时,面板系统的分配梁无法放置在贝雷梁的节点位置,影

水上装配式钢栈桥设计与施工指南

ICS 93.040 CCS P60 团体标准 T/JSTERA XX—2020 水上装配式钢栈桥设计与施工指南The guide for design and construction of prefabricated steel trestle on water 2020-xx-xx发布2020-xx-xx实施江苏省交通经济研究会 发布 江苏省交通工程建设局

T/JSTERA xx—2020 目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 钢栈桥设计 (2) 4.1 结构组成 (2) 4.2 总体布置 (2) 4.3 荷载、工况及结构计算 (3) 4.4 结构设计 (4) 5 钢栈桥施工 (6) 5.1 施工准备 (6) 5.2 方案及交底 (6) 5.3 施工方式 (6) 5.4 结构施工 (6) 6 质量标准 (7) 6.1 质量检查验收标准 (7) 6.2 检查和验收 (8) 7 使用、维护及拆除 (8) 7.1 使用要求 (8) 7.2 维护措施 (8) 7.3 拆除及材料周转 (9) 8 安全文明施工及环境保护 (9) 8.1 安全生产管理 (9) 8.2 文明施工 (9) 8.3 环境保护 (9) 附录A(资料性)施工安全管理规定 (11) 附录B(资料性)《水上装配式钢栈桥设计参考图集》 (14) I

T/JSTERA xx—2020 II 前言 本文件按GB/T 1.1-2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。本文件由江苏省交通工程建设局、江苏省交通经济研究会提出并归口。 本文件起草单位:江苏省交通工程建设局、中交第二航务工程局有限公司、中交武汉港湾工程设计 院有限公司。 本文件主要起草人:李镇、夏鹏飞、王强、沈波、李光成、陆荣伟、陈建荣、袁灿、郭欣星、郭玉强、孙俊、杨爽。

钢栈桥、钢平台、钢管桩围堰施工方案

特大桥钢栈桥、桩基施工平台、锁扣钢管桩围堰 施 工 组 织 设 计 方 案 2013年10月

特大桥钢栈桥、桩基施工平台、锁扣钢管桩围堰 施工组织设计方案 编制: 复核: 审批: 基基础工程有限公司 2013年10月

目录 一.工程概况 (1) 二.编制依据 (1) 2.1地质资料 (2) 2.2设计荷载 (2) 2.3规程规范 (2) 三.钢栈桥、钢平台、钢管桩围堰设计 (2) 3.1栈桥设计 (2) 3.2钢平台设计 (3) 3.2钢管桩围堰设计 (4) 四.钢栈桥、钢平台、钢管桩围堰施工 (5) 4.1钢栈桥、钢平台施工 (5) 4.2锁扣钢管桩围堰施工 (11) 五.施工管理机构及资源配置 (19) 5.1 施工管理机构 (19) 5.2人员、设备配备 (19) 六.安全保证措施 (20) 6.1安全目标 (20) 6.2安全制度 (20) 七.文明、环保保证体系及措施 (21) 7.1文明施工目标及技术措施 (21) 7.2施工环保目标及措施 (22) 八.工期安排 (23) 九.附件 (23)

一.工程概况 黄河公路大桥起点桩号为K11+379.44,终点桩号为K15+550.24,全长3755.8m。上部结构跨径布置为:(3x50)m装配式预应力混凝土T梁+ (53+90+53)m 预应力混凝土连续箱梁+9x(3x50)m装配式预应力混凝土T梁+(53+6x86+53)m预应力混凝土连续箱梁+(3x50)m装配式预应力混凝土T梁+2x(4x50)m装配式预应力混凝土T梁。 永宁黄河公路大桥主桥桥跨结构布置为(110+260+110)m 双塔双索面斜拉桥+(53+6x86+53)变截面连续箱梁,主桥长1102m,分离式桥面布置,桥梁宽2×16.5m。下部结构采用塔式墩+薄壁墩,钻孔灌注桩基础。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。主梁采用混凝土构造,梁高2.8m。主塔为倒Y型钢筋混凝土结构,塔高为82.5m。主塔斜拉索采用扇型密索布置,梁上索距9m,塔上索距约2m。斜拉索采用平行钢丝索冷铸锚具,预留减震装置。基础为钻孔灌注桩,桩径2.0m 。承台长46.0m,宽,18.2m,厚5.0m,主塔设高效阻尼装置。 河滩地段引桥上部结构主要采用50m装配式预应力混凝土T梁;跨越黄河两岸滨河大道段上部结构采用三跨预应力混凝土连续梁桥,桥跨布置为(53+90+53)m分幅设置,单幅宽16.5m。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。上部梁考虑龙门吊架设施工及挂篮悬臂浇筑施工,下部结构墩身采用薄壁空心墩,基础采用直径1.8m钻孔灌注桩,承台桩基础。 主桥墩之间拟采用420×9m钢栈桥进行连接做临时交通运输,水中承台拟搭建桩基施工平台来完成承台下的桩基础,桩基础施工完成后搭建锁扣钢管桩围堰施工水中承台。 二.编制依据 1、特大桥施工设计图纸。 2、特大桥现场调查及踏勘情况。 3、《建筑地基基础设计规范》(GB5007-2001); 4、《钢结构设计规范》(GB50017-2003); 5、《公路工程施工安全技术规程》(JTJ076-95);

钢栈桥施工技术

海上钢栈桥施工技术 1、前言 桥梁施工沿线一般都要设施工便道辅助施工,由于桥梁施工环境得特殊性,必须采用相应得措施,保证桥梁正常施工。海域桥梁基础施工一般都采用搭设钻孔平台辅助施工得方法进行,在海滩环境可采用吹填得施工方法构筑施工便道,跨河跨海桥梁施工便道可采用钢栈桥得形式,针对跨纳潮河特大桥施工环境特点,并综合考虑施工进度与工程造价问题,最终设计钢栈桥与钻孔平台辅助主桥施工,钢栈桥施工便道不仅能够解决海上桥梁施工没有合适得操作空间得技术难点,而且还提供了安全、舒适得海上施工作业平台,同时对于海域环境没有污染,桥梁建成后容易恢复沿线海域环境,并不影响设计通航。 1、2工程概况 纳潮河特大桥位于曹妃甸岛后浅滩,处于曹妃甸煤码头通路路基工程公路段以南,曹妃甸综合服务区围海造地二期工程以北,已建成通车得通岛路河规划一港池之间,滩面高程约1、0m~0、7m,因周边工程取砂,本工程范围内局部分布有取砂坑,最深处约17、9m。曹妃甸特大桥全桥长7477、46m,共242孔,位于水中部分约为1、44Km。该特大桥自191#至216#共有26个墩台在纳潮河水域施工。设计浅滩部位采用吹填得方法构筑施工便道,水域部分全部设钢栈桥及钻孔平台,钢栈桥全长897m,根据主跨基础结构尺寸与施工需求分别设为8m、12m、15m三种宽度。 2、方案选择 为满足大桥桩基及墩台施工需要,采用在主桥桥线旁建造临时钢栈桥以辅助主桥施工得方案。根据主桥施工需要,综合考虑当地气象、水文等资料,设计钢栈桥结构形式为:栈桥标准桥跨为15m长,每四个标准跨为一联并设伸缩缝。下部结构采用打入式钢管桩基础。钢管桩顶面采用2I45b工字钢为横向连接得垫梁,顶面铺设“321”型贝雷片组成得贝雷梁,梁部结构为间距0、9m得双排单层“321”贝雷桁架,梁高1、5m,贝雷梁上面铺设间距为0、6m得型号为I25a工字钢,工字钢长度比桥面宽度大1、0m,桥面采用[30b槽钢满铺。钻孔平台也采用此方案,平台顶面标高与栈桥顶面标高一致。 结合工程实际情况,将距承台边缘最近距离为2、5m处作为栈桥边缘对钢栈桥进行设计施工,由于沿线承台结构尺寸不同,栈桥桥面设有8m、12m、15m三种宽度,栈桥平面变宽形式如“图1”所示,综合考虑水文特点及施工需要,将钢栈桥桥面顶标高设为5m。

栈桥专项工程施工组织设计方案

栈桥施工方案 一、工程概况 27、28、29号主墩常年位于水中,根据柳江的水文、地质特点,水中部分桥墩施工拟采用施工通道钢栈桥配合钻孔桩基平台,变水中为陆地施工方案,北岸施工栈桥为27#~29#墩下部结构及27#~29#跨上部结构施工人员、材料及设备施工车辆、砼罐车运输通道并与施工作业平台相连,从而形成纵向临时通道。 栈桥与主桥轴线平行,栈桥桥面标高为82.50米。为方便水上钻孔桩施工,栈桥桥面于钻孔桩平台齐平, 栈桥与钻孔平台连成一个整体,栈桥及施工平台台面高出洪期水位0.7m。施工栈桥位于特大桥上游, 栈桥中线距离特大桥桥位中线17.5m,栈桥宽6.0米,跨度为12m,总长度为250m. 起始位置与下河便道及码头相连并尽量靠近桥墩承台,以方便施工运输。栈桥总体布置见图4-5、图4-6。 二、栈桥设计 1、荷载设计 10m砼灌车,自重15T,砼重25T,共重40T,人行栈桥最大车辆荷载考虑3 及其它荷载共重10T;动荷载系数取1.2,故栈桥检算荷载采用60T。 2、栈桥结构设计 栈桥自下而上依次: (1)栈桥方向开始每24m桩基选用二排三根Φ630mm钢管桩作一个刚性支承墩,中间跨中位置选用单排三根Φ630mm钢管桩作一个临时支承墩, 刚性支承墩

沿桥方向纵向间距为3米,横向间距为2*2.5m。钢管桩用打桩锤打入河床底覆盖层以下强风化岩层30cm。钢管桩之间利用[20槽钢栓接作剪刀撑,桩填充满砂砾。施工过程中,安排专人对河床冲刷深度进行定期测量,及时掌握冲刷深度。 (2) 钢管桩顶开槽铺纵向分配梁用2I36b工字钢,再横向用2I36b工字钢作分配梁. (3)栈桥跨度采用12m,上部采用三榀单层双排贝雷纵梁(非加强单层双排),贝雷梁与钢管桩顶横向2I36b工字钢分配梁固结。 (4)贝雷梁架面用I32b工字钢作横分配梁,间距1.0m,纵向布置2[14槽钢,间距30cm,再铺8mm花纹钢板,两边围栏用∠63*63*5角钢与槽钢焊接做立柱,高1.2米,用∠50*50*4角钢做扶手,中间纵穿Ф16圆钢加密。在栈桥和施工平台附近打设防撞桩,并悬挂警示标志和红色警示灯。 三、栈桥施工 ①钢管桩施工 钢管桩施工从北岸开始施工,栈桥使用浮吊吊振动锤下沉钢管桩,钢管桩沉放使用90KW振动锤。利用全站仪定位及校核。 水中栈桥钢管桩使用专用打桩船打设。打桩船抛锚定位后,利用浮船运输,浮吊起吊钢管并进行定位,依靠锤重和钢管桩重力插入覆盖层中,然后开动柴油锤打设钢管桩到位。钢管桩逐排打设,一排钢管桩打设完成后再移船至另一排。 钢管桩每天施打完毕后,马上用[20焊接钢管桩横向剪刀撑联系,以防管桩受水流冲击倾斜或疲劳破坏,降低管桩的承载能力。 振动沉桩的停振标准,以最终贯入度(cm/min)为主,以振动承载力公式计算的承载力做为校核。柴油锤沉桩的停锤标准,以最终贯入度:最后10

钢栈桥专项施工方案

漳州沿海大通道漳浦段佛昙湾特大桥工程 钢栈桥及平台专项施工方案 编制人:丁桂生 审核人:罗小红 批准人:高向鹏 中国葛洲坝集团第五工程有限公司 漳州沿海大通道漳浦段佛昙湾、旧镇湾特大桥工程项目经理部

2014年12月1日

一、编制依据 (1)漳州沿海大通道漳浦段佛昙湾特大桥工程施工设计图纸 (2)漳州沿海大通道漳浦段佛昙湾特大桥工程岩土工程勘察报告。 (3)施工现场调查。包括施工场地和周边环境条件,水、电、路、临时租地和地材等情况,水文地质、气象、交通、机械、物资采购等资料。 (4)国家及福建省现行的施工技术规程、验收标准及质量、安全技术规程。 (5)根据我单位的综合施工能力及近年来参加类似工程的经验,投入的各类资源和技术、管理等。 二、工程概况 佛昙湾特大桥里程桩号K38+548.05—K41+49.25,起于整美村南侧,终于佛昙镇后社村渡头。佛昙湾特大桥主桥上部结构为77+140+77m的三跨变高度预应力砼连续刚构跨北港航道,引桥为30m标准跨径装配式预应力砼连续T梁,跨南港航道处为4×40mT 梁。主桥下部结构采用双肢薄壁实心墩、钻孔灌注桩基础。引桥下部结构采用柱式墩、肋板式台,钻孔灌注桩基础。全桥长2501.20m。 全桥约设置2420m的施工钢栈桥,布置在大桥左侧。钢栈桥宽度为6米,考虑水位及浪高,计划栈桥顶部高程6.0m,高于设计最高水位(3.58m)约2.4m。贝雷梁底部高程低于桥面约1.9m,考虑其阻水安全,实际最高设防水位按4.5m控制。栈桥、水上钢平台拟仅用于主桥下部结构施工,少量边跨膺架的安装。以砼罐车运输、35t汽车吊起重作业、50t履带吊零星起重作业,作为工况控制。 栈桥起点与桥头混凝土硬化的便道相接,各个桥墩设置钻孔平台,和栈桥相连。栈桥、桩基钢平台拟“L”字型布置,栈桥、钢平台采用钢管桩+贝雷梁+防滑钢桥面板的结构。18#、19#墩中间预留Ⅱ级航道通航孔,总净宽100m。 三、气象、水文、地质 项目所在区域属南亚亚热带海洋性季风气候,常年气候温和,冬暖夏凉,全年无霜。春季气温回升,但回升缓慢;夏季晴热;秋季秋高气爽;冬季气温较低,但降水较少。项目所在区倚山面海,热量丰富,雨量充沣,台风及暴雨等气象灾害频繁。年均气温21.1℃,最热为7月,降雨主要集中在6—8月;台风每年年均4—5次,多出

钢栈桥施工方案(最终版).

天津汉沽寨上大桥工程 栈 桥 及 施 工 平 台 施 工 方 案 编制单位:天津第三市政公路工程有限公司编制时间:2014年8月天津汉沽寨上大桥工程 栈桥及施工平台施工方案 编制: 审核: 批准: 目录 一、工程概况 (1 二、栈桥方案编制依据 (1 三、现场水文地质特征 (1 四、钢栈桥整体设计思路 (2 五、钢栈桥构造 (4

六、栈桥搭建施工工艺 (6 七、栈桥拆除施工工艺 (13 八、河道通航孔设置 (14 九、栈桥施工专项安全保证措施 (14 十、栈桥施工投入主要机械设备和材料计划 (17 十一、施工栈桥计算书 (18 (一条件参数 (18 (二相关计算 (19 (三计算结果汇总 (43 (四构件计算 (43 钢栈桥及施工平台施工 一、工程概况 天津汉沽寨上大桥位于汉沽中心城区太平街上,是蓟运河汉沽中心城区东西两岸的重要交通通道,西起四纬路与一经路平交路口环岛位置,终点位于太平街与新开南路的交口,路线全长约840.235米,采用双向四车道城市主干道标准,设计车速为50公里/小时,其中桥梁长度约为237.26米,桥梁面积约7117.8平米;道路面积约32580平米;地道面积约1066平米,地道断面面积约185平米,最大基坑深度4.5米,施工内容包括道路工程、桥梁工程、排水工程、照明工程、交通工程等。 本工程在施工时先在现状桥南侧新建一幅桥,待其通车后,再拆除旧桥,然后在旧桥位置新建一幅桥。本工程跨蓟运河大桥桥梁起点桩号K0+319.734,桥梁终点桩号K0+556.994,桥梁总长为237.26m,分左右幅实施,此外含滨河路下穿地道、南北侧辅道、医院路通道、人行及自行车上下梯道等。 蓟运河主桥宽度31m,跨径布置(20+3×31+(3×31+27.5,结构型式采用预制简支变连续小箱梁桥,桥梁面积7117.8m2;考虑行人和非机动车过桥,在蓟运河两岸引路处布置4座纵坡1:4的人行梯道,人行梯道宽度4.5m,总长度128.9m。 新建滨河路地道,地道断面全宽23.6m,地道长度31.016m,地道面积732m2,新建医院路通道,通道断面全宽13.8m,通道长度31m,通道面积427.8 m2,寨上大桥工程是连接海河东西两岸的一个重要节点工程,也是该地区重要的景观工程。 二、栈桥方案编制依据

钢栈桥设计及施工方案

摘要:通过海南东环线万泉河特大桥水中基础工程的施工,对水中钢栈桥施工技术进行了 阐述,并对施工方法进行了探讨,提出了计算方法和技术措施。 关键词:海南东环线;万泉河特大桥;钢栈桥;施工技术 1.工程概况 海南东环线位于海南省东海岸,北起海南省省会海口市,南至著名热带滨海旅游度假胜地三 亚市,途经文昌、琼海、万宁和陵水等四市县,线路全长308.11正线公里。 万泉河双线特大桥位于琼海,桥全长3971.92m,其中0#台~50#墩、71#墩~122#台为陆地墩台,51#墩~70#墩跨越万泉河,为水中墩。基础均为群桩钻孔桩基础、矩形承台,结构尺 寸如表1-1: 桥址百年一遇河道设计洪(潮)水位为10.47m,设计流量为17060m3/s,断面平均流速2.23m/s;设计测时水位 3.0m,施工水位考虑 3.0m。本桥位于近海地带,受季节降雨、台风 及上游水库影响,河道水位值相差较大,现场实测水位落差可达 4.0m,56~63#墩深水基础施工难度大。 水中桥址区域地层岩性从上而下主要为:细砂、中砂、粗砂、全风化、强风化、弱风化砂岩,部分墩位岩层直接过渡桥址区域砂层厚。本桥主墩承台基础属高桩承台,承台置于河床面, 拟采用搭设钢栈桥及“先桩后堰”工法施工桩基及承台。 2.钢栈桥设计 对于钢栈桥设计,我国目前尚没有可以遵循的规范。为此,在钢栈桥设计中,我们遵循相关要求和规定,同时遵守国家及相关行业标准、当地水文地质资料和有关设计手册。 2.1钢栈桥构造形式 考虑历年洪水水位,桥面标高设置为9m,在特大洪水来临之时,本桥不通行。栈桥设计采 用多跨连续梁方案,全长453m,共计42跨,每7跨为一联,其中26跨长12m,15跨长9m,1跨长6m。 贝雷梁结构:施工钢栈桥采用“321”型贝雷桁架,每联之间设立双墩,采用2组单层双排贝雷桁架,其间距采用 4.5m;桥面全宽 6.0m; 桥面系:由防滑钢板和型钢组成的,桥面板厚度为10mm,横梁为I40b工字钢,间距 1.5m;纵梁为I12.6工字钢,间距40cm; 桩基础:f550,d=10mm厚钢管桩,材质为Q235,采用钢板卷焊。 栈桥设计使用期为24个月,为保证施工车辆行驶安全沿栏杆出顺桥向设置通长I28工字钢作为路缘保护以防止车辆坠落。 栈桥设计荷载参数:汽-超20(单列);设计行车速度为15km/h。

相关文档
最新文档