防爆振动电机百科

防爆振动电机百科
防爆振动电机百科

防爆振动电机百科

一、什么是防爆电机?

防爆电机是一种可以在易燃易爆场所使用的一种电机,运行时不产生电火花。防爆电机主要用于煤矿、石油天然气、石油化工和化学工业。此外,在纺织、冶金、城市燃气、交通、粮油加工、造纸、医药等部门也被广泛应用。防爆电机作为主要的动力设备,通常用于驱动泵、风机、压缩机和其他传动机械。

1.按电机原理分

可分为防爆异步电机、防爆同步电机及防爆直流电机等。

2.按使用场所分

可分为煤矿井下用防爆电机及工厂用防爆电机。

3.按防爆原理分

可分为隔爆型电机、增安型电机、正压型电机、无火花型电机及粉尘防爆电机等。

4.按配套的主机分

可分为煤矿运输机用防爆电机、煤矿绞车用防爆电机、装岩机用防爆电机、煤矿局部扇风机用防爆电机、阀门用防爆电机、风机用防爆电机、船用防爆电机、起重冶金用防爆电机及加氢装臵配套用增安型无刷励磁同步电机等。此外,还可按额定电压、效率等技术指标来

分,如高压防爆电机、高效防爆电机、高转差率防爆电机及高起动转矩防爆电机等。

二、三相异步电机的工作原理

三相异步电动机(防爆电机)的工作原理如下:当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。感应电流和磁场的联合作用向电机转子施加驱动力。三组绕组问彼此相差120度,每一组绕组都由三相交流电源中的一相供电。

电动机使用了电流的磁效应原理,发现这一原理的的是丹麦物理学家奥斯特

电动机的发展1831年,美国物理学家亨利设计出最初的电子式电动机。受到亨利的启发,一位名叫威廉〃里奇的人设计并造出了一台可以转动的电动机。里奇的这架电动机类似于我们今天在实验室里组装的直流电动机模型。

到了19世纪40年代,俄国科学家雅科比使电动机变得更为实用了。他用电磁铁替代永久磁铁进行工作。这种新型电动机当时被装在一艘游艇上,载着几名乘客驶过了涅瓦河。此事引起了极大的轰动。此后,出生于克罗地亚的美国人特斯拉于1888年,制造出了第一台感应电动机,他在各种电动机中,算是被应用最广的一种。感应电动机会将交流电快速输入一组称为“定子”的外线圈,继而产生一个旋

转磁场。转轴内的一组线圈则称为“转子”,它会被定子的旋转磁场感应出电流,然后转子会因电流变化而转变成电磁铁。

美国物理学家亨利于法拉第同时作出电磁感应的伟大发现,1830年8月,亨利在实验中已经观察到了电磁感应现象,这比法拉第发现电磁感应现象早一年。但是当时亨利正在集中精力制作更大的电磁铁,没有及时发表这一实验成果,也没有及时的去申请专利,失去了发明权。可是亨利从不计较个人名利,他认为知识应该为全世界人类所共享,从未与法拉第争过发现权,仍然专心致志地献身于科学事业。亨利的高尚品德受到世人的称赞。所以最后,人们还是将电磁感应现象的发现归于法拉第。特别值得一提的是,亨利实验装臵比法拉弟感应线圈更接近于现代通用的变压器。

单相交流电动机的旋转原理单相交流电动机只有一个绕组,转子是鼠笼式的。

单相电不能产生旋转磁场.要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动.

三、安阳防爆电机的防爆等级介绍

防爆电机防爆等级由3部分构成

1)在爆炸性气体区域(0区、1区、2区)不同电气设备使用安全级别的划分。如旋转电机选型分为隔爆型(代号d)、正压型(p)、增安型(e)、无火花型(n)

2)气体或蒸气爆炸性混合物等级的划分,分为ⅡA、ⅡB、ⅡC 三种,这些等级的划分主要是依照最大试验安全间隙(MESG)或最小点燃电流(MICR)来区分的。

3)引燃某种介质的温度分组的划分。主要分为T1-450℃<T、T2-300<T≤ 450℃、T3-200<T≤300℃、T4-135<

T≤200℃、T5-100<T≤135 、T6-85<T≤100℃.

四、防爆电机基础知识之防爆名词术语

防爆电气设备:在规定条件下,不会引起周围爆炸性环境点燃的电气设备。

爆炸性混合物:在爆炸上下限- 之间的可燃性气体、蒸气、薄雾、粉尘或纤维与空气的混合物。

最高表面温度:电气设备在规定范围内最不利运行条件下工作时,可能引起周围爆炸性环境点燃的电气设备任何部件或电气设备任何表面所达到的最高温度。

温度组别:爆炸性环境用电气设备按其最高表面温度划分的组别。引燃温度:可燃物质从气体或蒸气形态与空气形成的混合物,在规定

条件下被热表面引燃的最低温度。

闪点:在某一标准条件下使液体释放出一定量的蒸气而能形成可点燃的蒸气、空气混合物的液体最低温度。

最小点燃电流:在规定条件下在规定的火花试验装臵中,能点燃混合物的最小电流。

爆炸上限:空气中可燃性气体,蒸气或薄雾的浓度,高于该浓度就不能形成爆炸性气体环境。

爆炸下限:空气中可燃性气体,蒸气或雾的浓度,低于该浓度就不能形成爆炸性气体环境。

爆炸危险区域:爆炸性气体环境大量出现或预期可能大量出现,以致要求对电气设备的结构、安装和使用采取专门措施的区域。

极限温度:电气设备或其部件所容许的最高温度。它由下列因素确定:

(1)爆炸性气体混合物被点燃的危险温度

(2)结构材料的热稳定性。

正压型电气设备:具有正压外壳的电气设备。

正压外壳:保持内部气体的压力高于周围爆炸性环境的压力,阻止外部混合物进入外壳。

粉尘防爆电气设备:按规定条件设计制造使用时不会引起周围粉尘爆炸性混合物爆炸的电气设备

五、三相异步电动机的过载保护知识

三相异步电动机的过载保护:在电动机的控制回路中,常装有双金属片组成的热继电器,它利用膨胀系数不同的两片金属,在过载运行时,受热膨胀而弯曲,推动一套动作机构,使热继电器的一对常守触状断开,起到过载保护作用。一般选择热元件时,其动作电流按电动机额定电流的1.1~1.25倍选择。

六、什么是矿用防爆电机?

矿用防爆电机的分类:

(1)发展大功率电机:目前世界上采煤机的最大装机容量已超过1200kw,其驱动电机功率达600kW;相适应的采区工作面刮板输送机的最大装机容量已超过1500kW,其驱动电机功率已达

725kW。国内目前的采煤机驱动电机最大功率是400kW,刮板输送机驱动电机最大功率是315kW。

(2)发展3.3kV、6kV和IOkV级电压的矿用电机:这是因为普及综合机械化采煤机组后采区走向加长,导致电压降增大,同时大功率电机的使用也要求提高电压等级。

(3)发展矿用双速电机:为了适应煤矿输送机低速起动和高速运行的工作需要,国外矿用刮板输送机都是采用双速电机驱动的。但目前国产矿用双速电机的功率范围、性能指标及配套控制开关的性能等与国外先进水平相比均有一定差距。

(4)提高矿用电机的可靠性:矿用防爆电机的工况条件较差,电

机频繁大负荷起动、负荷变化大、电压波动大、环境温度高且有一定的腐蚀性等,这些都影响电机的使用可靠性和寿命。

七、什么是防爆电气设备?

防爆电气设备是指结构和性能上采取一定的技术措施,从而不会引起周围爆炸性气体环境发生点燃爆炸的电气设备。根据防爆原理不同,可分为10种防爆型式,分别为:

a. 隔爆型电气设备“d ”

具有隔爆外壳的电气设备称为隔爆型电气设备。隔爆外壳既能承受内部爆炸性气体混合物的爆炸压力,也能阻止内部的爆炸向外壳附近爆炸性混合物传播。

b. 增安型电气设备“e”

增安型防爆型式是一种对在正常运行条件下不会产生电弧、火花的电气设备采取一些附加措施以提高其安全程度,防止其内部和外部部件可能出现危险温度、电弧和火花的可能性的防爆型式

c. 本质安全型电气设备“i”

本质安全型电气设备的防爆原理是:通过限制电气设备电路的各种参数,或采取保护措施来限制电路的火花放电能量和热能,使其在正常工作和规定的故障状态下产生的电火花和热效应均不能点燃周围环境的爆炸性混合物,从而实现了电气防爆,这种电气设备的电路本身就具有防爆性能,也就是从“本质”上就是安全的,故称为本质安全型(以下简称本安型)。采用本安电路的电气设备称为本质安全

型电气设备。

d. 正压型电气设备“p”

保持外壳内部气体的压力高于周围爆炸性环境的压力,以阻止外部爆炸性气体进入壳内。

e. 充油型电气设备“o”

将全部部件或可能产生电火花或过热的部分部件浸在油内,使其不能点燃油面以上或壳外的爆炸性混合物的电气设备称为充油型电气设备。

f. 充砂型电气设备“q”

外壳内充填砂粒材料,使之在规定的使用条件下壳内产生的电弧、传播的火焰、外壳壁或砂粒材料表面的过热均不能点燃周围爆炸性混合物的防爆电气设备。

g. 无火花型电气设备“n”

是指在正常运行条件下,不会点燃周围爆炸性混合物,且一般又不会发生点燃故障的电气设备。

h. 浇封型电气设备“m”

整台设备或其中部分浇封在浇封剂中,在正常运行和认可的过载或认可的故障下不能点燃周围的爆炸性混合物的电气设备。

i. 粉尘防爆电气设备“DIP”

指其外壳按规定条件设计制造,能阻止粉尘进入电机外壳内或虽不能完全阻止粉尘进入,但其进入量不妨碍电机安全运行,且内部粉尘的堆积不易产生点燃危险,使用时也不会引起周围爆炸性粉尘混合

物爆炸的电气设备。

j. 特殊型电气设备“s”

凡在结构上不属于上述基本防爆类型,或上述基本防爆型的组合,而采取其他特殊措施经充分试验又确实证实具有防止引燃爆炸性气体混合物能力的电气设备称为特殊型电气设备。

八、什么是隔熄型电机?

隔熄型电机采用隔爆外壳把可能产生火花、电弧和危险温度的电气部分与周围的爆炸性气体混合物隔开。但是,这种外壳并非是密封的,周围的爆炸性气体混合物可以通过外壳的各部分接合面间隙进入电机内部。当与外壳内的火花、电弧、危险高温等引燃源接触时就可能发生爆炸,这时电机的隔爆外壳不仅不会损坏或变形,而且爆炸火焰或炽热气体通过接合面间隙传出时,也不能引燃周围的爆炸性气体混合物。

中国当前广泛应用的低压隔爆型电机产品的基本系列是YBZU 系列隔爆型三相异步振动电机,它是Y系列(IP55)三相异步电机的派生产品。防爆性能符合GB3836.1—83《爆炸性环境用防爆电气设备通用要求》和GB3836.2—83《爆炸性环境用防爆电气设备隔爆型电气设备“d”,》的规定;电机功率范围为O.55—200kW,相对应的机座号范围是机座中心高为80—315nun;防爆标志为dI、dIIAT4、dIIBT4,分别适用于煤矿井下固定式设备或工厂IIA、IIB 级,温度组别为T1—T4组的可燃性气体或蒸气与空气形成的爆炸性混合物的场所;主体外壳防护等级为IP55,也可制成IP55,接线盒

防护等级为IP55;额定频率为50Hz,额定电压为380、660、1140、380/660、660/1140V;电机绝缘等级为F级,但按B级考核定子绕组的温升,具有较大的温升裕度。

其主要特点是:

1、本系列振动电机采用F级绝缘,防爆等级为IP55,采取自身冷却方式,连续运转方式。振动电机允许满压直接起动。

2、执行国家级行业标准,防爆性能符合

GB3836.1/GB3836.2,振动源性能符合JB5330。

3、本产品均由国家防爆电气产品质量监督检验中心检验,确保产品安全、可靠,有矿用产品安全标志证书、全国工业产品生产许可证书、防爆合格证书,可放心选购。

九、什么是增安型防爆电机?

增安型防爆电机是在正常运行条件下不会产生电弧、火花或危险高温的电机结构上,再采取一些机械、电气和热的保护措施,使之进一步避免在正常或认可的过载条件下出现电弧、火花或高温的危险,从而确保其防爆安全性。

中国当前应用的低压增安型的基本系列是YA系列增安型三相异步电动机,它是YBZU系列(IP55)三相异步电机的派生产品。防爆性能符合GB3836.1—83《爆炸性环境用防爆电气设备通用要求》和GB3836.3—83《爆炸性环境用防爆电气设备增安型电气设备“e”》的规定;功率范围为O.55~90kW,相对应的机座中心高

为80—280mm;防爆标志为eIITl、eIIT2、eIIT3,分别适用于工厂中具有温度组别为Tl—T3组爆炸性混合物并具有轻微腐蚀介质的场所;主体外壳的防护等级为IP55,接线盒防护等级为IP55;额定频率为50Hz,额定电压为380V;电机采用F级绝缘。

低压增安型电机派生系列的主要型号有:YASO系列小功率增安型三相异步电机(机座中心高为56—90mm),YA—W、YA—WFl 系列户外、户内防腐增安型三相异步电机(机座中心高为

80—280mm)。

其特点是:

(1)满足增安型防爆电机的要求,采取一系列可靠的防止火花、电弧和危险高温的措施,可以安全运行于2区爆炸危险场所。

(2)采用无刷励磁,设臵旋转整流盘和静态励磁柜,励磁控制系统可靠;顺极性转差投励准确,无冲击;励磁系统失步保护可靠,再整步能力强;线路设计合理,放电电阻在工作中不发热;励磁电流调节范围宽。

(3)同步机、交流励磁机及旋转整流盘同轴。整流盘位于主电机和励磁机之间,或臵于轴承座之外。

(4)外壳防护等级为IP55。

(5)采用F级绝缘,温升按B级考核。

(6)改变传统的下水冷为上水冷,即水冷却器臵于电机上部。

(7)设增安型防潮加热器,固定在电机底部的罩内,用于停机时加热防潮用。

(8) 选优质原材料,电气及机械计算留有较大裕度,能满足运行可靠性和增安型电机的温度要求。

(9)设臵有完善的监控措施;主接线盒内设臵用于差动保护的增安型自平衡电流互感器;定子绕组埋设工作和备用的铂热电阻,分度号为Pt100;设漏水监控仪,监控水冷却器的泄漏;两端座式滑动轴承分别设现场温度显示仪表和远传信号端子。

十、防爆电机与普通电机的区别

1、防爆电机一般应用在易燃易爆的场合。

2、防爆电机接线盒的密封较普通电机要好。

3、防爆电机防护等级最低为IP55,而普通电机有IPIP23、IP4

4、IP54、IP5

5、IP56不等,故而从外形可以分辨出。

防爆电机主要用于煤矿、石油天然气、石油化工和化学工业。此外,在纺织、冶金、城市煤气、交通、粮油加工、造纸、医药等部门也被广泛应用。防爆电机厂家作为主要的动力设备,通常用于驱动泵、风机、压缩机和其他传动机械。随着科技、生产的发展,存在爆炸危险的场所也在不断增加。例如,食用油生产过去是用传统的压榨法工艺,20世纪70年代以后,我国开始引进国外先进的浸出油工艺,

但此工艺中要使用含有己烷的化学溶剂,己烷是易燃易爆物质;因此浸出油车间就成了爆炸危险场所,需要使用防爆电机和其他防爆电气产品。又如,近年来我国公路发展迅速,一大批燃油加油站出现,也给防爆电机提供了新的市场。

十一、什么是隔爆型电机?

隔爆型电机采用隔爆外壳把可能产生火花、电弧和危险温度的电气部分与周围的爆炸性气体混合物隔开。但是,这种外壳并非是密封的,周围的爆炸性气体混合物可以通过外壳的各部分接合面间隙进入电机内部。当与外壳内的火花、电弧、危险高温等引燃源接触时就可能发生爆炸,这时电机的隔爆外壳不仅不会损坏或变形,而且爆炸火焰或炽热气体通过接合面间隙传出时,也不能引燃周围的爆炸性气体混合物。

十二、什么是正压型电机?

正压型电机是正压型电气设备的一种。

其结构特点是:

(1) 配臵有一套完整的通风系统,电机内部不存在可能影响通风的结构死角。

(2) 外壳和管道由不燃材料制成,并具有足够的机械强度。

(3) 外壳及主管道内相对于外界大气保持足够大的正压。

(4) 电机须有安全保护装臵(如时间继电器和流量监测器),以保证足够的换气量,还必须有壳内气压欠压的自动保护或报警装臵。

(5) 外壳上的快开门或盖须有与电源联锁的装臵。我国目前尚无统一的正压型电机系列产品。

十三、什么是无火花型防爆电机?

无火花型防爆电机是在正常运行条件下,不会点燃周围爆炸性混合物,且一般又不会发生点燃故障的电机。与增安型电机相比,除对绝缘介电强度试验电压、绕组温升、te(在最高环境温度下达到额定运行最终温度后的交流绕组,从开始通过起动电流时计起至上升到极限温度的时间)以及起动电流比不像增安型那样有特殊规定外,其他方面与增安型电机的设计要求一样。

无火花型防爆电机符合GB3836.1—83和GB3836.8—87《爆炸性环境用防爆电气设备无火花型电气设备“n”》的规定。设计上注重电机的密封措施,主体外壳防护等级为IP54、IP55,接线盒为IP55。额定电压在660V以上的电机,其空间加热器或其他辅助装臵的连接件应臵于单独的接线盒内。

十四、什么是粉尘防爆电机?

粉尘防爆电机指其外壳按规定条件设计制造,能阻止粉尘进入电机外壳内或虽不能完全阻止粉尘进入,但其进入量不妨碍电机安全运

行,且内部粉尘的堆积不易产生点燃危险,使用时也不会引起周围爆炸性粉尘混合物爆炸的电机。

十五、什么是EXdII BT4?

EX——防爆总标志;

d——结构形式,隔爆型;

II——类别,工厂用;

B——防爆级别,B级

T4——温度组别,T4组,最高表面温度≤135℃。

十六、什么是防护等级?

防护等级是指外壳防止外物落入内部和防止水浸入内部的能力。外壳具有相应的防护等级对保持防爆电机的防爆安全性能是十分重要的。外壳的防护等级用IP代码和后续的两位数字表示。数字的第1位表示防外物等级,数字的第2位表示防水等级。GB208将外壳的防外物等级分为6个级别,防水等级分为8个级别。

例如:YBZU、BZD系列隔爆电动机的防护等级为IP55,第1个5表示防尘等级为5级(不能完全防止粉尘浸入,但是,进入的粉尘量不得影响电机的正常运行,不得影响安全);第2个5表示防水等级为5级(向外壳各个方向喷水时,喷水不应该对电机产生有害的影响)。

十七、什么是EXedII CT4?

EX——防爆总标志;

ed——结构形式,e:增安型,d:隔爆型;

II——类别,工厂用;

C——防爆级别,C级

T4——温度组别,T4组,最高表面温度≤135℃。

十八、可燃性气体、蒸气传爆级别、引燃温度组别

组别级别T1(T>450℃)T2(450℃≥T>300℃T3(300℃≥T>200℃T4(200℃≥T<135℃T5(135℃≥T<100℃T6(100℃≥T<85℃)

II A 甲烷、乙烷、丙烷、苯乙烯、苯、甲苯、二甲苯、三甲苯、萘、一气化碳、苯酚、甲酚、丙酮、醋酸甲酯,醋酸,氯乙烷,氯苯,氨,乙腈,苯胺丁烷、环戊烷,丙烯,乙苯,异丙苯,甲醇,乙醇,丙醇,丁醇,甲酸甲酯,甲酸乙酯,醋酸乙酯,甲基丙烯酸甲酯,醋酸乙烯酯,二氯乙烷,氯乙烯,甲胺,二甲胺戊烷,乙烷,庚烷,辛烷,壬烷,癸烷,环已烷,松节油,石脑油,石油,汽油,燃料油,煤油,柴油,戊醇,已醇,环已醇乙醛,三甲胺亚硝酸乙酯II B 丙炔,环丙烷,丙烯腊,氰化氢,民用煤气乙烯,丁二烯,环氧乙烷,环氧丙烷,丙烯酸甲酯,丙烯酸乙酯,呋喃二甲醚,丁烯醛,丙烯醛,四氢呋喃,硫化氢乙基甲基醚,二乙醚,二柄醚,四氟乙烯

II C 氯,水煤气乙炔二硫化碳硝酸乙酯

说明:a、可燃性气体,蒸气的传爆级别也是电气设备的防爆级别,两者是一致的,均分为IIA、IIB、IIC三级。

b、可燃性气体、蒸气的引燃温度组别与电气设备最高表面温度组别一一对应,如T4组气体,引燃温度为200℃≥T>135℃。

十九、防爆电机外壳防护标志的含义

防爆电机防护型式IPXX (GB/T 4208-1993 外壳防护分级(IP代码))

防护标志由字母IP和两个表示防护等级的表征数字组成。第一位数字表示:防止人体触及或接近壳内带电部分及壳内转动部件,以及防止固体防异物进入电机。第二位数字表示:防止由于电机进水而引起的有害影响。

第一位表征数字含义

第二位数字表示:防止由于电机进水而引起的有害影响。

常用电机的防护等级有:

IP23:防止大于2.5 mm固体的进入和与垂线成60°以内角度的淋水对电机应无影响

IP44:防止大于1mm固体的进入和任一方向的溅水对电机应无影响

防爆电机的外壳防护等级不低于IP44

IP54:能防止触及或接近电机带电或转动部件,不完全防止灰尘进入,但进入量不足以影响电机的正常运行和任一方向的溅水对电机应无影响

凡使用于户外的电动机外壳防护等级不低于IP54

IP55:能防止触及或接近电机带电或转动部件,不完全防止灰尘进入,但进入量不足以影响电机的正常运行,和用喷水从任何方向

喷向电机时,应无有害影响

粉尘防爆电机的防尘式外壳防护等级不低于IP55,尘密式外壳防护等级不低于IP65。

二十、防爆电机制造常用标准有哪些?

防爆电机制造常用标准有哪些?

1.国际电工委员会(IEC标准)

IEC 60034-1 旋转电机.第1部分:额定值和性能

IEC 60034-2 旋转电机.第2部分:旋转电机损耗和效率的试验测定方法(不包括牵引车辆用电机)

IEC 60034-3 旋转电机.第3部分:50Hz三相汽轮发电机的额定值和特性

IEC 60034-4 旋转电机.第4部分:同步电机参数的试验测定方法IEC 60034-5 旋转电机.第5部分:整体设计的防护等级(IP代码)分级

IEC 60034-6 旋转电机.第6部分:冷却方法

IEC 60034-7 旋转电机第7部分旋转电机结构和安装型式的分类(IM代号)

IEC 60034-8 旋转电机.第8部分:线端标志和旋转方向

IEC 60034-9 旋转电机.第9部分:噪声极限值

IEC 60034-11 旋转电机.第11部分:内装式热保护.第1章:旋转电机的保护规则

IEC 60034-12 旋转电机.第12部分:单速三相笼型感应电动机的

起动性能

IEC 60034-14 旋转电机.第14部分:轴中心高56mm及以上的电机可靠机械振动强度的测量、评价和极限值

IEC 60034-15 旋转电机第15部分:交流电机定子成形线圈耐冲击电压水平

IEC 60072 旋转电机尺寸和输出功率等级

IEC 60079-0 爆炸气体环境中的电气设备.第0部分:一般要求IEC 60079-1 爆炸气体环境中的电气设备.第1部分:隔爆型外壳“d”

IEC 60079-2 爆炸气体环境中的电气设备.第2部分:正压外壳“P”

IEC 60079-7 爆炸气体环境中的电气设备.第7部分:增安型

IEC 60079-15 爆炸气体环境中的电气设备.第15部分: "n"型电气设备的结构、试验和标志

2.国际标准化组织(ISO)

ISO1680 旋转电机噪声测定方法

ISO 1940-1 刚性转子平衡品质许用不平衡的确定

3.国家标准(GB)

GB 755-2000 旋转电机定额和性能

GB/T 756-1990 旋转电机圆柱形轴伸

GB/T 757-1993 旋转电机圆锥形轴伸

GB/T 997-2003 旋转电机结构及安装型式(IM代码)

电机振动的原因

电机振动的原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

矿用电气设备品种及标志

矿用电气设备品种及标志 适用于矿井条件的各种电气设备有矿用变压器、电动机、开关设备、照明灯具以及通信、信号、控制检测装置等。井下空间狭小,环境潮湿,粉尘含量大,常有岩石和矿物冒落;有的存在沼气(瓦斯)、矿尘等爆炸的危险,有的还有腐蚀性矿水和霉菌寄生。因此,矿用电气设备在材质和结构等方面应考虑防潮、防尘和防爆的特殊要求。按使用环境的爆炸危险程度,矿用电气设备可分为下列数种。 矿用一般型电气设备标志为KY。特点是:外壳结构牢固,具有较好的防潮、防尘性能,内部导体间空气间隙和漏电距离大,门上盖有机械联锁装置,只在设备断电的情况下,才能打开,以防触电。该型设备只能用于无瓦斯、煤尘爆炸危险的矿井或无瓦斯突出矿井中的井底车场和主要进风巷。 矿用防爆型电气设备包括隔爆型、本质安全型、增安型、充油型、正压型、防爆特殊型和上述类型的复合型设备。 隔爆型电气设备标志为KB。20世纪初最先出现于德国,现为各国广泛采用。其原理以间隙隔爆为基础,除符合矿用一般型电气设备要求外,对其外壳的材质和强度、隔爆接合面间隙宽度、长度和加工光洁度等,都有严格规定。外壳不仅承受壳内部可燃性混合物可能产生的最大压力,还能使爆炸的生成物和火焰经过接合面向外传播时逐渐冷却,不致引燃壳外可燃性混合物。适用于容易产生瓦斯、煤尘爆炸危险的场所。 本质安全型电气设备标志为KH。以前称安全火花型,最早出现于英国,1939年就有制造本质安全型电气设备的有关规定。原理是适当选择电气参数,使电气回路在正常工作或规定的故障状态下产生的电火花和热效应均不致引燃爆炸性混合物。这种设备无需隔爆外壳,可用于经常存在爆炸危险的环境中。但受最小点燃能量的限制,只能在通信、信号、仪器仪表和控制回路中使用。 增安型电气设备标志为KA。超源于德国,曾称安全型或防爆安全型。在正常运行时不产生电弧、火花或危险温度的电气设备上,采取提高安全程度的措施,防止内部发生短路及接地故障,严格控制外壳表面温度,达到防爆目的。该型设备不需要笨重的隔爆外壳,成本低,维护简便,在联邦德国已广泛应用于鼠笼式电动机、照明灯具及接线盒等设备上,中国目前尚少使用。 充油型电气设备标志为KC。将可能产生火花、电弧或危险温度的带电部件浸在油中,使其不与油面上的爆炸性混合物接触,防止点燃引爆。该型设备仅适用于装设在有防火措施同室内的固定电气设备,如交流断路器和变压器等。 正压型电气设备标志为KF。密封外壳内导入正压新鲜空气或充入惰性气体,保持一定正压,以阻止壳外爆炸性混合物进入的电气设备。该型属于化工厂防爆类型,煤矿井下未采用。 防爆特殊型电气设备标志为KT。结构上不属于上述各型规定,而采取其他防爆措施的设备,如耐腐蚀、耐燃性较好的网罩或微孔隔爆结构等。 复合型防爆电气设备设备的不同部分属于不同防爆类型的电气设备,如一台隔爆型磁力起动器,其控制回路可为本质安全型,称隔爆兼本质安全型。

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电机振动十大原因,查找检修得看这些具体案例

电机振动十大原因,查找检修得看这些具体案例 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

振动筛技术配置规范

振动筛技术配置规范 一、设计原则 1、振动筛采用椭圆或直线运动轨迹。处理量≥60 L/s,满足正常使用200目以上筛布。 2、振动筛电机为短杆或长杆防爆激振电机。同一系列的振动筛应采用同一电机厂家、同一规格型号的激振电机,并通用互换,宜采用激振力可调激振电机。 3. 使用时间:振动筛不低于8 年。 4、焊接件焊接及检验标准执行国内 JB/T 5943-1991《工程机械焊接件通用技术条件》的相关规定。两联和三联振动筛,应将振动筛与振动筛缓冲罐制造为一整体,以便安装与运输;振动筛缓冲罐宽度一般为400mm,高度一般为1500mm。 两联振动筛底座尺寸一般为L≤3000mm(振动筛长度方向)、W≤4000mm(振动筛宽度方向);三联振动筛底座尺寸一般为L≤3000mm、W≤6000mm。满足现场使用要求和探井安放录井工具的要求。 5、筛分系统宜选用通用型快装板框筛网,要求筛网自身强度高,互换性强、安装拆卸方便,筛网规格为 1165mm×585mm×40 mm,出厂一般配备80目以上筛网(或按需配置)。也可采用勾边筛网,筛网规格:1130×780 mm。 6、筛网与筛床必须使用扣压式安装的全密封结构,密封胶条耐温≥120℃,耐油基泥浆,耐腐蚀性,同时保证密封良好;橡胶件采用耐油橡胶件(丁晴橡胶)并提供第三方证书。 7、不锈钢防飞溅系统,在不影响设备维护的基础上很好的解决钻井液的飞溅问题,保证设备运行现场的清洁舒适。 8、振动筛倾角调节装置采用机械或液压调节装置,实现无级调节,可根据需要动态调节筛箱倾角,以适应不同钻井工况的需要。 9、筛网张紧方式,优先采用楔块快速压紧,可采用螺旋快速张紧装置,筛网更换不超过2分钟/张,宜直接在筛箱外侧拆卸。 10、电机及控制电路符合防爆要求。所有电器设备电源为:380V、50Hz,接线采用三相四线制,TN-S接地型式。防爆级别:Exd II BT4;防护等级:IP55;绝缘等级:155级;电机接线盒的出线口、控制箱进出线口均自带隔爆格兰(黄铜镀镍材料);电机厂家提供合格证、防爆证和IEC证。电路系统使用旋钮控制,

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

水泵电机振动检修案例

电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。

4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。 振动原因及典型案例 振动原因主要有三种情况:电磁方面原因;机械方面原因;机电混合方面原因。 一 . 电磁方面的原因 1. 电源方面:三相电压不平衡,三相电动机缺相运行。 2. 定子方面:定子铁心变椭圆(公众号:泵管家)、偏心、松动;定子绕组发生断线、接地击穿、匝间短路、接线错误,定子三相电流不平衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象,但不属于标准大修范围内的项目,所以未处理,大修后试转时电机发生刺耳的尖叫声,更换一台定子后故障排除。 3.转子故障:转子铁心变椭圆、偏心、松动。转子笼条与端环开焊,转子笼条断裂,绕线错误,电刷接触不良等。 举例:轨枕工段无齿锯电机运行中发现电机定子电流来回摆动,电机振动逐渐增大,根据现象判断电机转子笼条有开焊和断裂的可能,电机解体后发现,转子笼条有7处断裂,严重的2根两侧与端环已全部断裂,如发现不及时就有可能造成定子烧损的恶劣事故发生。 二 .机械原因 1. 电机本身方面: 转子不平衡,转轴弯曲,滑环变形,定、转子气隙不均,定、转子磁力中心不一致,轴承故障,基础安装不良,机械机构强度不够、共振,地脚螺丝松动,电机风扇损坏。

排污泵型号的有哪些

排污泵型号的有哪些? 一、WQ潜水无堵塞排污泵简称潜水排污泵又称潜水提升泵、污水提升泵、提升泵等功率加大口径选大还可以当作潜水泥浆泵使用。 WQ潜水泵整体结构紧凑、体积小、噪声小、节能效果显著,检修方便,无需建泵房,潜入水中即可工作,大大减少 工程造价。 潜水排污泵有:1、普通潜水排污泵介质温度不超过60℃,介质重度为1~1.3kg/dm3,PH值在4~10范围内。 2、QWB防爆潜水排污泵简称防爆潜水泵主要用于工作环境属于易然易爆容易发生火灾爆炸事故的场所,防爆潜水泵主要是采用防爆电缆、泵体各部件做工精密度比普通潜水排污泵精密度要高,电机采用防爆电机,泵体在水下工作也具有一定隔离防爆区的功能,泵体带有EX防爆标志。 3、QWP不锈钢管道泵简称不锈钢管道泵1Cr18Ni9ti不锈钢潜水泵可适用各种腐蚀性介质,而且可以定做316不锈钢潜水泵、316L不锈钢潜水泵。 4、BYXJWQK带切割自动搅匀潜水泵简称带切割自搅匀潜水泵它不但具有效率高、安全可靠、寿命长、外型美观和排污性能好等优点,而且还具有可自动耦合安装、自动控制和节省泵站土建造价等优点,特别是在排送固体颗粒和长纤维垃圾以减少污水坑内沉积等方面,具有独特功能。 5、JYWQ潜水自动搅匀排污泵简称自动搅匀排污泵是在普通排污泵的基础上采用自动搅拌装置,该装置随电机轴旋转,产生极强的搅拌力,将污水池内的沉积物搅拌成悬浮物,吸入泵内排出,提高了泵的防堵、排污能力,一次性完成了排水、清污、除淤、节约了运行成本,是具有明显的先进性和用性的环保产品。 6、AS型切割式潜水排污泵简称切割式潜水泵采用德国abs公司先进的技术,特别适用于输送含有坚硬固体、纤维的液体,以及特别脏、粘和滑的液体。所有as泵均装有经调整好的撕裂机构能将污水中长纤维、袋、带、草、布条等撕裂后排出。因此,在污水中工作不会堵塞运行极为可靠。 7、wqk/QG型带切割装置排污泵简称带切割排污泵主要用于工程污水,生活污水。 如:(1)用于建筑工地、工程基础施工、市政设施、自来水厂。 (2)各种高楼大厦的地下室、人防坑洞、地铁等地下层污水排放。 (3)中小型企业污水处理及循环水输送。 (4)食品、造纸、酿造、钢铁及有色金属、制革、纺织、制药、水泥厂等厂矿企业的渣浆液抽送。 (5)养鸡场,养猪场,各种养殖业,鱼池作抽水清塘、增氧,化粪池等各种场合的人畜粪尿抽送等作用。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

电机震动标准

第一章、电动机维护检修规范 1、电动机完好标准 1.1零部件质量 1.1.1外壳完整,无明显缺陷,表面油漆色调一致,铭牌清晰。 1.1.2润滑油脂质量符合要求,油量适当,不漏油。 1.1.3电动机内部无积灰和油污,风道畅通。 1.1.4外壳防护能力或防爆性能良好,既符合电动机出厂标准,又符合周围环境的要求。 1.1.5定转子绕组及铁芯无老化、变色和松动现象,槽楔、端部垫块及绑线齐全紧固。 1.1.6定转子间的间隙符合要求。 1.1.7风扇叶片齐全,角度适合,固定牢固。 1.1.8外壳有良好而明显的接地(接零)线。 1.1.9各部件的螺栓、螺母齐全紧固,正规合适。 1.1.10埋入式温度计齐全,接线完整,测温表计指示正确。 1.1.1l起动装置好用,性能符合电动机要求。 1.1.12通风系统完整,防锈漆无脱落,风道不漏风,风过滤器、风冷却器性能良好,风机运行正常。1.1.13励磁装置运行稳定可靠,直流电压、电流能满足电动机要求。 1.1.14操作盘油漆完好,部件齐全,接线正规,标示明显。 1.1.15保护、测量、信号、操作装置齐全,指示正确,动作灵活可靠。 1.1.16电动机基础完整无缺。 1.1.17 电源线路接线正确牢固,相序标志分明,电缆外皮有良好的接地(接零)线。

1.2运行状况 1.2.1在额定电压下运行,能达到铭牌数据要求,各部位温升不超过表1所列允许值。 表1 电动机的最高允许温升(环境温度为40~C时) ℃ 绝缘等级 A级绝缘 E级绝缘 B级绝缘 F级绝缘 H级绝缘 测量方法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法 与绕组接触的铁芯及其他部件 60 —— 75 —— 80 —— 100 —— 125 —— 集电环或整流子 60 —— 70 —— 80 —— 90 —— 100 —— 滑动轴承 40 —— 40 —— 40 —— 40 —— 40 —— 滚动轴承 55 —— 55 —— 55 —— 55 —— 55 —— 电动机绕组 50 60 65 75 70 80 85 100 105 125 1.2.2电动机的振动值(两倍振幅值),一般应不大于表2的规定。对于Y系列电动机,空载振动、速度的有效值应不超过表3所列数据。 表2电动机的允许振动值 转速,r/min 3000 2000 1500 1000 750及以下 两倍振幅值,mm 表3 Y系列电动机空载振动、速度允许值 安装方式弹性刚性 轴中心高H,mm 56≤H≤132 132≤H≤225 225≤H≤400 400≤H≤630 转数n,r/min 600≤n≤1800 1800

电机振动的原因

电机振动得原因 电机振动得原因很多,也很复朵。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见J- 2—6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机得振动限值、测量方法及刚性基础得判定标准,依据此标准可以判断电机就是否符合标准。 电动机振动得危害4 电动机产生振动,会使绕组绝缘与轴承寿命缩短,影响滑动轴承得正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘与水分入侵其中,造成绝缘电阻降低与淤露电流增大, 甚至形成绝缘击穿等事故.另外,电动机产生振动,乂容易使冷却器水管振裂,焊接点振开,同时会造成负载机械得损伤,降低工件精度,会造成所有遭到振动得机械部分得疲劳,会使地脚螺丝松动或断掉,电动机乂会造成碳刷与滑环得异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动得十个原因A 转子.耦合器.联轴器.传动轮(制动轮)不平衡引起得. 瑟、铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。A 3、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生得原因主耍就是安装过程中,对中不良、安装不当造成得。 哀4、联动部分中心线在冷态时就是重合一致得,但运行一段时间后由于转子支点,基础等变形,中心线乂被破坏?因而产生振动」 5、与电机相联得齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定得振动.皿 6、电机本身结构得缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小, 轴承座、基础板、地基得某部分乃至整个电机安装基础得刚度不够. 7、安装得问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8、轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦得润滑与温度产生异常。 9、电机拖动得负载传导振动,比如说电机拖动得风机、水泵振动,引起电机振动。 10、交流电机定子接线错课、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。却 振动原因及典型案例 嫌动原因主要有三种情况:电磁方面原因;机械方而原因;机电混合方面原因。 一、电磁方面得原因1山. 电源方而:三相电压不平衡,三相电动机缺相运行?如、定子方面:定子铁心变椭圆、偏心、松动:定子绕组发生断线、接地击穿. 匝间短路、接线错误,定子三相电流不半衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象, 但不属

Noise and vibration DC-motor(直流电机噪音及振动)

3482
IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004
Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC Motors
Hong-Seok Ko and Kwang-Joon Kim
Abstract—This paper characterizes electromagnetic excitation forces in interior permanent-magnet (IPM) brushless direct current (BLDC) motors and investigates their effects on noise and vibration. First, the electromagnetic excitations are classi?ed into three sources: 1) so-called cogging torque, for which we propose an ef?cient technique of computation that takes into account saturation effects as a function of rotor position; 2) ripples of mutual and reluctance torque, for which we develop an equation to characterize the combination of space harmonics of inductances and ?ux linkages related to permanent magnets and time harmonics of current; and 3) ?uctuation of attractive forces in the radial direction between the stator and rotor, for which we analyze contributions of electric currents as well as permanent magnets by the ?nite-element method. Then, the paper reports on an experimental investigation of in?uences of structural dynamic characteristics such as natural frequencies and mode shapes, as well as electromagnetic excitation forces, on noise and vibration in an IPM motor used in washing machines. Index Terms—Brushless machines, electromagnetic forces, noise, permanent magnet, vibrations.
Fig. 1.
Cross sections of BLDC motors.
I. INTRODUCTION
C
ONVENTIONAL direct current commutator motors with permanent magnets are easy to control and require few semiconductor devices. Yet, they have serious operational problems in association with brushes. For examples, the brushes require regular maintenance and induce noise by friction with the commutators. A solution for these problems is brushless direct current (BLDC) motors. BLDC motors can be classi?ed into two types, as shown in Fig. 1 according to the geometric shape and location of permanent magnets. Compared with surface mounted permanent-magnet (SPM) motors, interior permanent-magnet (IPM) motors have several advantages. One advantage comes from the position of magnets. Because permanent magnets are embedded in the rotor, the IPM motors can be used at higher speeds without debonding of the permanent magnets from the rotor due to the centrifugal forces. Another obvious advantage of the IPM motors is higher ef?ciency. That is, in addition to the mutual torque from the permanent magnets, the IPM motors utilize the reluctance torque generated by the rotor saliency [1].
Manuscript received June 28, 2002; revised June 7, 2004. H.-S. Ko was with the Mechanical Engineering Department, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea. He is now with Samsung Electronics Company Ltd., Suwon 443-742, Korea (e-mail: hskatom@yahoo.co.kr). K.-J. Kim is with the Mechanical Engineering Department, KAIST, Daejon 305-701, Korea (e-mail: kjkim@mail.kaist.ac.kr). Digital Object Identi?er 10.1109/TMAG.2004.832991
Regarding the noise and vibration, the IPM motors have more sources than the SPM motors. Furthermore, analysis of magnetic ?eld in the IPM motors is more dif?cult due to the magnetic saturations, especially in the rotors. In an IPM motor, the electromagnetic excitation sources can be classi?ed into three parts: cogging torque, ripples of mutual and reluctance torque, and ?uctuations of radial attractive force between the rotor and stator. In an SPM motor, only the mutual torque is generally considered and an analytical method can be used [2], [3]. For the IPM motors, however, the ?nite-element method (FEM) is used to account for the magnetic saturation at the rotor core and, besides the mutual torque, the reluctance torque needs to be considered. In addition, although only the permanent magnet may be considered to calculate the radial attractive forces between the rotor and stator in the IPM motors [4], the electromagnetic ?eld due to the currents may become signi?cant depending on the loading and generate serious excitation forces. In this paper, a technique that can ef?ciently calculate the cogging torque as a function of rotor position by including saturation effects is proposed. Then, a torque equation for characterizing the space and time harmonics with respect to the mutual and reluctance torque ripples is used to extract their ?uctuating components. The radial attractive forces due to the electric currents in the stator as well as the permanent magnets in the rotor are calculated by the FEM and its effects on noise and vibration are investigated. The noise and vibration in the motors are mostly generated by the electromagnetic sources and subsequently can be ampli?ed by the dynamic characteristics of the motor structure. Therefore, in?uences of natural frequencies and mode shapes of the structures are experimentally investigated for the noise and vibration of an IPM motor under study. II. ELECTROMAGNETIC EXCITATION SOURCES Electromagnetic excitations in electric motors are caused by variation of both circumferential and radial forces acting between the stator and the rotor with respect to the time and space.
0018-9464/04$20.00 ? 2004 IEEE

国内振动给料设备的发展及现状

国内振动给料设备的发展及现状国内振动给料设备的发展及现状 鹤壁市煤化机械有限责任公司高级工程师鹤壁市煤化机械有限责任公司高级工程师 王运池王运池 1 1、、前言前言 机械振动式给料机是给料设备中常用的一种机械振动式给料机是给料设备中常用的一种机械振动式给料机是给料设备中常用的一种。。它广泛应用在冶金它广泛应用在冶金、、矿山矿山、、煤炭煤炭、、电力、化工化工、、建材建材、、轻工和粮食等行业中轻工和粮食等行业中,,与其他设备配套实现给料与其他设备配套实现给料、、喂料喂料、、配料配料、、定量包装和流程自动化作业包装和流程自动化作业。。在国内冶金矿山生产中主要是选用在溜井放矿在国内冶金矿山生产中主要是选用在溜井放矿、、转载装车转载装车、、选矿破碎给料作业矿破碎给料作业。。煤矿生产中主要应用在井下转载煤矿生产中主要应用在井下转载,,箕斗下转载箕斗下转载,,原煤仓下配煤原煤仓下配煤、、精煤仓下装车仓下装车、、洗选机均匀给料等作业洗选机均匀给料等作业。。电力行业主要配置在筹煤仓下转载配煤系统电力行业主要配置在筹煤仓下转载配煤系统,,给料机在不同行业机在不同行业、、不同作业场合对设备的性能都会有不同的要求不同作业场合对设备的性能都会有不同的要求。。 2 2、、我国振动给料设备的原理及发展经历和现状我国振动给料设备的原理及发展经历和现状 20世纪50年代初年代初,,矿井系列给料设备主要依赖机械式往复给料机矿井系列给料设备主要依赖机械式往复给料机,,该机型结构简单,动力消耗比较大动力消耗比较大,,设备比较笨重设备比较笨重。。其原理是由连杆及偏心轴传动往复作业其原理是由连杆及偏心轴传动往复作业,,处理量小且成间按成堆式给料不均匀小且成间按成堆式给料不均匀,,但该机维修量小但该机维修量小、、耐用耐用,,布置所需高度低布置所需高度低,,对物料的粒度组成度组成、、外在水分物理性质等要求不严格外在水分物理性质等要求不严格。。故而广泛运用在各类矿井生产中故而广泛运用在各类矿井生产中,,特别是煤矿井下矿井下,,直到今天用在恶劣条件下其适用性仍深受使用单位的好评直到今天用在恶劣条件下其适用性仍深受使用单位的好评。。随着矿井机械化程度的提高度的提高,,K 型往复式给料也作型往复式给料也作了大量的改进了大量的改进了大量的改进,,由单屈臂改为双屈臂由单屈臂改为双屈臂,,给料量已发展到给料量已发展到 10001000-- 2000吨/小时小时。。 60年代随着生产技术的发展和要求年代随着生产技术的发展和要求,,相继出现了电磁振动给料机相继出现了电磁振动给料机,,并迅速得到各行各业的广泛应用行各业的广泛应用,,机械部相继在全国的东北辽阳机械部相继在全国的东北辽阳、、河南鹤壁河南鹤壁、、江苏海安定点三家生产厂。该机属于双质体共振钢性弹力振动该机属于双质体共振钢性弹力振动,,其相对于K 型往复给料机适应性更加广泛型往复给料机适应性更加广泛,,由于结构紧凑于结构紧凑、、重量轻重量轻、、可无级调速可无级调速、、适用220V 220V——380V 不同电压以及电耗少等特点不同电压以及电耗少等特点,,在全国得到推广全国得到推广,,深受用户欢迎深受用户欢迎。。然而该机存在电磁铁振动时噪音大然而该机存在电磁铁振动时噪音大,,振频高振频高((3000次/分),振幅小(l —1.5mm 1.5mm)),调整调整运量的振幅大小运量的振幅大小运量的振幅大小,,决定于E 型电磁铁静块与动块间隙型电磁铁静块与动块间隙、、板弹簧片数以及联接杆螺母松紧程度等因素决定板弹簧片数以及联接杆螺母松紧程度等因素决定,,如果调节不当如果调节不当,,间隙太大则电流增大(长时间线圈铁芯发热损坏长时间线圈铁芯发热损坏),),间隙过小造成振幅减少间隙过小造成振幅减少间隙过小造成振幅减少。。致使用户深感生产管理不便致使用户深感生产管理不便,,特别是在增加调速时特别是在增加调速时,,噪音过大影响职工身心健康噪音过大影响职工身心健康。。为了减少料仓的物料的垂直压力直

相关文档
最新文档