几何体与球的体积表面积(含答案)

几何体与球的体积表面积(含答案)
几何体与球的体积表面积(含答案)

几何体与球的体积表面积

一.选择题(共20小题)

1.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()

A.π B.4πC.4πD.6π

2.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()

A.B. C.4πD.

3.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,

三棱锥O﹣ABC的体积为,则球O的表面积是()

A.544π B.16πC.π D.64π

4.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()

A.8πB.12πC.16πD.32π

5.已知在三棱锥P﹣ABC中,V P﹣ABC=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()

A. B.C.D.

6.已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E 是线段AB的中点,过点E作球O的截面,则截面面积的最小值是()

A.πB.2πC.πD.3π

7.已知三棱锥的三视图如图所示,则它的外接球的表面积为()

A.4πB.8πC.12πD.16π

8.三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()

A.5πB.C.20πD.4π

9.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为()

A.12πB.16πC.36πD.20π

10.如图,是一个空间几何体的三视图,则这个几何体的外接球的表面积是()

A.56πcm2B.77πcm2C.D.

11.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又

SA=AB=BC=1,则球O的表面积为()

A.B.C.3πD.12π

12.已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()

A.πB.3πC.D.2π

13.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()

A.4πB.12πC.16πD.32π

14.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()

A.36πB.64πC.144π D.256π

15.设三棱柱ABC﹣A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2,且三棱柱的所有顶点都在同一球面上,则该球的表面积是()

A.4πB.8πC.12πD.16π

16.一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此

三棱锥外接球的表面积为()

A. B.9πC.4πD.π

17.已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()

A.4πB.12πC.16πD.36π

18.一个空间四边形ABCD的四条边及对角线AC的长均为,二面角D﹣AC﹣B的余弦值为,则下列论断正确的是()

A.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为3π

B.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为4π

C.空间四边形ABCD的四个顶点在同一球上且此球的表面积为

D.不存在这样的球使得空间四边形ABCD的四个顶点在此球面上

19.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA=2,AB=1,AC=2,∠BAC=60°,SA⊥面ABC,则球O的表面积为()

A.4πB.12πC.16πD.64π

20.棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()

A.3πB.4πC.3D.6π

二.填空题(共5小题)

21.已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.

22.已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O 所得截面的面积为π,则球O的表面积为.

23.如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于.

24.正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.

25.设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.

几何体与球的体积表面积

参考答案与试题解析

一.选择题(共20小题)

1.(2012?新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()

A.π B.4πC.4πD.6π

【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.

【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,

所以球的半径为:=.

所以球的体积为:=4π.

故选B.

【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.

2.(2010?广东模拟)已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()

A.B. C.4πD.

【分析】由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得

球的半径,再用面积求解.

【解答】解:因为AB=BC=CA=2,

所以△ABC的外接圆半径为r=.

设球半径为R,则R2﹣(R)2=,

所以R2=

S=4πR2=.

故选D

【点评】本题主要考查球的球面面积,涉及到截面圆圆心与球心的连线垂直于截面,这是求得相关量的关键.

3.(2016?河南模拟)已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()

A.544π B.16πC.π D.64π

【分析】求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的体积.

【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,

∠ABC=120°,AC=,

∴S△ABC=×1×1×sin120°=,

∵三棱锥O﹣ABC的体积为,

△ABC的外接圆的圆心为G,

∴OG⊥⊙G,

外接圆的半径为:GA==1,

∴S△ABC?OG=,即×OG=,

OG=,

球的半径为:=4.

球的表面积:4π42=64π.

故选:D

【点评】本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.

4.(2016?衡水模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为()

A.8πB.12πC.16πD.32π

【分析】取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,

△BCD是边长为3的等边三角形.

∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,

△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,

BE=,BG=,

R===2.

四面体ABCD外接球的表面积为:4πR2=16π.

故选:C.

【点评】本题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解题的关键.

5.(2016?河南模拟)已知在三棱锥P﹣ABC中,V P﹣ABC=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()

A. B.C.D.

【分析】利用等体积转换,求出PC,PA⊥AC,PB⊥BC,可得PC的中点为球心,球的半径,即可求出三棱锥P﹣ABC外接球的体积.

【解答】解:由题意,设PC=2x,则

∵PA⊥AC,∠APC=,

∴△APC为等腰直角三角形,

∴PC边上的高为x,

∵平面PAC⊥平面PBC,

∴A到平面PBC的距离为x,

∵∠BPC=,PA⊥AC,PB⊥BC,

∴PB=x,BC=x,

∴S△PBC==,

∴V P﹣ABC=V A﹣PBC==,

∴x=2,

∵PA⊥AC,PB⊥BC,

∴PC的中点为球心,球的半径为2,

∴三棱锥P﹣ABC外接球的体积为=.

故选:D.

【点评】本题考查三棱锥P﹣ABC外接球的体积,考查学生的计算能力,正确确定球心与球的半径是关键.

6.(2016?南昌三模)已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC 的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是()

A.πB.2πC.πD.3π

【分析】设正△ABC的中心为O1,连结O1A.根据球的截面圆性质、正三角形的性质与勾股定理,而经过点E的球O的截面,当截面与OE垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.

【解答】解:设正△ABC的中心为O1,连结O1A

∵O1是正△ABC的中心,A、B、C三点都在球面上,

∴O1O⊥平面ABC,∵球的半径R=2,球心O到平面ABC的距离为1,得O1O=1,

∴Rt△O1OA中,O1A=.

又∵E为AB的中点,△ABC是等边三角形,∴AE=AO1cos30°=.

∵过E作球O的截面,当截面与OE垂直时,截面圆的半径最小,

∴当截面与OE垂直时,截面圆的面积有最小值.

此时截面圆的半径r=,

可得截面面积为S=πr2=.

故选C.

【点评】本题已知球的内接正三角形与球心的距离,求经过正三角形中点的最小截面圆的面积.着重考查了勾股定理、球的截面圆性质与正三角形的性质等知识,属于中档题.

7.(2016?湖南二模)已知三棱锥的三视图如图所示,则它的外接球的表面积为()

A.4πB.8πC.12πD.16π

【分析】由已知中三棱锥的三视图,我们可以求出三棱棱的高,即顶点到底面的距离,及底面外接圆的半径,进而求出三棱锥外接球的半径,代入球的表面积公式,即可求出外接球的表面积.

【解答】解:由已知中三棱锥的高为1

底面为一个直角三角形,

由于底面斜边上的中线长为1,

则底面的外接圆半径为1,

顶点在底面上的投影落在底面外接圆的圆心上,

由于顶点到底面的距离,与底面外接圆的半径相等,所以底面直角三角形斜边中点就是外接球的球心;

则三棱锥的外接球半径R为1,

则三棱锥的外接球表面积S=4πR2=4π

故选:A

【点评】本题考查的知识点是由三视图求表面积,其中根据三视图出判断出三棱锥的几何特征,进而求出其外接球的半径是解答本题的关键.

8.(2015?佳木斯一模)三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()

A.5πB.C.20πD.4π

【分析】根据题意,证出BC⊥平面PAC,PB是三棱锥P﹣ABC的外接球直径.利用勾股定理结合题中数据算出PB=,得外接球半径R=,从而得到所求外接球的表面积

【解答】解:PA⊥平面ABC,AC⊥BC,

∴BC⊥平面PAC,PB是三棱锥P﹣ABC的外接球直径;

∵Rt△PBA中,AB=,PA=

∴PB=,可得外接球半径R=PB=

∴外接球的表面积S=4πR2=5π

故选A.

【点评】本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.

9.(2015?沈阳校级模拟)已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为()

A.12πB.16πC.36πD.20π

【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC 的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求.

【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,

在Rt△OMB中,OM=1,MB=,

∴OA=,即球的半径为,

∴球O的表面积为12π.

故选:A.

【点评】本题考查球的有关计算问题,点到平面的距离,是基础题.

10.(2015秋?乐陵市期中)如图,是一个空间几何体的三视图,则这个几何体的外接球的

表面积是()

A.56πcm2B.77πcm2C.D.

【分析】三视图复原的几何体是长方体的一个角,扩展为长方体,它的外接球的直径就是长方体的对角线的长,求出对角线长,即可求出外接球的表面积.

【解答】解:三视图复原的几何体是长方体的一个角,三度为:6、5、4;把它扩展为长方体,它的外接球的直径就是长方体的对角线的长,

所以长方体的对角线长为:

所以球的半径为:.

这个几何体的外接球的表面积是:4=77π(cm2)

故选B

【点评】本题是基础题,考查几何体的外接球的问题,空间想象能力,逻辑思维能力,和计算能力,注意本题中三棱锥的外接球与长方体的外接球是同一个球.

11.(2014?四川模拟)三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()

A.B.C.3πD.12π

【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC 的外接球的表面积.

【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,

三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,

∴球的半径R==.

球的表面积为:4πR2=4=3π.

故选:C.

【点评】本题考查三棱锥S﹣ABC的外接球的表面积,解题的关键是确定三棱锥S﹣ABC 的外接球的球心与半径.

12.(2016?大庆一模)已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()

A.πB.3πC.D.2π

【分析】求出P到平面ABC的距离为,AC为截面圆的直径,AC=,由勾股定理可得R2=()2+d2=()2+(﹣d)2,求出R,即可求出球的表面积.

【解答】解:由题意,AC为截面圆的直径,AC=,

设球心到平面ABC的距离为d,球的半径为R,

∵PA=PB=1,AB=,

∴PA⊥PB,

∵平面PAB⊥平面ABC,

∴P到平面ABC的距离为.

由勾股定理可得R2=()2+d2=()2+(﹣d)2,

∴d=0,R2=,

∴球的表面积为4πR2=3π.

故选:B.

【点评】本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.

13.(2016?白银模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()

A.4πB.12πC.16πD.32π

【分析】取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.【解答】解:取CD的中点E,连结AE,BE,

∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.

∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,

△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,

BE=,BG=,

∴R=2.

四面体ABCD外接球的表面积为:4πR2=16π.

故选:C.

【点评】本题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解题的关键.

14.(2015?新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()

A.36πB.64πC.144π D.256π

【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.

【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,

则球O的表面积为4πR2=144π,

故选C.

【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.

15.(2015?大庆三模)设三棱柱ABC﹣A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2,且三棱柱的所有顶点都在同一球面上,则该球的表面积是()

A.4πB.8πC.12πD.16π

【分析】根据题意,可将棱柱ABC﹣A1B1C1补成长方体,长方体的对角线即为球的直径,从而可求球的表面积.

【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2,∴可将棱柱ABC﹣AA1B1C1补成长方体,长方体的对角线=4,即为球的直径,

∴球的直径为4,

∴球的表面积为4π×22=16π,

故选:D.

【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.

16.(2015?莆田校级模拟)一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此

三棱锥外接球的表面积为()

A. B.9πC.4πD.π

【分析】由题意,确定三棱锥的形状,设三棱锥外接球的半径为r,则r2=(1﹣r)2+()2,求出r,即可求出三棱锥外接球的表面积.

【解答】解:由题意,三棱锥的一个侧面垂直于底面,底面是等腰直角三角形,顶点在底面中的射影是底面斜边的中点,

设三棱锥外接球的半径为r,则r2=(1﹣r)2+()2,

∴r=,

∴三棱锥外接球的表面积为4=,

故选:A.

【点评】本题考查球和几何体之间的关系,本题解题的关键是确定三棱锥外接球的半径,从而得到外接球的表面积.

17.(2015秋?合肥校级期末)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()

A.4πB.12πC.16πD.36π

【分析】证明AC⊥AB,可得△ABC的外接圆的半径为,利用△ABC和△DBC所在平面相互垂直,球心在BC边的高上,设球心到平面ABC的距离为h,则h2+3=R2=(

﹣h)2,求出球的半径,即可求出球O的表面积.

【解答】解:∵AB=3,AC=,BC=2,

∴AB2+AC2=BC2,

∴AC⊥AB,

∴△ABC的外接圆的半径为,

∵△ABC和△DBC所在平面相互垂直,

∴球心在BC边的高上,

设球心到平面ABC的距离为h,则h2+3=R2=(﹣h)2,

∴h=1,R=2,

∴球O的表面积为4πR2=16π.

故选:C.

【点评】本题考查球O的表面积,考查学生的计算能力,确定球的半径是关键.

18.(2014?吉林二模)一个空间四边形ABCD的四条边及对角线AC的长均为,二面角D﹣AC﹣B的余弦值为,则下列论断正确的是()

A.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为3π

B.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为4π

C.空间四边形ABCD的四个顶点在同一球上且此球的表面积为

D.不存在这样的球使得空间四边形ABCD的四个顶点在此球面上

【分析】由题意,求出BD的长,然后判断空间四边形ABCD的四个顶点是否在同一球面上,求出球的表面积即可.

【解答】解:如图AC=AB=AD=BC=CD=,cos∠DEB=,

E为AC的中点,EB=ED=,

所以BD2=2BE2﹣2××BE2

BD=

ABCD的几何体为正四面体,有外接球,球的半径为:

球的表面积为:3π

故选A

【点评】本题是基础题,考查二面角的求法,几何体的外接球的判断,以及外接球的表面积的求法,考查逻辑推理能力,计算能力,是好题.

19.(2012?洛阳模拟)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA=2,AB=1,AC=2,∠BAC=60°,SA⊥面ABC,则球O的表面积为()

A.4πB.12πC.16πD.64π

【分析】由三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,知BC=,∠ABC=90°.故△ABC截球O所得的圆O′的半径r==1,

由此能求出球O的半径,从而能求出球O的表面积.

【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,

∵SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,

∴BC==,

∴∠ABC=90°.

∴△ABC截球O所得的圆O′的半径r==1,

∴球O的半径R==2,

∴球O的表面积S=4πR2=16π.

故选C.

【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题时要关键.

20.(2003?天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π

【分析】本题考查的知识点是球的体积和表面积公式,由棱长都为的四面体的四个顶点在同一球面上,可求出内接该四面体的正方体棱长为1,又因为正方体的对角线即为球的直

径,即球的半径R=,代入球的表面积公式,S球=4πR2,即可得到答案.

【解答】解:借助立体几何的两个熟知的结论:

(1)一个正方体可以内接一个正四面体;

(2)若正方体的顶点都在一个球面上,则正方体的体对角线就是球的直径.

则球的半径R=,

∴球的表面积为3π,

故答案选A.

【点评】棱长为a的正方体,内接正四面体的棱长为a,外接球直径等于长方体的对角线长a.

二.填空题(共5小题)

21.(2013?新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为

球心,OA为半径的球的表面积为24π.

【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.

【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,

∴OH=,

在直角三角形OAH中,OA===

所以表面积为4πr2=24π;

故答案为:24π.

【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.22.(2013?新课标Ⅰ)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H

为垂足,α截球O所得截面的面积为π,则球O的表面积为.

【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、

截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.

【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,

∵α截球O所得截面的面积为π,

∴d=R时,r=1,

故由R2=r2+d2得R2=12+(R)2,∴R2=

∴球的表面积S=4πR2=.

故答案为:.

【点评】若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d2

23.(2008?浙江)如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,

DA=AB=BC=,则球O的体积等于π.

【分析】说明△CDB是直角三角形,△ACD是直角三角形,球的直径就是CD,求出CD,即可求出球的体积.

【解答】解:AB⊥BC,△ABC的外接圆的直径为AC,AC=,

由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,∴CD为球的直径,CD==3,∴球的半径R=,∴V球=πR3=π.

故答案为:π.

【点评】本题是基础题,考查球的内接多面体,说明三角形是直角三角形,推出CD是球的直径,是本题的突破口,解题的重点所在,考查分析问题解决问题的能力.

24.(2004?重庆)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D

都在同一个球面上,则该球的体积为.

【分析】先确定球心位置,再求球的半径,然后可求球的体积.

【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,

点S、A、B、C、D都在同一个球面上,

则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.

故答案为:

【点评】本题考查球的内接体和球的体积,考查学生空间想象能力,是基础题.

25.(2009?全国卷Ⅱ)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.

【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,

因为.

由得R2=2

故球O的表面积等于8π

故答案为:8π,

【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积 [基础知识] 1.旋转体的侧面积 2S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高) S 正棱台侧=1 2 (c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高) 3.体积公式 (1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____ (3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =1 3 (S ′+S ′S +S)h . [基础练习] 1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( ) A .8 B .8π C .4π D .2 π 2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( ) A .1+2π2π B .1+4π4π C .1+2ππ D .1+4π2π 3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶8 4.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( ) A .a ∶b B .b ∶a C .a 2∶b 2 D .b 2∶a 2 5.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( ) A .24π cm 2, 12π cm 3 B .15π cm 2, 12π cm 3 C .24π cm 2, 36π cm 3 D .以上都不正确 6.三视图如图所示的几何体的全面积是( ) A .7+ 2 B .112+ 2 C .7+ 3 D .3 2 [典型例题] 例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线 将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

图解球体表面积和体积正确计算方法及计算公式

图解球体表面积和体积正确计算方法及计算公式 一、球体面积 球体表面是可以由N个带弧形的等腰三角形拼凑而成,见图一、图二、图三。设球体的二分之一水平中心为腰线,在球顶和球底正中各设一个顶点和底点a,然后从顶点到腰线按等分分割成N个带弧形的等腰三角形。根据定义:线的长度不因弯曲而改变,球面可无限分割成N个等腰三角形

如图二、图四、图五所示,所有分割好带弧形的等腰三角形都可以自然平展成标准的等腰三角形,亦可将等腰三角形拼凑成方形。 在理解上述图例球体表面和等腰三角形的关系后,我们可以对球体表面积的计算有比较清晰的判断。即,球体表面可以分割成N个相等的等腰三角形,等腰三角形亦可拼凑成方形,由此推导出球体面积可以用矩形公式计算。 即S = 长×宽,如果我们设球体1/4之一的周长为宽,设球体的周长为长,则球体表面积公式为:S=1/4周长×周长(见图六) 例1:已知球体直径是1个单位,求球体表面积(用上述最新推导公式S=1/4周长×周长) S =(3.14159÷4)×3.14159 = 2.4674㎡ 二、球体体积 设以球心作一条垂线或水平中心线,然后以垂线或水平中心向外将球体按等

分无限分割成N个半圆楔形体。见图七、图八。 球体分割完成后,将半圆楔形体镜像排列成圆柱体,见图九、图十。 从图七、图八、图九、图十看,球体从中心按等分分割成半圆楔形体后可以排列堆砌成圆柱体,根据计算得出定义:与球体同直径同体积的圆柱体的柱高正好是球体周长的1/4。

则球体体积公式为:V =πR平方×周长的1/4 或:V = D(直径的三次方)×0.616849233 例2:已知球体直径是1个单位,求球体体积(用上述最新推导公式) V =πR平方×周长的1/4 = 3.14159×0.25×0.7853975 = 0.616849233 三、公知公式在球体面积、体积计算中出现的错误 1、球体面积 如何检验球体面积计算的正确,最好的方法就是用计算结果制成N个等腰三角形的薄膜反贴球体表面。如薄膜能完整不剩的覆盖球体表面则公式应用和计算正确,如薄膜有剩余或薄膜未能完全覆盖球体表面则公式应用和计算不正确,见图十一。 图十一是用新公式和公知公式分别计算球体直径同是一个单位半球面积的结果对比,新公式计算结果反贴复原后正好能覆盖直径是一个单位半球的球体面积。 计算过程: S =(1.570795×0.7853975)= 1.2336㎡ 公知公式计算结果反贴复原后剩余有0.337㎡的面积。 计算过程: S = 1×3.14159÷2 = 1.570795㎡

球的体积和表面积公式具体推导过程精编版

1..3.2球的体积和表面积(1) 设球的半径为R ,将半径OAn 等分,过这些分点作平 面把半球切割成n 层,每一层都是近似于圆柱形状的“小 圆片”,这些“小圆片”的体积之和就是半球的体积。 由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱的体积。它的高就是“小圆片”的厚度 n R ,底面 就是“小圆片”的下底面。 由勾股定理可得第i 层(由下向上数)“小圆片”的下底面半径: 2 2)]1([--=i n R R r i ,(i =1,2,3,···,n ) 第i 层“小圆片”的体积为: V ≈π2i r ·n R =??? ???????? ??--2311n i n R π, (i =1,2,3,···,n ) 半球的体积:V 半径=V 1+V 2+···+Vn ≈n R 3π{1+(1-221n )+(1-222n )+···+[1-2 2)1(n n -]} =n R 3π[n -2222)1(21n n -+???++](注:)12)(1(6 121222++=+???++n n n n ) =n R 3π[n -6)12()1(12--?n n n n =236)12)(1(1(n n n R ---π)=????????????---6)12)(11(13n n R π ① 当所分的层数不断增加,也就是说,当n 不断变大时,①式越来越接近于半球的 体积,如果n 无限变大,就能由①式推出半径的体积。 事实上,n 增大, n 1就越来越小,当n 无限大时,n 1趋向于0,这时,有 V 半径=332R π,所以,半径为R 的球的体积为: V =33 4R π

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(2)

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(2) 一、选择题(本大题共5小题,共25.0分) 1.若球的外切圆台的上、下底面半径分别为r,R,则球的表面积为() A. 4π(r+R)2 B. 4πr2R2 C. 4πrR D. π(R+r)2 2.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为() A. 4 3πa2 B. 7 3 πa2 C. 8 3 πa2 D. 16 3 πa2 3.在封闭的直三棱柱ABC?A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3, 则V的最大值是() A. 4π B. 9π 2C. 6π D. 32π 3 4.体积为64的正方体的顶点都在同一球面上,则该球面的表面积为() A. 12π B. 48π C. 8π D. 64π 5.已知三棱锥P?ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角 形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共7小题,共35.0分) 6.已知正三棱柱底面边长是2,该三棱柱的体积为8√2,则该正三棱柱外接球的表面积是. 7.已知正方体的棱长为2,则与正方体的各棱都相切的球的体积是_________. 8.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体 的体积为____. 9.如图,正方体ABCD?A1B1C1D1中,AB=2,则三棱锥A?A1B1C的体积 是______ .

10.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD?A1B1C1D1挖 去四棱锥O?EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g. 11.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为_______. 12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下面及母线均相切.记圆柱 O1O2的体积为V1,球O的体积为V2,则v1 的值是_______. v2 三、解答题(本大题共4小题,共48.0分) 13.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5, CD=2√2,AD=2,求四边形ABCD绕AD选择一周所成几何 体的表面积及体积.

球的体积与表面积教案设计(参考)

球的体积和表面积 一、教材分析 本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础. 课时分配 本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用. 二、教学目标 知识与技能 (1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识. (2)能运用球的面积和体积公式灵活解决实际问题. (3)培养学生的空间思维能力和空间想象能力. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式3 3 4 =R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心. 三、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法.

难点:推导体积和面积公式中空间想象能力的形成,以及与球有关的组合体的表面积和体积的计算. 四、学法和教学用具 学法:学生思考老师提出的问题,通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值、再由近似值的和转化为球的体积和面积”的解题方法和步骤. 教学用具:投影仪,旨在通过动态图形使得学生对球这一立体图形有一个直观的认识. 五、教学设计 创设情景 ⑴教师提出问题:乌鸦喝水的问题我们都知道, 只有一颗一颗的小圆石头往水瓶里投乌鸦才能喝到 水,那么我们是不是可以用数学方法精确的计算出乌 鸦具体需要投入几颗小圆石头呢?这里就涉及到了 小石子的体积了,假设小石子都是均匀的球体,我们 知道球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考. ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球 的体积和面积公式. 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行.【设计意图】通过大家所熟知的寓言小故事引出教学内容,提高学生学习兴趣.

简单几何体表面积

运用二 表面积 【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27π B.36π C.54π D.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .422+ C .442+ D .642+ (3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( ) A .1662+ B .1682+ C .1262+ D .1282+ 【答案】(1)B(2)D(3)D 【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ?=π. (2)根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角2,斜边是2,且侧棱与底面垂直,侧棱长是2, ∴几何体的表面积12222222264 2.2 S =?+??=+故选:D .

(3)由三视图还原原几何体如图, 该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2. 则其表面积为S 111424222224221282222=?+ ??+???+??=+.故选:D . 【举一反三】 1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14 B.12 C.23 D.45 【答案】C 【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ?=,表面 积为222 426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( ) A .2+2 B .2 C .1+22 D .5 【答案】A

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图

谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球.

积为(

】如图,网格纸上小正方形的 2016年全国III高考)如图,网格纸上小正方 形的边长为1,粗实现画出的是某多面体的三视 图,则该多面体的表面积为 三视图还原几何体方法:(1)理解“正俯一样长,正侧一样高,侧俯一样宽”;(2)画一个长方体,找准三视图中的点和边在长方体中的对应位置,在长方体中排除掉没有对应的顶点;(3)把剩下的顶点用线连起来,注意线的虚实;(4)结合三视图进行检验.(此法适用于棱锥、棱柱的三视图还原,可看作是由长方体拼接或切割而成).若三视图中有半圆和圆的,要联想到圆柱、圆锥、圆台和球.

【2017课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为__________. 【2015高考山东,理7】在梯形ABCD 中,2 ABC π ∠= ,//,222AD BC BC AD AB === .将 梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为__________. 【2014高考陕西版理第5题】已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为___________. 【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥, 6AB =,8BC =,13AA =,则V 的最大值是____________.

高中数学 球的体积和表面积教案 新人教A版

高中数学人教A 版精品教案集:球的体积和表面积 教学目标 1. 知识与技能 ⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。 ⑵能运用球的面积和体积公式灵活解决实际问题。 ⑶培养学生的空间思维能力和空间想象能力。 2. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式V= 34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法, 体现了极限思想。 3. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。 二. 教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。 三. 学法和教学用具 1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 2. 教学用具:投影仪 四. 教学设计 (一) 创设情景 ⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。 ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。 (二) 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。 步骤: 第一步:分割 如图:把半球的垂直于底面的半径OA作n 等分,过这些 等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”, “小圆片”厚度近似为 n R ,底面是“小圆片”的底面。 如图:

高考理科数学一轮总复习第八章简单几何体的再认识(表面积与体积)

第5讲 简单几何体的再认识(表面积与体积) 一、知识梳理 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台 侧面展开图 侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r +r ′)l 名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥 体(棱锥和圆锥) S 表面积=S 侧+S 底 V =1 3 S 底h 台 体(棱台和圆台) S 表面积=S 侧+S 上+S 下 V =1 3 (S 上+S 下+S 上S 下)h 球 S =4πR 2 V =43 πR 3 常用结论 1.正方体的外接球、内切球及与各条棱相切球的半径 (1)外接球:球心是正方体的中心;半径r = 3 2a (a 为正方体的棱长). (2)内切球:球心是正方体的中心;半径r =a 2(a 为正方体的棱长). (3)与各条棱都相切的球:球心是正方体的中心;半径r =2 2 a (a 为正方体的棱长).2.正四面体的外接球、内切球的球心和半径 (1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).

(2)外接球:球心是正四面体的中心;半径r =6 4 a (a 为正四面体的棱长). (3)内切球:球心是正四面体的中心;半径r =6 12 a (a 为正四面体的棱长). 二、教材衍化 1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________. 解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, 所以r 2=4,所以r =2. 答案:2 cm 2. 如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________. 解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b × 12c =148abc ,剩下的几何体的体积V 2=abc -148abc =47 48 abc ,所以V 1∶V 2=1∶47. 答案:1∶47 一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( ) (4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏 常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积; (2)考虑不周忽视分类讨论; (3)几何体的截面性质理解有误;

高中数学新教材必修第二册专题8.3 简单几何体的表面积与体积(原卷版)

专题8.3 简单几何的表面积与体积

运用一 体积 【例1】(1)(2019·北京高二学业考试)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( ) A.2 B.3 C.4 D.6 (2)(2019·云南省玉溪第一中学高二月考)一个四棱锥的三视图如图所示,则该四棱锥的体积为( ) B. D.(3)某几何体的三视图如图所示,该几何体的体积是( ) A.112 3 B.136 3 C.48 D.56

【举一反三】 1.(2019·北京高一期末)已知圆柱的侧面展开图是一个边长为2π的正方形,则这个圆柱的体积是( ) A .22π B .2π C .2 2π D .2 3π 2.(2019·河北高三月考(理))圆锥的母线长是4,侧面积是4π,则该圆锥的高为( ) A B .4 C .3 D .2 3.设正六棱锥的底面边长为1 ) A. C. D.2 4.已知圆台上、下底面的面积分别为π,4π,侧面积为6π,则这个圆台的体积为( ). A .14π B .143π C D . 5.(2019·四川绵阳中学高一月考)圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( ) A.40π B.52π C.50π D.2123 π 运用二 表面积 【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27π B.36π C.54π D.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .4+ C .4+ D .6+ (3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( )

球的体积和表面积(附答案)

球的体积和表面积 [学习目标] 1.记准球的表面积和体积公式,会计算球的表面积和体积.2.能解决与球有关的组合体的计算问题. 知识点一 球的体积公式与表面积公式 1.球的体积公式V =4 3πR 3(其中R 为球的半径). 2.球的表面积公式S =4πR 2. 思考 球有底面吗?球面能展开成平面图形吗? 答 球没有底面,球的表面不能展开成平面. 知识点二 球体的截面的特点 1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆,它的三视图也都是圆. 2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径. 题型一 球的表面积和体积 例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为500 3 π,求它的表面积. 解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=256 3 π.

(2)设球的半径为R ,则43πR 3=500 3π,解得R =5, 所以球的表面积S =4πR 2=4π×52=100π. 跟踪训练1 一个球的表面积是16π,则它的体积是( ) A.64π B.64π3 C.32π D.32π 3 答案 D 解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =4 3πR 3 =323 π. 题型二 球的截面问题 例2 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( ) A.6π B.43π C.46π D.63π 答案 B 解析 如图,设截面圆的圆心为O ′, M 为截面圆上任一点, 则OO ′=2,O ′M =1. ∴OM =(2)2+1= 3. 即球的半径为 3. ∴V =4 3 π(3)3=43π. 跟踪训练2 已知长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________.

考点 简单几何体的表面积和体积

简单几何体的表面积和体积 1.一个几何体的三视图如图,该几何体的表面积为() A.280B.292 C.360 D.372 2.如图,正方体ABCD-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上.若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积() A.与x,y,z都有关B.与x有关,与y,z无关 C.与y有关,与x,z无关D.与z有关,与x,y无关 3.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为() A.24 cm3B.48 cm3 C.32 cm3D.28 cm3 4.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()

A.24- 3π 2B.24- π 3C.24-πD.24- π 2 5.一个正方体的体积是8,则这个正方体的内切球的表面积是() A.8πB.6πC.4πD.π 6.某几何体的三视图如图所示,则该几何体的体积等于() A. 28 3 π B. 16 3 π C. 4 3 π+8 D.12π 7.将一个长方体沿从同一个顶点出发的三条棱截去一个棱锥,棱锥的体积与剩下的几何体的体积之比为( ) A.1:2 B.1:3 C.1:4 D.1:5 8.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE?△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( ) 23 .. 33 43 .. 32 A B C D 9.已知几何体的三视图如图所示,它的表面积是( ) 10.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′+b=h),则酒瓶容积与瓶内酒的体积之比为( ) .42.22 .32.6 A B C D ++ +

空间几何体的表面积与体积 示范教案

1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积 整体设计 教学分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等;②一个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力. 三维目标 1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.

空间几何体的表面积和体积经典例题(学生讲义)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式

表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.

例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2

第六讲简单几何体的表面积与体积的计算

第六讲简单几何体的表面积与体积的计算第六讲简单几何体的表面积与体积的计算 一、四种常见几何体的平面展开图 1.正方体 沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。 图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。 2.长方体 沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。这一展开图是六个两两彼此全等的长方形组成的,见图6—2。图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。 3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面

的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。它由 一个长方形和两个全等的圆组成,这个长方形的长是圆柱底 面圆的周长,宽是圆柱体的高。这个长方形又叫圆柱的侧面 展开图。图6—3就是圆柱的平面展开图。 4.(直)圆锥体 沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥 体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为 圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一 个圆组成的,这个扇形又叫圆锥的侧面展开图。具体图形见 图6—4。二、四种常见几何体表面积与体积公式 1.长方体 长方体的表面积=2×(a×b+b×c+c×a) 长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。 2.正方体 正方体的表面积=6×a2 正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体 圆柱体的侧面积=2πRh 圆柱体的全面积=2πRh+2πR2=2πR(h+R) 圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。 4.圆锥体 圆锥体的侧面积=πRl 圆锥体的全面积=πRl+πR2 母线长与高)。 三、例题选讲 例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案 没画出来,请你给补上。 分析与解:从图6—5和图6—6中可知:与;与;与互相

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

相关文档
最新文档