求三角函数地单调性地基本方法[推荐]

求三角函数地单调性地基本方法[推荐]
求三角函数地单调性地基本方法[推荐]

求三角函数的单调性的基本方法:

函数 sin()y A x k ω?=++的单调区间的确定,首先要看A 、ω是否为正,若ω为负,则先应用诱导公式化为正,然后将ωx +φ看作一个整体,化为最简式,再结合A 的正负,在22,22k x k k z π

π

ππ-≤≤+∈和322,22

k x k k z ππππ+≤≤+∈两个区间内分别确定函数的单调增减区间。

1、求函数)213sin(x y -=π在区间[-2π,2π]的单调增区间。

解:⑴利用诱导公式把函数转化为标准函数(sin(),0,0y A x A ω?ω=+>>)的形式:

)321sin()213sin(ππ--=-=x x y

⑵把标准函数转化为最简函数(sin y A x =)的形式: 令123z x π=-,原函数变为1sin()sin 23y x z π=--=-

⑶讨论最简函数

sin y z =-的单调性: 从函数sin y z =-的图像可以看出,sin y z =-的单调增区间为

3[2,2]22k k ππππ++,Z ∈K 。所以32222

K z K ππππ+≤≤+,Z ∈K 即ππππ

π2

3232122+≤-≤+K x K , Z ∈K ∴ππππ3

114354+≤≤+K x K , Z ∈K ⑷计算k=0,k=±1时的单调增区间:

当k=0时,ππ31135≤≤x

当k=1时,2223

33

x

ππ

≤≤

当k=-1时,π

π

3

1

3

7

-

-x

⑸在要求的区间内[-2π,2π]确定函数的最终单调增区间:

因为[2,2]

xππ

∈-,所以该函数的单调增区间为

π

π

3

1

2-

-x和π

π2

3

5

≤x

2、求函数)2

6

sin(

2x

y-

=

π

在区间[0,π]的单调增区间。

解:⑴利用诱导公式把函数转化为标准函数(sin(),0,0

y A x A

ω?ω

=+>>)的形式:

sin(2)sin(2)

66

y x x

ππ

=-=--

⑵把标准函数转化为最简函数(sin

y A x

=)的形式:

令26

z x

π

=-

,原函数变为

sin(2)sin

6

y x z

π

=--=-

⑶讨论最简函数

sin y z =-的单调性: 从函数sin y z =-的图像可以看出,sin y z =-的单调增区间为

3[2,2]22k k π

πππ++,Z ∈K 。所以32222K z K ππππ+≤≤+,Z ∈K 即3222262

K x K ππ

πππ+≤-≤+, Z ∈K ∴1536

K x K ππππ+≤≤+, Z ∈K ⑷计算k=0,k=±1时的单调增区间: 当k=0时,1536

x ππ≤≤ 当k=1时,41133

x ππ≤≤ 当k=-1时,2136

x ππ-≤≤- ⑸在要求的区间内[0,π]确定函数的最终单调增区间:

因为[0,]x π∈,所以该函数的单调增区间为1536

x ππ≤≤。

3、求函数)321sin(π+=x y 在区间[-2π,2π]的单调增区间。

解:⑴把标准函数转化为最简函数(sin y A x =)的形式: 令123z x π=+,原函数变为1sin()sin 23y x z π=+=

⑵讨论最简函数

sin y z =-的单调性: 从函数sin y z

=-的图像可以看出,sin y z =-的单调增区间为2222K z K ππ

ππ-

≤≤+,Z ∈K 。 即2232122ππππ

π+≤+≤-K x K , Z ∈K

514433

K x K ππππ-≤≤+, Z ∈K ⑶计算k=0,k=±1时的单调增区间:

当k=0时,5133

x ππ-≤≤ 当k=1时,71333

x ππ≤≤ 当k=-1时,171133

x ππ-≤≤- ⑷在要求的区间内[-2π,2π]确定函数的最终单调增区间:

又因为]2,2[ππ-∈X ,所以该函数的单调增区间为

5133

x ππ-≤≤

4、求函数2cos(2)13

y x π

=-+在区间[-π,π]的单调增区间 解:⑴利用诱导公式把函数转化为标准函数(cos(),0,0y A x A ω?ω=+>>)的形式: 2cos(2)12cos(2)133y x x ππ=-+=-+

⑵把标准函数转化为最简函数(cos y A x K =+)的形式:

令23z x π

=-,原函数变为2cos(2)12cos 13y x z π=-+=+ ⑶讨论最简函数

2cos 1y z =+的单调性: 从函数

2cos 1y z =+的图像可以看出,2cos 1y z =+的单调增区间为[2,2]k k πππ-,Z ∈K ;单调减区间为[2,2]k k πππ+,Z ∈K 。所以,单调增区间:22K z K πππ-≤≤,Z ∈K

-1.5

-1

-0.50

0.5

1

1.5

-8-6-4-2

02468X

即2223K x K ππππ-≤-

≤, Z ∈K ∴36K x K π

π

ππ-≤≤+, Z ∈K

①计算k=0,k=±1时的单调增区间:

当k=0时,1136

x ππ-≤≤ 当k=1时,2736

x ππ≤≤ 当k=-1时,4536

x ππ-≤≤- ②在要求的区间内[-π,π]确定函数的最终单调增区间: 因为[,]x ππ∈-,所以该函数的单调增区间为

56x ππ-≤≤-、1136x ππ-≤≤和23

x ππ≤≤ 单调减区间:22K z K πππ≤≤+,Z ∈K 即2223K x K π

πππ≤-≤+, Z ∈K ∴263

K x K π

πππ+≤≤+, Z ∈K ①计算k=0,k=±1时的单调减区间: 当k=0时,1263

x ππ≤≤ 当k=1时,7563

x ππ≤≤ 当k=-1时,5163

x ππ-≤≤- ②在要求的区间内[-π,π]确定函数的最终单调减区间:

特别解析三角函数周期的几种求法

特别解析:三角函数周期的几种求法 1.定义法: 定义:一般地对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,f(x +T )=f(x )都成立,那么就把函数y=f(x)叫做周期函数;不为零的常数叫做这个函数的周期。对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。 例1.求函数y=3sin (3 32π+x )的周期 解:∵y=f (x )=3sin (3 32π+x )=3sin (332π+x +2π) =3sin (3232ππ++x )=3sin[3 )3(32ππ++x ] = f (x+3π) 这就是说,当自变量由x 增加到x +3π,且必增加到x +3π时,函数值重复出现。 ∴函数y=3sin ( 332π+x )的周期是T=3π。 例2:求f (x )=sin 6x+cos 6x 的周期 解∵f (x+ 2π)= sin 6(x+2π)+ cos 6(x+2 π)= cos 6x +sin 6x= f (x ) ∴f (x )=sin 6x+cos 6x 的周期为T=2 π 例3:求f (x )=x x x x 3cos cos 3sin sin ++的周期 解:∵f (x+π)=)cos()cos()(3sin )sin(ππππ++++++x x x x =x cox x x 3cos 3sin sin ---- = x x x x 3cos cos 3sin sin ++= f (x ) ∴求f (x )=x x x x 3cos cos 3sin sin ++的周期:T=π

高中数学:三角函数单调性题库

1 三角函数单调性题库 9.已知函数()2sin (0)f x x ωω=>在区间[0,]4 π上出现两次最大值2,则ω的范围 1218ω≤< (1)为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值1,则ω的最小值是 答案:π2 197 (2)已知函数)0(tan >=w wx y 的图像与直线1y =的交点间的最小距离是3π,求w 的值 解析:函数tan y x =的图像与直线1y =的交点间的最小距离是一个周期T ,所以函数wx y tan =最小正周期3T π=,,3ππ==w T .31,0=∴>w w Θw 的值13 。 (3)ω是正实数,函数x x f ωsin 2)(=在]4 ,3[ππ-上是增函数,那么( ) A .230≤<ω B .20≤<ω C .7240≤<ω D .2≥ω 解析: 研究特殊的函数y=2sin α,它的一个单调增区间是,22ππ??-??? ?,函数x x f ωsin 2)(=在]4,3[ππ-上是增函数,则α=,34x πωπωω??∈-???? 。因此,,34πωπω??-?????,22ππ??-???? 。所以,正确答案230≤<ω。 (4)已知函数]4 ,3[)0(sin 2)(ππωω->=在区间 x x f 上的最大值是2,则ω的最小值等于 2

2 (5)已知()2sin (0)f x x ωω=>在[,]34 ππ-上的最小值是2-,最大值不是2,则ω的范围 322 ω≤≤ (6)已知ω是正实数,x x f ωsin 2)(=在]4 ,3[ππ-上是增函数,那么则实数ω的取值范围是 230≤<ω。 (7)(2012年高考(新课标理))已知0ω>,函数()sin()4f x x πω=+在(,)2π π上单调递减.则ω的取值范围是 ()22πωππω-≤?≤,3()[,][,]424422 x ππππππωωπω+∈++? 得:315,2424224 π π π π πωπωω+≥+≤?≤≤ (8)已知()sin (0)363f x x f f ωωπππ??????=+>= ? ? ???????,,且()f x 在区间63ππ?? ???,有最小值,无最大值,则ω=__________.143

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

求三角函数的单调性的基本方法[推荐]

求三角函数的单调性的基本方法[推荐] 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

三角函数的单调性、奇偶性、单调性练习

三角函数的图像性质:奇偶性、单调性、周期性 例题1:判断下列函数的奇偶性 (1)()()sin f x x x π=+ (2)21sin cos ()1sin x x f x x +-=+ 例题2:求下列函数的单调区间 (1)()sin 33f x x π?? =- ??? (2)()cos(2)3f x x π=- [](0,)x π ∈ 例题3:求下列函数的值域 (1)32cos 6y x π? ?=-+ ?? ?,[](0,)x π∈ (2)x x y sin sin += (3)sin sin y x x =+ 例题4:已知函数3cos 216y x π? ?=++ ?? ?,请写出该函数的对称轴、对称中心;用五点作图法作 出该函数的图像. 同步练习: 1、写出下列函数的周期: (1)5sin 23y x π? ?=--+ ?? ?(2)tan(2)y x π=+(3)7cos2y x =+(4)2tan 33y x π??=- ???

2、(1)求函数2sin 25y x x =+-的定义域.(2)解不等式1sin 42x π? ?-≥ ?? ?. 3、比较下列各数的大小:sin1?、sin1、sin π? 4、已知()cos 4 n f n π =,*n N ∈,则(1)(2)(3)(2011)f f f f ++++=__________. 5、方程lg sin 3x x π? ?=+ ?? ?实数根的个数为___________. 6、如果4 x π ≤,求2()cos sin f x x x =+的最值,并求出取得最值时x 的值. 7、写出函数1 3tan 2 3y x π??=+ ???的对称中心,并用作出该函数在[]0,x π∈的图像. 8、对于函数()f x 定义域,22ππ?? - ??? 中的任意()1122,x x x x ≠,有如下结论: (1)()()f x f x π+=. (2) ()()f x f x -= (3)(0)1f =. (4) 1212 ()() 0f x f x x x ->- (5) 1212()()22x x f x f x f ++??> ??? 当()tan f x x =时,以上结论正确的序号为________________. 能力提高: 1、()2sin f x wx =(01w <<),在区间0,3π?? ???? 上最大值是2,求w . 2、若2()sin sin 1f x x a x =--+的最小值为-6,求实数a 的值. 3、设定义在R 上的奇函数()f x ,满足(2)()f x f x +=-.当02x ≤≤时,2()2f x x x =-. (1)当20x -≤≤时,求()f x 的表达式;(2)求(9)f 与(9)f -的值; (3)证明()f x 是奇函数. 三角函数的图象变换 例题1:由函数sin y x =的图象经过怎样的变换,得到函数π2sin 216y x ? ?=--+ ?? ?的图象.

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=mπ, m∈N +,又s in (2co s0)=s in 2≠s in (2co sπ),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

三角函数的单调性和最值

三角函数的单调性和最值问题 例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 解(I)1cos 23(1cos 2)()sin 21sin 2cos 222sin(2)224 x x f x x x x x π-+=++=++=++ ∴当2242x k π ππ+=+,即()8x k k Z π π=+∈时, ()f x 取得最大值22+. 函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+ ∈. (II) ()22sin(2)4f x x π=++ 由题意得: 222()242k x k k Z πππππ- ≤+≤+∈ 即: 3()88 k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88 k k k Z ππππ- +∈. 例2 已知函数f (x )=π2sin 24x ??-+ ???+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在区间π0,2 ?? ???? 上的最大值和最小值. (3)求f (x )在区间π0,2?????? 的单调区间和值域。 解:(1)f (x )=2-sin 2x ·ππcos 2cos 2sin 44 x -?+3sin 2x -cos 2x =2sin 2x -2cos 2x =π22sin 24x ??- ?? ?. 所以,f (x )的最小正周期T =2π2 =π. (2)因为f (x )在区间3π0,8??????上是增函数,在区间3ππ,82?????? 上是减函数.又f (0)=-2,3π228f ??= ???,π22f ??= ???,故函数f (x )在区间π0,2??????上的最大值为22,最小值为-2.

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

三角函数的单调性测试题(人教A版)(含答案)

三角函数的单调性(人教A版) 一、单选题(共13道,每道7分) 1.下列四个命题中,正确的个数是( )(1)在定义域内是增函数;(2) 在第一、第四象限是增函数;(3)与在第二象限都是减函数;(4) 在上是增函数. A.1个 B.2个 C.3个 D.4个 答案:A 解题思路: 试题难度:三颗星知识点:正切函数的单调性 2.的单调递增区间是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 3.函数的一个单调递增区间为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 4.在上,使为增函数,为减函数的区间为( ) A. B. C. D. 答案:A

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 5.在上,使为增函数,为减函数的区间为( ) A. B.或 C. D.或 答案:A 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 6.的单调递增区间是( )

A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:正切函数的单调性 7.关于函数,下列说法正确的是( ) A.在上递减 B.在上递增 C.在上递减 D.在上递减答案:C

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 8.函数的最小正周期为,则( ) A.在上单调递减 B.在上单调递减 C.在上单调递增 D.在 上单调递增 答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 9.使函数为增函数的区间是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 10.函数的单调递减区间为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 11.已知函数,则在区间上的最大值与最小值

如何求三角函数的周期

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、根据周期性函数的定义求三角函数的周期 例1 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值, 如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立. 2、根据公式求周期 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是| |2ωπ=T , 对于函数B x A y ++=)tan( ?ω或B x y ++=)cot(?ω的周期公式是||ωπ=T . 例3 求函数)623sin( 3π-=x y 的周期 解: 3 42 32ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y

求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为

所以函数的最小正周期为。 例6. 求函数的最小正周期。 解:因为 其中, 所以函数的最小正周期为。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和 的最小公倍数是。 所以函数的最小正周期为。 例8. 求函数的最小正周期。

解:因为的最小正周期,最小正周期,由于和的最小公倍数是, 所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期, sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1 由图1可知:函数的最小正周期为。

关于《三角函数的周期性》的教案

关于《三角函数的周期性》的教案 一、目标与自我评估 1掌握利用单位圆的几何作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 分类计数原理与分步计数原理、排列 一.教学内容:分类计数原理与分步计数原理、排列

三角函数周期的常用求法

y x O π 2π - π -2π y x O π 2π -π -2π 三角函数周期的常用求法 河南 陈长松 三角函数的周期是三角函数的一个重要性质,也是高考的热点.本文通过实例介绍求三角函数周期的几种常用方法,供参考. 一、公式法 例1 函数)2 3sin( x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ42 12=-=T ,故选D. 评注:对于函数)sin(?ω+=x A y 或)cos(?ω+=x A y 可直接利用公式ωπ 2=T 求得;对于)tan(?ω+=x A y 或)cot(?ω+=x A y 可直接利用公式ωπ= T 求得。 二、图像法 例2 求下列函数的最小正周期 ① x y sin = ②x y sin 解:分别作出两个函数的图像知 ①x y sin =的周期π=T ②x y sin =不是周期函数 评注:对于一 些含有绝对值的三角函数周期问题,常可借助于三角函数的图 像来解决. 三、定义法 x x y cos sin +=的最小正周期 例3 求函数 解:∵ 2 cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴ 2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2 π 下面证明2 π是最小正周期 假设2π不是x x y cos sin +=的最小正周期,则存在<+T T ②

学习三角函数的单调性的基本方法

求三角函数的单调性的基本方法: 函数 y Asin ( x ) k 的单调区间的确定,首先要看 A 、?是否为正,若①为 负,则先应用诱导公式化为正,然后将看作一个整体,化为最简式,再结合 A 的正负, 3 在2k x 2k , k z 和2k x 2k , k z 两个区间内分别确定函数的 2 2 2 2 单调增减区间。 1、求函数 y sin ( 3 2 X ) 在区间[-2n ,2n ]的单调增区间。 当k=-1时, ⑸在要求的区间内[-2 n ,2n ]确定函数的最终单调增区间: 解:⑴利用诱导公式把函数转化为标准函数 (y Asin( x ),A 0, 0)的形式: y sin 丄 x) sin 』x ) 2 2 3 ⑵把标准函数转化为最简函数 y Asinx )的形式: 原函数变为 1 y si n(—x ) 2 3 sinz ⑶讨论最简函数 sin z 的单调性: 从函数 y sin z 像可以看出, y sin 单调增区间为 [2k 2,2k 所以2K - z 2K 即 2K 2K ? 4K ⑷计算 5 3 k=0,k= 4K 11 3 ± 1时的单调增区 间: 当k=0时, 11 3 当k=1时, 22 3 23 3

y 2sin (S 2x ) 在区间[0, n ]的单调增区间。 解:⑴利用诱导公式把函数转化为标准函数( y Asin ( x ),A 0, 0)的形式: ⑵把标准函数转化为最简函数(y Asinx )的形式: z 2x y sin(2x ) sinz 令 6,原函数变为 6 ⑶讨论最简函数 y sinZ 的单调性: y sin z “ r y sin z 从函数 J 的 图像可以看 出,丫 的单调增区间 [2 k —,2k 3 ] K 。所以2K z 2K 3 ,K 2 2 2 2 即2K 2x 2K § K 2 6 2 , sin(2x -) 因为x [ 2 ,2 ],所以该函数的单调增区间为 数 求函 2x)

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

三角函数周期的几种求法.doc

三角函数周期的几种求法 深圳市福田区皇岗中学蔡舒敏 高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。本文就这个问题谈三角函数周期的几种求法。 1.定义法: 定义:一般地y=c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值吋, f (x+T) = f ( X ) 都成立,那么就把函数y = f (x)叫做周期函数;不为零的常数叫做这个函数的周期。对于一个周期函数來说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。下面我们谈到三角函数的周期时,一般指的是三角函数折最小止周期。 例1.求函数y=3sin (-% + -)的周期 3 3 解:Vy=f (x) =3sin (-x+—) =3sin (-% + —+2^-) 3 3 3 3 =3sin (拿+ 2兀 +彳)=3sin[|(x + 3^) + |] 二f (x+3兀) 这就是说,当自变量由x增加到x+3龙,且必增加至!J x+3龙时,函数值重复出现。 二函数y=3sin (-x + —)的周期是T二3龙。 3 3 例2:求f (x) =sin6x+cos6x 的周期 解Tf (x+—) = sin b (x+—) + cos6 (x+—) 2 2 2 二cos h x +sir?x二f (x)

.?.f (x) =sin6x+cos6x 的周期为T= — 2 例3:求f (x)二血兀+血3兀的周期 cosx + cos3x 解:Vf (x+兀)二曲(只+兀)+血如+兀) COS(X + 7l) + COS(X + 71) _ -sinx-sin3x -cox - cos3x _ sinx + sin 3x cos x +cos 3^ 二f (x) ■求f(X)二Siz + sin3兀的周期:T F cos x +cos 3x 2.公式法: (1)如果所求周期函数可化为y二Asin (亦+ ?)、y二Acos (亦+炉)、y = tg (亦 + 0 )形成(其中X、co、cp为常数,且A H O、?>O、0W R),则可知道它们的周期分别是:—> —> -O co co co 例4:求函数y=l-sinx+V3 cosx的周期 解:Vy=l-2 (- sinx- —cosx) - 2 2 = 1-2 (cos —sinx-sin— cosx) 3 3 = l-2sin (x-—) 3 这里0二1 ???周期T二2龙 例5:求:y=2 (— sinx--cos3x) -1 2 2 解:Vy=2 (— sinx-—cos3x) -1 2 2

三角函数单调性的教案

三角函数单调性的教案 【篇一:三角函数的诱导公式教案设计】 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。 二.教材分析 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章 第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式,公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。 三.学情分析 本节课的授课对象是本校高一(x)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。 四.教学目标 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力。 1.知识与技能

三角函数的周期性数学教案

三角函数的周期性数学教案 一、学习目标与自我评估 1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。

(完整版)求三角函数的单调性的基本方法[推荐]

求三角函数的单调性的基本方法: 函数 sin()y A x k ω?=++的单调区间的确定,首先要看A 、ω是否为正,若ω为负,则先应用诱导公式化为正,然后将ωx +φ看作一个整体,化为最简式,再结合A 的正负,在22,2 2 k x k k z π π ππ- ≤≤+ ∈和3 22,22 k x k k z π πππ+ ≤≤+∈两个区间内分别确定函数的单调增减区间。 1、求函数) 21 3sin(x y -=π在区间[-2π,2π]的单调增区间。 解:⑴利用诱导公式把函数转化为标准函数(sin(),0,0y A x A ω?ω=+>>)的形式: ) 321sin()213sin(π π--=-=x x y ⑵把标准函数转化为最简函数(sin y A x =)的形式: 令123z x π =- ,原函数变为1sin()sin 23y x z π=--=- ⑶讨论最简函数sin y z =-的单调性: 从函数 sin y z =-的图像可以看出, sin y z =-的单调增区间为 3[2,2]22k k π πππ+ +,Z ∈K 。所以3 2222 K z K ππππ+≤≤+,Z ∈K 即ππππ π2 3 232122+≤-≤ + K x K , Z ∈K ∴ππππ311 4354+≤≤+K x K , Z ∈K ⑷计算k=0,k=±1时的单调增区间: 当k=0时,ππ3 1135≤≤x

当k=1时, 2223 33 x ππ ≤≤ 当k=-1时,π π 3 1 3 7 - ≤ ≤ -x ⑸在要求的区间内[-2π,2π]确定函数的最终单调增区间: 因为[2,2] xππ ∈-,所以该函数的单调增区间为 π π 3 1 2- ≤ ≤ -x 和 π π2 3 5 ≤ ≤x 2、求函数) 2 6 sin( 2x y- = π 在区间[0,π]的单调增区间。 解:⑴利用诱导公式把函数转化为标准函数(sin(),0,0 y A x A ω?ω =+>>)的形式: sin(2)sin(2) 66 y x x ππ =-=-- ⑵把标准函数转化为最简函数( sin y A x =)的形式: 令 2 6 z x π =- ,原函数变为 sin(2)sin 6 y x z π =--=-

相关文档
最新文档