矩阵理论资料期末考试试题整理版

矩阵理论资料期末考试试题整理版
矩阵理论资料期末考试试题整理版

矩阵重点(仅供参考)

第一章

线性空间的证明

例8.1

线性变换的矩阵表示是重点

第二章

例2.2

第三章(最重要的是第三章重中之重就是Jordan )

引理2.1 重点讲的

例2.2题型考试有

定理3.2重点讲的

例3.3、3.4重点讲的

定理3.5重点讲的

例4.1考试题型

约而当标准型重点必须会

例4.8必须会必考

第四章

定理2.2考了很多次了(老师说的)

例2.1QR分解

例3.1满秩分解

例3.2满秩分解通过Hermite途径

第五章没讲自己看

第六章

定理3.3的证明

第七章

定义2.1补充:判断是否收敛的条件ρ(A)<f(x)的收敛半径

例2.1

题型

例3.1、3.2重点讲的

Jordan 标准型

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分

上海交通大学2010-2011学年《矩阵理论》试卷 本试卷共四道大题,总分100分,其中*A 表示矩阵A 的共轭转置. 一、 单项选择题(每题3分,共15分) 1. 设???? ? ??=001001001A ,则=-199200A A ( ) (A )E ; (B )0; (C )A ; (D )2A . 2. 下列集合对所给运算构成实数域上线性空间的是( ) (A ) 次数等于)1(≥m m 的实系数多项式的集合,对于多项式的通常加法和数与 多项式的通常乘法; (B ) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法; (C ) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算 0x x k =?,k 是实数,0x 是某一取定向量; (D ) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法. 3. 线性变换为正交变换的必要而非充分条件的是( ) (A )保持向量的长度不变; (B )将标准正交基变为标准正交基; (C )保持任意两个向量的夹角不变;(D )在任意标准正交基下的矩阵为正交矩阵. 4. 设A 是幂等矩阵,则下列命题中不正确的是( ) (A )A 与对角矩阵相似; (B )A 的特征值只可能是1或者0; (C )A A )1sin()sin(=; (D )幂级数10)(-∞ =-=∑A E A k k . 5. 设21,V V 是V 的两个线性子空间,则与命题“21V V +的任意元素的分解式唯一”不等价的命题是( ) (A ){}021=?V V ; (B )2121dim dim )dim (V V V V +=+; (C )21V V +的零元素的分解式唯一; (D )V V V =?][21. 二、填空题(每空3分,共15分) 设二维线性空间V 的线性变换V V T :1与V V T :2在基21,αα下的矩阵分别为

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

矩阵论解题步骤-期末考试题

1. 广义逆(必考类型) 假设s x n 矩阵A 的广义逆为G ,且A 可以满秩分解为A = BC ,A 的秩r(A) = r ,则B 为s x r 矩阵,C 为r x n 矩阵。则G 可表示为: H 1 1 C (CC )(B B)B H H H G --= 例题: 步骤:显然,A 要分解为BC ,必须知道A 的秩,故先对A 进行行化简成最简式 ,r(A)=2,故A 满秩分解为A=(3x2) (2x4)=BC.根据A 的最简式来决定B 和C ,B 由A 最简式中只有1的原列组成,C 由A 的最简式的非零首元行组成。 B = , C = ,H 11C (CC )(B B)B H H H A --+=,通过计算即可 得到A 的广义逆。(若B 、C 中有单位矩阵,那么A 的广义逆表达式可去掉矩阵) 性质: 2. 证明r(ABC)r(B)r(AB)+r(BC)+>=

比较重要的性质 (1) ABX=0与BX=0同解 r(AB)=r(B) (2) r(A)=r(H A A ) (3) r(A+B)<=r(A)+r(B) (4) r(AB)<=min[r(A),r(B)] (5) r(AB)>=r(A)+r(B)-n ,其中A=s x n ,B=n x t 步骤: 设r(B)=r ,B 的满秩分解为B=HK ,所以ABC=AHKC , r(ABC)=r(AHKC)>=r(AH)+r(KC)-r (性质(5)) AB=AHK ,故r(AB)<=r(AH),同理得r(BC)<=r(KC),(性质(4)) 从而r(ABC)>=r(AB)+r(BC)-r(B),原式得证 知识点: A . 秩为r 的s x n 矩阵A 必可分解为A=BC ,其中B=s x r ,C=r x n 。该分解称为A 的 满秩分解。 3. nxn 2n n 2V {X |AX ,X C }n X ==∈,证明:12=V n C V ⊕ 证明包含两部分,1)证明12V V ⊕是直和 等价于 证明1 2V {0}V = 2)证明12V n C V ?⊕,12V n C V ?⊕ 步骤:

矩阵分析期末考试

错误! 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,????????????--=43234α,???? ? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2 {}54,αα,分别求21V V +和21V V 的维数. 解:=A {}54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵?? ??? ?????----=137723521111A 的满秩分解. 解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201

??????????----=137723521111A ??????????--=775211??????? ? ?? ??? ??? ----747 510737201* (4)设-λ矩阵??? ? ? ??++=2)1(0000 00 )1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量 范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

《矩阵分析》考试题A 2016

华南理工大学研究生课程考试题(A) 《矩阵分析》2016年12月 姓名院(系)学号成绩 注意事项:1.考试形式:闭卷(√)开卷() 2.考生类别:博士研究生()硕士研究生(√)专业学位研究生() 3.本试卷共四大题,满分100分,考试时间为150分钟。 一、单项选择题(每小题3分,共15分): 1、设,,是的两个不相同的真子空间,则下列不能构成子空间的是。(A);(B);(C);(D)。 2、设,为阶酉矩阵,则下列矩阵为酉矩阵的是。 (A);(B);(C);(D)。 3、设矩阵的秩为,则下列说法正确的是。 (A)的所有阶子式不等于0;(B)的所有阶子式等于0; (C)的阶子式不全为0;(D)的阶子式不全为0。 4、下列命题不正确的是。 (A)行数相同的两个矩阵一定存在最大右公因子; (B)列数相同的两个矩阵一定存在最大右公因子。 (C)特征多项式的根一定是最小多项式的根; (D)最小多项式的根一定是特征多项式的根; 5、设,则。 (A)1;(B);(C);(D)。 二、填空题(每小题3分,共15分): 1、设,,和,,是的

两个基,则从第一个基到第二个基的的过渡矩阵为 。 2、实线性空间的映射称为内积运算,如果满足下列条件: 。 3、奇异值分解定理内容为 。 4、设,则。 5、设,则。 三、计算题(每小题14分,共56分): 1、设,,;,, ,。求和的一个基。

2、求欧氏空间的一个标准正交基(从基,,,出发),内积定义为 。

3、求的若当标准形和可逆矩阵, 并计算。

4、1)写出的求解公式。 2)已知,计算。

四、证明题(第一小题8分,第二小题6分,共14分): 1、设,是维线性空间,证明都。 2、设方阵满足,且,证明。

矩阵理论(16-17)试卷

2016——2017学年第一学期 《矩阵理论》考试试卷 试卷审核人: 考试时间: 2016.12.4 注意事项:1.本试卷适用于16级研究生学生考试使用。 2.本试卷共8页,满分100分。答题时间150分钟。 学院: 姓名:_________________学号: 一.(本题满分12分) 设3[]P x 是次数不超过3的实系数多项式空间, { } 2301233()(1)0; ()[]W f x f a x a x a x f x a P x ==+++∈=, 1. 证明W 按照多项式的加法与数乘运算构成3[]P x 的线性子空间; 2. 求W 的维数及其一组基.

二. (本题满8分)求矩阵 524 212 425 A ?? ?? ?? ?? ?? - =- -- 的LU分解和LDU分 解.

三.(本题满分12分) 设T 为线性空间22R ?的一个线性变换 , 对任意的22 a b R c d ???∈????, 232a b a b b T c d c d d ??+???? = ?????+???? ? ? ; 1. 求T 在22 R ?的标准基 1112211 00 10 0,,, 000 01 0E E E ?? ?? ?? ===? ??????????? 220 00 1E ?? =? ??? 下的矩阵; 2. 求T 在22R ?的另一基 12 3 1 1010 0,,, 111 11 1G G G ???? ?? ===? ????????? ?? 4000 1G ?? =? ??? 下的矩阵.

四.(本题满分8分)设A()λ为6阶λ矩阵,其秩为4,初等因子为 3212111,,,,,,,()λλλλλλλλ--+++,试求A() λ的不变因子与Smith 标准型.

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的 维数. 解:=A {} 54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 与它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ???? ? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形与其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数与一组基; (2)(5分)求T 的核)(T N 的维数与一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

矩阵理论2017-2018学年期末考试试题

矩阵理论2017-2018学年期末考试试题 ?、选择题 (每题5分,共25分) 1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1 (D)设为空间的任意?空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则?定可逆 (C)矩阵函数对任何矩阵均有定义,?论A 为实矩阵还是复矩阵 (D)对任意?阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵; (B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和?满秩矩阵,则(B)若矩阵为?满秩矩阵,则是正定矩阵(C)设为严格对?占优矩阵,,则的谱半径(D)任何可相似对?化的矩阵,皆可分解为幂等矩阵的加权和,即?、判断题(15分)(正确的打√,错误的打×) 1.若,且,,则 2.若且,则为到的值域上的正交投影 3.设都是可逆矩阵,且齐次线性?程组有?零解,为算?范数,则 4.,定义,则是上的范数 5.设矩阵的最?秩分解为,则当且仅当 ( ) (A ?B =?)H A H B H A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E ?2μμH H ,V 1V 2V dim (+)=dim ()+dim () V 1V 2V 1V 2( ) =A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1 A , B ∈ C n ×n ≥≥?≥>0σ1σ2σn ≥≥?≥>0σ′1σ′2σ′ n >(i =1,2,?,n )σi σ′i ∥>∥A +∥2B +∥2 ( )A =????π000π001π????sinA =????0000000sin 10?? ??A E ?A e A A A ,B =e A e B e A +B ( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r √≥≥?≥σ1σ2σr A ∥=A +∥21σ1 ( ) A B (AB =)+ B +A + A A A H Hermite A =()∈(n >1)a ij C n ×n D =diag (,,?,)a 11a 22a nn E ?A D ?1r (E ?A )≥1 D ?1(i =1,2,?,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A ?)H A ?∥A =n A ?∥2 ( ) A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,?x ∈C m C m A ( ) A , B ∈ C n ×n (A +B )x =0∥?∥∥A ∥≥1B ?1 ( )?(x ,y )∈R 2f (x ,y )=2+3?4xy x 2y 2 ̄  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

南航矩阵论期中考试参考答案.doc

1) 一组基为q = .维数为3. 3) 南京航空航天大学双语矩阵论期中考试参考答案(有些答案可能有问题) Q1 1解矩阵A 的特征多项式为 A-2 3 -4 4I-A| =-4 2+6 -8 =A 2(/l-4) -6 7 A-8 所以矩阵A 的特征值为4 =0(二重)和/^=4. 人?2 3 由于(4-2,3)=1,所以D| (人)二1.又 彳 人+6=“2+4人=?(人) 4-2 3 、=7人+4=代(人)故(们3),代3))=1 ?其余的二阶子式(还有7个)都包含因子4, -6 7 所以 D? 3)=1 .最后 det (A (/L))=42(人.4),所以 D 3(A)=/l 2 (2-4). 因此矩阵A 的不变因子为d, (2) = d 2(2) = l, d 3 (2) = r (2-4). 矩阵A 的初等因子为人2, 2-4. 2解矩阵B 与矩阵C 是相似的.矩阵B 和矩阵C 的行列式因子相同且分别为9 3)=1 , D 2(/i)=A 2-/l-2 .根据定理:两矩阵相似的充分必要条件是他们有相同的行列式因子. 所以矩阵B 与矩阵c 相似. Q2 2)设k 是数域p 中任意数,a, 0, /是v 中任意元素.明显满足下而四项. (") = (",a) ; (a+月,/) = (",/) + (”,刃;(ka,/3) = k(a,/3) ; (a,a)>0, 当且仅当Q = 0时(a,a) = ().所以(。,/?)是线性空间V 上的内积. 利 用Gram-Schmidt 正交化方法,可以依次求出 ,p 2 =%-(%'5)与= 层=%-(%,弟与一(%,弓)役=

研究生2008矩阵理论试卷

矩阵理论试卷(A )(2008级) (共1页) 成绩 学院班级__ _; 姓名___ __; 学号_ __ __ 1 (15分)给定 2222{()|}ij ij R A a a R ??==∈(数域R 上二阶实方阵按通常矩阵的加法与数乘构成的线性空间)的子集 221122i j {()|0, } i j V A a a a a R ?==+=∈ (1)证明V 是22R ?的子空间;(2)求V 的维数和一组基;(3)求3253A ??= ?-?? 在所求基下的坐标。 2 (15分)设α为n 维欧氏空间V 中的单位向量,对V 中任意一向量x , 定义线性变换: ()2(,)T T x x x αα=-, (1)证明:T 为正交变换; (2)证明 T 对应特征值1有n-1 个线性无关的特征向量;(3)问T 能否在某组基下的矩阵为对角阵,说明理由。 3 (15分)设矩阵010120110A ?? ?=- ? ?-?? (1)求A 的若当标准形;(2)求A 的最小多项式;(3)计算532()45g A A A A E =+-+。 4(10分)设3 R 中的线性变换T 如下:123122323(,,)(2,,) ; ()i T x x x x x x x x x x R =--+∈ (1) 写出T 在基T T T 123 =(1, 1, 0),=(0, 1, 1), =(0, 0, 1)βββ下的矩阵;(2) 求3()T R 及()Ker T 。 5 (10分)已知多项式矩阵 2210007(2)00()00(1)00 00(1)(5)A λλλλλλλ-?? ?++ ?= ?- ?++??,求()A λ的初等因子及史密斯标准形。 6(10分)在欧氏空间4R 中, 对任意两个向量12341234(,,,) , (,,,),T T a a a a b b b b αβ==定义内积 1122334(, )2a b a b a b a b αβ=+++ 求齐次方程组1234123 20 = 0x x x x x x x +-+=??+-? 的解空间的一组标准正交基。 7 (10分)(1) 设A 为可逆矩阵, 证明对任何矩阵的算子范数, 都有11||||||||--≥A A 。 (2)设???? ? ??--+-=21512363 11684i i A , 利用(1)的结论分别估计11||||-A 和∞-||||1A 的下界。 8(15分)已知200111113?? ?= ? ?-?? A , 求矩阵函数()e t f =A A 。

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 , , 。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (),123设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空 间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ??101010001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ???? ?????? ?????? ?????? ??1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ??4242 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ??0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

矩阵分析试卷

2007《矩阵分析》试题(A 卷) 一、 计算题 (每题10分,共40分) 1. 设函数矩阵???? ? ? ?=001t e -sint t e cost A(t)t 2t 试求 )t A(t d d ; )t A(lim 0t →. 2. 设矩阵??? ? ? ?=441-0A 试求 A e . 3. 将下面矩阵作QR 分解:??? ? ? ??110011-111. 4. 求下面矩阵的若当(Jordan)标准形??? ? ? ??1-1-2-020 021。 二、证明题(每题10分,共30分) 1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量 2 1332123 21183232-ααβαααβαααβ+=++=+=. 生成的子空间),, (U 321βββ=的一个基. 2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥ ⊥⊥ +=?2121V V V V . 3. 设T 是线性空间V 的线性变换, V ∈α, 且 )(T ,),(T ),T(,1-k 2αααα 均为不为 零的向量, 而0)(T k =α, 证明 )(T ,),(T ),T(,1-k 2αααα 线性无关. 三、简单论述题(每题15分, 共30分) 1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可 以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的? 2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过 程. 2007《矩阵分析》试题(B 卷) 一、 计算题 (每题10分,共40分)

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

相关文档
最新文档