摄像头图像采集及处理

摄像头图像采集及处理
摄像头图像采集及处理

摄像头采集赛道黑线信息是本系统赛道信息获取的主要途径,本章将从摄像头工作原理、图像采样电路设计、和采样程序流程图三个方面进行介绍。

8.1 摄像头工作原理摄像头常分为彩色和黑白两种摄像头,主要工作原理是:按一定的分辨率,以隔行扫描的方式采样图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度成一一对应关系的电压值,然后将此电压值通过视频信号端输出。

在示波器上观察可知摄像头信号如图8.1所示。摄像头连续地扫描图像上的一行,就输出一段连续的电压视频信号,该电压信号的高低起伏正反映了该行图像的灰度变化情况。当扫描完一行,视频信号端就输出一低于最低视频信号电压的电平(如0.3V),并保持一段时间。这样相当于,紧接着每行图像对应的电压信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。然后,跳过一行后(因为摄像头是隔行扫描的方式),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着就会出现一段场消隐区。此区中有若干个复合消隐脉冲(简称消隐脉冲),在这些消隐脉冲中,有个脉冲,它远宽于(即持续时间长于)其他的消隐脉冲,该消隐脉冲又称为场同步脉冲,它是扫描换场的标志。场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾部分和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。 8.2 图像采样电路设计在本次比赛中赛道仅由黑白两色组成,为了获得赛道特征,只需提取探测画面的灰度信息,而不必提取其色彩信息,所以本设计中采用黑白摄像头。型号为: XB-2001B,分辨率为320*240。为了有效地获取摄像头的视频信号,我们采用LM1881提取行同步脉冲,消隐脉冲和场同步脉冲,电路原理图8.2所示。将视频信号通过一个电容接至LM1881的2脚,即可得到控制单片机进行A/D采样的控制信号行同步HS与奇偶场同步号 ODD/EVEN。

摄像头视频信号端接LM1881 的视频信号输入端VIDEO_IN,同时也接入S12 的一个AD转换器口PAD0。LM1881的行同步信号端(引脚1)接入S12的中断口 PT2。之所以选用带中断的I/O口是因为,行同步信号(即对应摄像头信号的行同步脉冲)持续时间较短,为了不漏检到行同步信号,若使用普通I/O口,则只能使用等待查询的方式来检测到行同步信号,这会浪费不少S12 的CPU 资源。LM1881的奇-偶场同步信号输出端接S12中断口PT1由此作为奇-偶场同步信号的换场的标志信号,也可作为场信号到来的标志。上述摄像头、LM1881电路构成了本智能车定位系统的图像采样模块。

8.3 采样程序流程图

摄像头每秒25帧图像,每帧分为奇、偶两场,每秒供50场,奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。由于奇偶场所得的图像差别很小,故没有对奇场偶场的图像分开分析,即没有区分奇偶场。为了减轻S12的负担,我们没有必要对所有行都进行采样,只需对每场采样

30行即满足要求。由于每场开始的前22行为场消隐信号,故开始采样行需从22行以后开始,我们选择从31行开始,并且每间隔8行采一次。结合图8.2,当PT1有变化时,说明新的一场开始了,并且此时开始对行同步信号重新计数。当PT2口每检测到一个上升沿,表明一个行同步信号刚过去,让

计数变量加一。当计数变量增为30时,表明第31行视频信号开始了,并对此行信号进行采样。然后根据计数变量的值来控制每隔8行采一行视频信号。由于采用中断的方式,单片机不会因为处理其他程序而漏掉赛道的采样。

ECT中断初始化设置如下:

程序流程图如图8.3所示。

8.4 AD采样设置

由于行同步脉冲出现的间隔时间是一定的,约为62us,因此为了保证每行采集的点数达到有效指导小车前行的数目(取每行40个点),AD采样的周期不应大于62/40=1.43us。每行采样点数的确定原则是:不会出现漏检黑线的情况,保证每行采集的点中至少有1~2个是黑线信息。选取每行检测40个点是满足要求的。这里需要注意的是,由于行消隐信号出现每行开始的4.2us内,因此采集的前几个点要去掉,不然可能会误认为是黑线信息。由此可以看出,AD采样的频率设置是尤为重要的,下面是关于的AD的初始化设置:

第二讲 文本素材的采集与处理

第二讲文本素材的采集与处理 本讲目标: 1.明确文本素材的五种获取方法。 2.掌握扫描仪的使用方法,会用扫描仪获取大量文本,并能利用文字识别软件对获取的文本进行修改编辑。 重点:获取文本素材的方法。 难点:大量文本的采集—扫描仪扫描文字识别法。 一、五种文本素材的获取方法 文本素材的获取有直接获取与间接获取两种方式,直接获取是指通过多媒体教学制作工具软件的文字工具或在文字编辑处理软件中用键盘直接输入或复制,一般在文本内容不多的场合下使用该方式。间接获取是指用扫描仪或其他输入设备输入文本素材,常用于大量文本的获取。 文本素材的获取方法如下: (1)键盘输入方法 键盘输入方法是文本输入的主要方法,使用计算机输入汉字,需要对汉字进行编码,根据汉字的某种规律将汉字用数字或英文字符编码,然后由计算机键盘输入。汉字有音、形、义三个要素,根据汉字读音的编码叫音码,根据汉字字形的编码叫形码,兼顾汉字读音和字形的编码叫音形码或形音码。在常用的多媒体教学制作软件中,都带有文字工具,在文本内容不多的情况下,可以直接输入文字,对输入的文字可进行直接编辑处理。 (2)手写输入方法 使用“输入笔”设备,在写字板上书写文字,来完成文本输入,利用手写输入法获取文本的方式,类似于平时我们在纸上写字,但对在写字板上书写的文字要经选择。手写输入方法使用的输入笔有两种:一种是与写字板相连的有线笔,另一种是无线笔。无线笔携带和使用均很方便,是手写输入笔的发展方向。写字板也有两种,一种是电阻式,另一种是感应式。 (3)语音输入方法 将要输入的文字内容用规范的语音朗读出来,通过麦克风等输入设备送到计算机中,计算机的语音识别系统对语音进行识别,将语音转换为相应的文字,完成文字的输入。 语音输入方法目前开始使用,但识别率还不是很高,对发音的准确性要求比较高。 (4)扫描仪输入法 将印刷品中的文字以图像的方式扫描到计算机中,再用光学识别器(OCR)软件将图像中的文字识别出来,并转换为文本格式的文件。目前,OCR的英文识别率可达90%以上,中文识别率可达85%以上。 (5)从互联网上获取文本 从互联网上可以搜索到许多有用的文本素材,在不侵犯版权的情况下,可以从互联网上获取有用的文字。从互联网的html页面上获取部分文本的方法是:首先拖动鼠标选取有用的文本,或单击鼠标右键,在弹出的快捷菜单中,选择“全选”命令,将整个页面上文字全部选中,然后选择“复制”命令,打开文字处理软件(如Word),选择“编辑”/“粘贴”命令,就可以将复制的文字在文字处理软件中进行编辑处理了。如果将互联网上其他格式的文本文件(如:.pdf,.caj)格式的文件进行保存,然后使用部分有用文本,常用的方法是:选择“文件”菜单中的“另存为”命令,将文本文件进行保存,

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

STM32单片机ov760摄像头进行图像采集处理

#include #include #include #include #include #include #include #include #include "Image.h" #include "include.h" float kp,kd,ki; s16 steererr = 0; u8 Get_a_Y() { u8 t1,t2; //获得一个Y分量的过程 FIFO_RCK=0; FIFO_RCK=1; t1=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); //跳过一个像素 FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); return t1; }

void skip_a_row() { u16 i; u8 temp; for (i=0;i<320;i++) { //跳过一个像素 FIFO_RCK=0; FIFO_RCK=1; temp=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; temp=(0x00ff&GPIOB->IDR); } } void Get_a_Image() { u16 i,j; for (i=0;i

无线图像采集系统的设计与实现

0引言 视频监控目前已得到广泛的应用,一般采用如下方案:使用具有较高成像质量的CCD(charge-coupled device)传感器摄像头,通过S-VIDEO端子实时传送数据,这种方案需要摄像头与采集端设备连线,同时监控中心需要有较大的存储空间来存储图像与视频片段,还需要电视墙来对不同地点的目标进行实时监控,此方案适合于公共场所的安防和监控,实时性高,但能耗大,成本昂贵。对于需要远程监控的生产环境,例如农业、种植业、畜牧业以及工业厂房的监控,包括动物的异常举动,种植现场环境的突然变化,厂房可疑人员的入侵监控等,上述方案难以满足图像与视频中信息智能处理的需要,而基于嵌入式ARM-Linux的无线图像采集系统成为合适的选择。在802.11无线协议应用经已成熟的前提下,研究的重点在于传感器节点所采用的硬件平台和数据流格式,当前的主流方案包括:①ARM+DSP(digital signal processing)[1]:由ARM 架构CPU(central processing unit)担任传感器节点的总控制角色,利用DSP信号处理芯片的高速处理能力对图像数据进行压缩和相关预处理,该方案适合需要较多数值运算的JPEG (joint photographic experts group)数据流。②FPGA(field-progra-mmable gate array)+视频编解码芯片[2]:利用FPGA的并行处理能力同时传送和处理多组图像与视频数据,由于FPGA的硬件可重写性,该方案适合于在实验阶段进行设计上的查错和优化。③ARM:使用高主频的ARM架构CPU,同时担任中央控制和图像处理的角色。ARM为通用精简指令集架构,具有足够的流水线来应对复杂的逻辑运算,适用于处理逻辑运算量较大的压缩算法,例如PNG格式所采用的Deflate压缩算法,同时,ARM-Linux架构具有成熟的工作基础,固采用方案3设 收稿日期:2010-01-10;修订日期:2010-03-09。

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

基于摄像头的图像采集与处理应用

基于摄像头得图像采集与处理应用 1、摄像头工作原理 图像传感器,就是组成数字摄像头得重要组成部分。根据元件得材料不同,可分为 CCD(Charge Coupled Device,电荷耦合元件)与CMOS(plementary MetalOxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度得半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部得闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机得处理手段,根据需要与想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有得感光单位所产生得信号加在一起,就构成了一幅完整得画面。 互补性氧化金属半导体CMOS(plementary MetalOxide Semiconductor)与CCD一样同为在图像传感器中可记录光线变化得半导体。CMOS主要就是利用硅与锗这两种元素所做成得半导体,使其在CMOS上共存着带N(带–电)与P(带+电)级得半导体,这两个互补效应所产生得电流即可被处理芯片纪录与解读成影像。然而,CMOS得缺点就就是太容易出现杂点, 这主要就是因为早期得设计使CMOS在处理快速变化得影像时,由于电流变化过于频繁而会产生过热得现象。 CCD与CMOS在制造上得主要区别就是CCD就是集成在半导体单晶材料上,而CMOS就是集成在被称做金属氧化物得半导体材料上,工作原理没有本质得区别。CCD制造工艺较复杂,采用CCD得摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD与CMOS得实际效果得差距已经减小了不少。而且CMOS得制造成本与功耗都要低于CCD不少,所以很多摄像头生产厂商采用得CMOS感光元件。成像方面:在相同像素下CCD得成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS得产品往往通透性一般,对实物得色彩还原能力偏弱,曝光也都不太好,由于自身物理特性得原因,CMOS得成像质量与CCD还就是有一定距离得。但由于低廉得价格以及高度得整合性,因此在摄像头领域还就是得到了广泛得应用 工作原理:为了方便大家理解,我们拿人得眼睛来打个比方。当光线照射景物,景物上得光线反射通过人得晶状体聚焦,在视网膜上就可以形成图像,然后视网膜得神经感知到图像将信息传到大脑,我们就能瞧见东西了。摄像头成像得原理与这个过程非常相似,光线照射景物,景物上得光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分就是这样得,摄像头按一定得分辨率,以隔行扫描得方式采集图像上得点,当扫描到某点时,就通过图像传感芯片将该点处图像得灰度转换成与灰度一一对应得电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上得一行,则输出就就是

基于摄像头的图像采集与处理应用

基于摄像头的图像采集与处理应用 1、摄像头工作原理 图像传感器,是组成数字摄像头的重要组成部分。根据元件的材料不同,可分为CCD (Charge Coupled Device,电荷耦合元件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。 互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在图像传感器中可记录光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用 工作原理:为了方便大家理解,我们拿人的眼睛来打个比方。当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分是这样的,摄像头按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上的一行,则输出

图像采集系统设计

DSP实习报告 题目:图像采集系统的设计 班级:xxx 姓名:xxx 学号:xxx 指导老师:xxxx

目录 一.实习题目 (3) 二.实习背景知识 (3) 三.实习内容 (5) 四.实习程序功能与结构说明 (8) 六.实习心得 (19)

一、实习题目 图像采集系统的设计 二、实习目的: 1、熟练掌握数字信号处理的典型设计方法与技术手段; 2、熟悉D6437视频输入,输出端的操作及编程。; 3、掌握常用电子仪器设备的使用方法; 4、熟悉锐化变换算法。 三、实习背景知识 1、计算机 2、CCS3.3.软件 3、DSP仿真器 4、EL_DM6437平台 EL-DM6437EVM是低成本,高度集成的高性能视频信号处理开发平台,可以开发仿真达芬奇系列DSP应用程序,同时也可以将该产品集成到用户的具体应用系统中。方便灵活的接口为用户提供良好的开放平台。采用该系列板卡进行产品开发或系统集成可以大大减少用户的产品开发时间。板卡结构框图如图所示:

板卡硬件资源: TMS320DM6437 DSP ,可工作在400/600 MHz; 2 路视频输入,包括一个复合视频输入及一个S端子视频输入; 保留了视频输入接口,可以方便与CMOS影像传感器连接; 3 路视频输出,包括2路复合视频,一路S端子输出; 128MByte 的DDR2 SDRAM存储器,256MBit的Nor Flash存储器;用户可选的NAND Flash接口; 可选的256K字节的I2C E2PROM; 1个10M/100Mbps自适应以太网接口; 1 路立体声音频输入、1路麦克风输入,1路立体声音频输出; USB2.0高速接口,方便与PC连接; 1个CAN总线、1个UART接口、实时时钟(带256Byte的电池保持RAM);4个DIP开关,4个状态指示LED; 可配置的BOOT模式; 10层板制作工艺,稳定可靠; 标准外部信号扩展接口; JTAG仿真器接口; 单电源+5V供电; 板卡软件资源:

基于ARM的图像采集处理系统设计

基于ARM的图像采集处理系统设计

摘要 随着现代制造工业中微细加工技术的不断发展,对微细零件表面形貌测量的要求越来越高,具有较高横向及纵向分辨率的激光并行共焦显微系统可以突破光学衍射的极限要求,对物体表面进行无损检测及三维形貌重构。为了进一步实现光学系统的便携化、智能化需求,具有体积小、成本低、专用性强等一系列独特优点的嵌入式系统,无疑有着极好的应用前景。 本文主要研制了一种基于ARM的便携式图像采集处理系统。论文主要以硬件设计和软件设计两大部分完成对系统的论述:硬件设计中,通过分析实际图像采集需求后总结设计的主要性能指标,确定了采集系统的主要控制平台和图像传感芯片,给出了总体的硬件设计方案,并在此基础上完成了SCCB控制模块、图像数据捕获模块、串口调试模块等硬件接口模块的设计;软件设计中,完成了CMOS 的驱动程序、图像数据采集的驱动程序、Bayer图像数据转换算法等软件设计工作,最后论述了静态图像采集系统相关调试、实验工作,结果表明此嵌入式图像采集系统基本达到预期目标,证明了设计的合理性和正确性。 本系统一定程度上提高了低功耗微控制器图像采集的效率,将图像采集系统对硬件的依赖转化为设计人员的软件设计工作,相对于传统PC机+CCD的方案,不仅在体积、成本上具有明显优势,更体现出良好的柔性,便于今后的维护、优化。 关键词:ARM,LPC2478,图像采集,便携式

第一章绪论 1.1 嵌入式系统概述 1.1.1 嵌入式系统 嵌入式系统被IEEE(国际电气和电子工程师协会)定义为“是一种用来控制、监视或者辅助仪器、机械操作的装置”。无论嵌入式计算机技术如何发展,都改变不了其“内含计算机”、“嵌入到对象体系中”、“满足对象智能化控制要求”的技术本质,因此可以将嵌入式系统定义为:“嵌入到对象体系中的专用计算机应用系统”。 嵌入式系统具有3个基本特点,即“计算机性”、“嵌入性”及“专用性”: ●“计算机性”是目标系统智能化、自动化控制的根本保证,内含 微处理器的现代电子系统,方才能实现目标系统的计算机智能化 控制能力; ●“嵌入性”则是专指起源于微型机、嵌入到目标对象系统进而实 现对象体系智能控制的特性; ●“专用性”是指为了贴合对象控制需求或特定环境要求下的软硬 件的裁剪性。 嵌入式系统在很多产业中都得到了广泛的应用,包括消费电子、国防军事、工业控制等领域应用的越来越广泛,从军用的导弹系统到民用的消费电子、智能家电、汽车,嵌入式系统无处不在。 1.1.2 嵌入式处理器 通用计算机处理器的系统拥有大量的应用编程资源、外设接口总线及先进的高速缓存逻辑,但也具有能源消耗大、产生热量高、成本尺寸大等不可回避的问题,因此诞生了为各种专用应用而设计的特殊目的处理器——嵌入式处理器,主要分为以下四类: ●嵌入式微处理器:在应用中将微处理器装配在专门设计的电路板 上,只保留和嵌入式应用有关的母板功能而换来系统体积和功耗 的大幅减小,在功能上保留和标准微处理器一致的同时更在工作 温度、抗电磁干扰、可靠性等方面得到增强。 ●嵌入式微控制器:即单片机,就是将整个计算机系统集成到一块 芯片中,一般以某一微处理器内核为核心,芯片内部集成ROM、 RAM、总线等必要功能和外设,是目前嵌入式系统工业的主流。 ●嵌入式DSP处理器:对系统结构和指令进行了特殊设计,使其适

摄像头图像采集及处理范文

摄像头采集赛道黑线信息是本系统赛道信息获取的主要途径,本章将从摄像头工作原理、图像采样电路设计、和采样程序流程图三个方面进行介绍。 8.1 摄像头工作原理摄像头常分为彩色和黑白两种摄像头,主要工作原理是:按一定的分辨率,以隔行扫描的方式采样图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度成一一对应关系的电压值,然后将此电压值通过视频信号端输出。 在示波器上观察可知摄像头信号如图8.1所示。摄像头连续地扫描图像上的一行,就输出一段连续的电压视频信号,该电压信号的高低起伏正反映了该行图像的灰度变化情况。当扫描完一行,视频信号端就输出一低于最低视频信号电压的电平(如0.3V),并保持一段时间。这样相当于,紧接着每行图像对应的电压信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。然后,跳过一行后(因为摄像头是隔行扫描的方式),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着就会出现一段场消隐区。此区中有若干个复合消隐脉冲(简称消隐脉冲),在这些消隐脉冲中,有个脉冲,它远宽于(即持续时间长于)其他的消隐脉冲,该消隐脉冲又称为场同步脉冲,它是扫描换场的标志。场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾部分和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。 8.2 图像采样电路设计在本次比赛中赛道仅由黑白两色组成,为了获得赛道特征,只需提取探测画面的灰度信息,而不必提取其色彩信息,所以本设计中采用黑白摄像头。型号为: XB-2001B,分辨率为320*240。为了有效地获取摄像头的视频信号,我们采用LM1881提取行同步脉冲,消隐脉冲和场同步脉冲,电路原理图8.2所示。将视频信号通过一个电容接至LM1881的2脚,即可得到控制单片机进行A/D采样的控制信号行同步HS与奇偶场同步号 ODD/EVEN。

图像采集处理模块

1、图像采集处理 我们将OpenCV软件安装在安卓手机中,对手机拍照后的图像进行辨别处理以及定位处理,通过蓝牙模块,将信号传给单片机。 示意图: (1)、利用手机进行拍照、识别的原因: 我们查阅相关资料,找到了蓝牙助手v1.0这个软件,它是一款手机软件,实现了对于安卓手机蓝牙的基本操作以及安卓手机与单片机的通信。安装了次软件的安卓手机就可以借助HC-05蓝牙串口模块,控制单片机等系统,并可以接受从单片机等传送来的数据。 利用这个软件的原因是因为此软完成了蓝牙串口协议的设置,开发者使用时可以免去复杂的设置。 (2)、所用设备HC-05蓝牙串口 实物图:

模块与单片机的连接方式: 参数设置: 工作模式:从模式;波特率:9600bps;设备名称:HC-05;配对密码:1234,如按默认参数则无需以下个性设置。所有设置好的参数掉电都可保存): 1)、给模块提供合适的工作电源,带底板模块的工作电源为3.6~6V,不带底板核心模块为3.3V 2)、正确连接数据线,单片机的TXD和RXD必须与蓝牙模块的RXD,TXD交叉连接 进入AT命令模式有两种方法: a.蓝牙模块工作后拉高KEY脚电平进入AT模式1,LED状态为快闪,此时设置AT命令使用的波特率与通信时波特率一致,如通信时使用9600则此时设置AT命令的波特率

也应该选择9600 b.在模块上电的同时也令KEY脚为高电平,则进入AT模式2,LED状态为慢闪,固定使用38400,8,N,1的通信格式设置参数进入AT模式后只有保持KEY脚为高电平才能使用全部的AT命令。AT命令后面必须有回车换行符。如果使用SSCOM则在字符串输入框输入“AT”并勾选“发送新行”即可。 (3)、手机与蓝牙从机模块的连接及通信测试: 首先打开手机蓝牙,然后用手机的蓝牙管理程序扫描蓝牙设备,这时会找到蓝牙从机模块,然后进入蓝牙助手v1.0这个软件,在此软件中再次查询蓝牙从机模块,这时点击连接,会提示输入密码,例如模块初始配对码为1234。输入后,会提示配对未连接。此操作只要进行一次即可被手机记住,下次自动配对。因为蓝牙设备是串口设备,需要打开端口才可以连接,这时模块的灯还是闪烁的,当你打开端口后,灯才会变成连接成功状态。 下一步进行测试,在蓝牙助手v1.0中,输入字符后点击send,这时数据就会通过蓝牙发送到蓝牙模块,并从模块的TXD发出,此时单片机连接到模块的TXD-RXD进行数据通信了。 (4)、如何利用opencv软件进行物体的识别区分以及定位 识别特定的物体,可以用模板匹配的方法,大致说来就是先拍一张模板,再在图像里检测目标,模板匹配对比的是图像的像素值。 我们设想的具体方式为: 1)、在比赛前,分别拍摄架子上的物品(第一层和第二层),作为OpenCV图像库中的模版图像(patch);(其角度为正面照,若增强其区分的精确度,则可多角度完成一个物品的模版照) 2)在机器人启动前,我们将要拿去的东西输入进机器人; 3)、寻找一幅图像的匹配的模板,OpenCV已经为我们集成好了相关的功能,具体函数为matchTemplate; 4)、比赛时在现场分5次拍摄图像(每四个物品一次拍成),最中间无巡线部分,采用相隔1S的时间段的频率进行拍摄,知道拍摄出的图片物品在正中间即可,这就确定了物品的位置。 5)、接下来就是在所拍摄的图像中寻找和模板图像(patch)最相似的区域。OpenCV提供给我们的函数matchTemplate。该函数的功能为,在输入源图像Source image(I)中滑动框,寻找各个位置与模板图像Template image(T)的相似度,并将结果保存在结果矩阵result matrix(R)中。该矩阵的每一个点的亮度表示与模板T的匹配程度。然后可以通过函数minMaxLoc定位矩阵R中的最大值; 6)、手机根据找到的物体的位置,生成指令,并通过串口传递给单片机,最后机器人则针对匹配度最高的物品进行拿取操作。 通过查找资料,OpenCV的函数库中能够应用于匹配的方法有一下几种: CV_TM_SQDIFF 平方差匹配法,最好的匹配为0,值越大匹配越差 CV_TM_SQDIFF_NORMED 归一化平方差匹配法

基于单片机的图像处理采集系统

( 二 〇 一 二 年 六 月 本科毕业设计说明书 题 目:基于单片机的图像处理采集系统设 计与实现 学生姓名: 学 院: 系 别: 专 业: 班 级: 指导教师:

摘要 传统的工业级图像处理采集系统大多是由CCD摄像头、图像采集卡和PC机组成,虽已得到了广泛的应用,但是它具有结构复杂,成本高,体积大,功耗大等缺点。随着单片机的迅速发展,开发一种智能控制及智能处理功能的微型图像处理采集系统成为可能,并且也克服了传统图像处理采集系统的诸多缺点。 本设计提出了基于单片机的图像采集系统,该系统主要由四大模块组成:第一个是单片机控制模块,对摄像头进行控制;第二个是摄像头模块,即进行图像拍摄和取图;第三个是Zigbee无线传输模块,功能是将图像传送到上位机;最后是上位机,实现图像显示功能。其优点是硬件电路简单,软件功能完善,控制系统可靠,性价比较高,使用环境广泛及成本低等。利用Proteus和Keil进行仿真调试,可以看到设计内容的运行结果,验证系统运的行正确及稳定性,并且实现了图像处理采集功能,所以具有一定的实用和参考价值。 关键词:单片机;Proteus;图像采集

Abstract The traditional industrial image processing collection system by CCD camera, mostly image collection card and PC unit into, although already a wide range of applications, but it has the structure is complex, high cost, big volume and shortcomings, such as big power consumption. With the rapid development of the single chip microcomputer, the development of a kind of intelligent control and intelligent processing function of micro image processing collection system possible, and also overcome traditional image processing collection system of many of the faults. This design is put forward based on SCM image acquisition system, the system consists of four modules: the first one is the single chip microcomputer control module, the camera to control; The second is a camera module, the image shoot and take diagram; The third is Zigbee wireless transmission module, the function is will images to PC; Finally the PC, realize image display function. Its advantage is hardware circuit is simple, software perfect function, control system and reliable, high cost performance, use extensive and environment cost low status. Use Proteus and Keil simulation commissioning, can see the operation of the design content, as demonstrated the correct and do the system stability, and realize the image processing collection function, so has certain practical and reference value. Keywords:Single-Chip Microcomputer;Proteus; Image Capture

数字图像采集与处理

1. 图像处理过程:摄像机产生一个对应于物体的光学图像,显影后的胶片上形成对应于 光学图像的负像。胶片在数字化器的光敏面上形成一个光学图像,由它形成输入数字图像,再经过6次转换得到输出图像。每一步都可能产生退化。 2. 图像采集:利用采集装置获取数字图像。采集装置包括:光敏感器件、扫描系统和模/数转换装置。 3. 采样:图像在空间上的离散化称为采样(或:图像数字化设备把图像划分为若干图像元素(像素)并给出它们的地址)量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化(或:度量每一像素的灰度,并把连续的度量结果量化为整数) 4. 数字化设备:(1)采样孔:使数字化设备能够单独地观测特定的图像元素而不受图像其他部分的影响。(2)图像扫描机构:使采样孔按照预先确定的方式在图像上移动,从而按顺序观测每一个像素。(3)光传感器:通过采样检测图像的每一像素的亮度,通常采用CCD阵列。(4)量化器:将传感器输出的连续量转化为整数值。典型的量化器是A/D转换电路,它产生一个与输入电压或电流成比例的数值。(5)输出存储装置:将量化器产生的灰度值按适当格式存储起来,以用于计算机后续处理。 5. 采样孔的大小和相邻像素的间距(采样间隔)是两个重要的性能指标 6. 位图与矢量图区别:(1)位图由像素构成,矢量图由对象构成(2)

点位图受到像素和分辨率的制约,而矢量图形不存在这些制约(3)位图修改麻烦,矢量图形修改随心所欲(4)位图难以重复使用,矢量图形可以随意重复使用(5)位图效果丰富,矢量图形效果单调机械 7. 位图文件常见的文件扩展名为BMP、GIF(图形交换文件格式)、PCX、PSD、PCD、TIF(标记图像文件格式)、JPG(联合图像专家组)等。矢量图文件的扩展名为CDR、AI 或3DS 8. 辐射照度:如果某一表面被辐射体辐射,为表示B点辐射的强弱,在B点取微小面积元dA,它所接收的辐射通量为dΦe,则dΦe与dA之比就称为辐射照度。即表面上一点的辐射照度是入射在该面积元上的辐射通量dΦe除以该面面积元dA之商。单位为瓦特每平方米(W/m2)。 9. 光照度:单位受照面积接受的光通量,定义为光照面的光照度,用E表示。即光照度表示为:E=dφ/dA。光照度的单位为勒克斯(lx) 10. CIEl931—XYZ色度系统:XYZ色度系统是建立在RGB色度系统基础之上的.由三个虚设的三刺激值X、Y、Z来代替R,G,B,而组成一个新的色度系统。1931CIE色度系统使用了三个假想的三原色,记为X,Y,Z。对其要求是:用该假想三原色匹配任何颜色时,三刺激值X,Y,Z均为正;颜色的亮度仅由Y表示,而色度由X,Y,Z共同决定。 11. 图形是指由外部轮廓线条构成的矢量图(FROM Baidu) 12. 色差就是两种颜色之间的差别。显色指数是衡量一光源性能好坏

CCD图像采集 程序---详细注释,适合新手

近几天看到论坛里有很多网友遇到CCD图像采集的麻烦,我在最开始的时候也为这个烦恼过,由于本人比较菜,在度过大概半个月的绝望日夜后,在刚准备放弃时突然发现我已经采集到正确的图像了。特再次分享,希望能解决大家当前遇到的麻烦。 在采集图像之前,我们首先要知道摄像头输出信号的特性。目前的模拟摄像头一般都是P AL制式的,输出的信号由复合同步信号,复合消隐信号和视频信号。其中的视频信号才是真正的图像信号,对于黑白摄像头,图像越黑,电压越低,图像越白,电压越高。而复合同步信号是控制电视机的电子枪对电子的偏转的,复合消隐信号是在图像换行和换场时电子枪回扫时不发射电子。由于人眼看到的图像大于等于24Hz时人才不会觉得图像闪烁,所以P AL制式输出的图像是25Hz,即每秒钟有25幅画面,说的专业点就是每秒25帧,其中每一帧有625行。但由于在早期电子技术还不发达时,电源不稳定,容易对电视信号进行干扰,而交流电源是50Hz所以,为了和电网兼容,同时由于25Hz时图像不稳定,所以后来工程师们把一副图像分成两场显示,对于一幅画面,一共有625行,但是电子枪先扫描奇数场1,3,5.....,然后再扫描2,4,6.....,所以这样的话,一副图像就变成了隔行扫描,每秒钟就有50场了。其中具体的细节请参考这个网站 电视原理与系统 https://www.360docs.net/doc/c55148128.html,/zsb/zjx/zjx09/zjx090000.htm 只用看前面的黑白全电视信号和P AL制式就可以了(当然如果感兴趣可以全部看完)。 通过上面的内容如果你对P AL制式信号了然于心,那么就可以开始图像的采集了,P AL输出的信号有复合同步信号,复合消隐信号和视频信号。那么我们首先就是要从这三种信号中分理出复合同步信号,复合消隐信号和视频信号,以便我们对AD采样到的值进行存储,从而形成一幅画面。具体如何分离,我们使用的是LM1881视频同步分离器件,具体的硬件连接请参看论坛内相关文章(论坛里有介绍LM1881的文章,自己搜吧,我不重复了)。 分离出行场同步,奇偶场信号后,就把他们接到单片机的外部中断口,产生中断,在中断服务程序中对AD采集到的数据进行图像存储,从而形成一个二维数组的数字图像。 下面就说说图像采集方案,方法有多种,但我使用的方案是在行终端中读取A D采样的灰度值,在场同步中交换图像采集和处理缓存指针,并对图像进行处理,然后控制小车,在主函数中只有初始化和键盘扫描和串口输出函数。这样做效率比较高,而且可以把调试和图像采集处理分开,变成起来比较方便。 大家遇到的还有一个很棘手的问题可能是AD采样频率该设置多大呢?建议大家先通过PLLL超频,然后把AD时钟频率设置的高点才行。 下面就把我的代码贴给大家看看吧。

DSP图像采集处理系统设计实例

DSP图像采集处理系统设计实例 本章将介绍基于TI C6000系列DSP芯片的图像采集处理系统实例。第一节介绍图像处理系统的应用。第二节介绍图像采集系统的基本结构,着重分析如何平衡需求和成本的设计方法。第三节介绍系统的硬件设计,分析DSP和图像采集芯片的接口、电气知识等,给出了设计方案。最后介绍系统的软件设计,主要介绍本系统的软件设计方案,同时也重点介绍TI的图像库。 1 图像采集处理系统的应用 数字图像处理技术是计算机图形深入应用和高层应用的一个极其广泛的领域,它把来自照相机、摄像机或者传真扫描装置、医用CT机、x光机等的图像,经过数学变换后得到数字图像信息,再由计算机进行编码、滤波、增强、复原、压缩、存储等处理,最后产生可视图像,这种技术称为图像处理(Image Processing)。图像处理技术在通信科学、生产与管理、多媒体技术、高清晰度电视、医用图像处理、商品电子化、目标跟踪等领域得到了广泛的应用。在通信事业上,传统的图像信息传输是以模拟图像信号形式出现的。为了提高信息传输的质量和速度,近来数字图像信号处理与传输技术正在迅猛发展,并逐步取代传统的模拟信号处理与传输技术。目前,“信息高速公路”成了发达国家的热门课题,其中数字图像处理技术则成为它的极其重要的部分。而且,数字图像处理技术还与当前乃至21世纪的一些关键电子技术及电子产品密切相关。 目前数字图像处理技术几个引人瞩目的高科技领域包括: 1.高清晰度电视(HDTV) 高清晰度电视是当今国际高科技竞争的制高点之一,占领这个制高点者,必将拥有巨大的经济效益。目前主要有两种发展模式:一是日本、西欧等国家在现有的基础上进行改良;二是美国推出的全数字HDTV,1992年美国推出了4种全数字HDTV,它们的关键技术是在视频图像信号处理上采用最先进的信源图像压缩编码技术。然而,其价格上分昂贵,难以真正商品化。这种状况的丰要原因是压缩编码方法的效率不高。 2.商业电子化 20世纪90年代,由于美国商品零售业的发展,出现了新兴的零售连锁集团,它凭借现代化的计算机管理信息系统所带来的零库存、低成本和低售价,迅速占领了市场,成为美国商品零售业的首批巨人。“这种商业电子化”大市场吸引着越来越多的创业者、高科技公司,以致一些世界性大公司纷纷涉足于这一领域。 商业零售业作为市场流通的枢纽与各行各业密切相关,它使得商业电子化成为一项复杂的系统工程,它不仅仅使商场收款机电子化,而且它还使商场网络化、货币支付电子化甚至订货电子化等。在商业电子化过程中,商品信息的处理、存储与传输是十分重要的环节。

相关文档
最新文档