幂等矩阵的性质及应用

幂等矩阵的性质及应用
幂等矩阵的性质及应用

JIU JIANG UNIVERSITY

毕业论文(设计)

题目幂等矩阵的性质及应用

英文题目Properties and Application

of Idempotent Matrix 院系理学院

专业数学与应用数学

姓名邱望华

年级 A0411

指导教师王侃民

二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.

[Key Words] the idempotent, the nature, the idempotence,

linear combination

符号表

R 实数域

n R 实数域n 维列向量空间 n n R ? 实数域上的n ×n 阶矩阵 C 复数域

n C 复数域n 维列向量空间 n n C ? 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置

*A 矩阵A 的伴随

1A - 矩阵A 的逆

det()A 矩阵A 的行列式 rank()A 矩阵A 的秩

()N A 矩阵A 的核空间,即}{

()0,n N A x P Ax P =∈=是一个数域

()R A 矩阵A 的值域,即}{

(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数

1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈

1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈

目录

第一章预备知识 (1)

1.1幂等矩阵的概念及刻划 (1)

1.2幂等矩阵的一些简单性质 (3)

第二章相关的重要结论 (7)

2.1幂等矩阵的等价条件 (7)

2.2幂等变换 (14)

2.3幂等矩阵线性组合的幂等性 (17)

2.4幂等矩阵线性组合的可逆性 (23)

2.5幂等矩阵的秩方面的有关性质 (26)

结束语 (29)

参考文献 (30)

第一章 预备知识

1.1 幂等矩阵的概念及刻划

定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.

为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.

命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1]

,

从而

2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌

命题2.若A 是对角分块矩阵,设A =12

r A A A ??

?

? ? ??

?

, 则A 是幂等矩阵?i A (1,2,,)i r = 均是幂等矩阵.

由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.

若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:

第一种: 10λ?? ?λ??

,但它不是幂等矩阵.否则有

2

10λ?? ?λ??=10λ??

?

λ??

,有,212λ=λλ=.矛盾.

第二种: 00

1

2λ??

?λ?? ,由2

000

1

122λλ????= ? ?λλ????

,有22

1122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000?? ???,1000?? ??? ,1001?? ??? ,0001?? ???

(1)

据命题1,于是得到:

定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1a

b c a ?? ?-??.

证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一

1若A ~0000?? ??? ,显然有 A =0000?? ???

02若A ~1001?? ??? ,显然有 A =1001??

???

3若A ~1000??

??? ,则有可逆矩阵P =1234λλλλ??

???

,1423(,P )λλλλ≠因为可逆 使

A =14

121423

1423134231423

14231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-??

-

?--????

?== ? ?

???

??-

?--??

则有 1d a =- .即 A 1a

b c a ??= ?-?? .

对剩余的一种与此有同样的结果. ▌

设1

12,1n n J λλ

λλ??

?

?

?≥= ? ?

??

?

,由2

n n J J = ,有2,21,λλλ==这是不可能的.于是有:

命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2

n n J J ≠.

因此,若A 是幂等矩阵,则A 的若尔当标准型如下:

12

00000

n r J λλλ??

?

?

= ?

?

??

据命题1即有

2n n J J =?2,1,2,,i i i r λλ== .

于是0i λ= 或1.

于是我们得到如下定理:

定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌

1.2 幂等矩阵的一些简单性质

性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌

据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=?=.

性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有

22()22E A E A A E A A E A -=-+=-+=-.

对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***

[2]

()AB B A =.

由Cauchy binet -公式有:

*

(,)

()

A i j A

B B i j =矩阵的第行第列代数余子式

=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+

=1

(1)

{det()({1,,1,1,,},{1,,1,1,,})n

i j

k A j j n k k n +=--+-+∑

det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ?-+-+

=**

({},{})1

1

.n

n

jk ki ki jk i j k k A B B A B A ====∑∑

于是,

*2*****2()()()A A AA A A A ====. ▌

性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:

222()()()()A A AA A A '''''====.

22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.

证明:由2A A = 知2λλ= (A λ是的特征值)01λ?=或. ▌ 由此易知:幂等矩阵是半正定矩阵.

性质6.若A 是幂等矩阵,设()?λ是A 的最小多项式,

则()?λ=1λλλλ-或或(-1)

从而A 可对角化,且其若尔当标准型为 00

0r

E ?? ???

. 其中r E 是r 阶单位矩阵, r 是A 的秩.

证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知

()?λ=1λλλλ-或或(-1).

又最小多项式是互素的一次因式的乘积,故可对角化. ▌

性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{

()0

n N A x C Ax =∈=

}{

()(),n n

R E A x C x E A y y C -=∈=-∈.

证明:由2A A = 有()0A E A -=,立即知

E A -的n 阶列向量都是0AX =的解

故有

()()R E A N A -?

又对()a N A ?∈,有

0()()Aa a Aa E A a E A a =?=+-=-()a R E A ?∈-

由a 的任意性知 ()()N A R E A ?-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.

性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有

2(1)(1)A A a a E a a E --+=-+

()[(1)](1)A aE A a E a a E +-+=-+.

又由0,1a ≠ 有

1

(){

[(1)]}(1)

A aE A a E E a a +-+=-+

故A aE +可逆,且11

()[(1)](1)

A aE A a E a a -+=

-+-+. ▌

性质9.任一秩为r 的n n ?幂等矩阵A 可分解成A CB =,其中C 是秩为r 的

n r ?矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)

证明:由性质6知, 存在n 阶可逆矩阵P 使

100

0r

E

P AP -??= ???

.

()1000

00r

r r E E A P P P E P -????== ? ?????

.

记(),00r r

E C P B E ??

== ???

.显然,B C 满足要求. ▌

性质10.任一幂等矩阵可写成两个实对称矩阵之积.

证明:因为11

00()0000r

r

E

E A P P P P --????''=? ? ?????

.故结论成立 ▌ 性质11.若,A B 均为n n ?阶幂等矩阵,且AB BA =,则AB 与A B '' 均为幂等矩阵.

证明:据题意有:

222()AB ABAB AABB A B AB ====.

2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======. ▌

第二章 相关的重要结论

本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.

2.1 幂等矩阵的等价条件

经过参考多篇文献,并进行归纳和推理可以得出以下定理. 定理1:设A 是n n ?的实矩阵,则下列命题是互相等价的: 1)A 是幂等矩阵. 2)A '是幂等矩阵. 3)E A -是幂等矩阵.

4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.

5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-. 7)()()R A N E A =-.

8)rank rank()A E A n +-=. 9){}()()0R A R E A -= . 10){}()()0N A N E A -= . 11)()()n R R A R E A =⊕-. 12)()()n R N A N E A =⊕-

以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.

定理2:设A 是n n ?的复矩阵,则下列命题是互相等价的:

1)A 是幂等矩阵.

2)A '是幂等矩阵. 3)E A -是幂等矩阵.

4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.

5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-. 7)()()R A N E A =-.

8)rank rank()A E A n +-=. 9){}()()0R A R E A -= . 10){}()()0N A N E A -= . 11)()()n C R A R E A =⊕-. 12)()()n C N A N E A =⊕- 证明:

1)?2) 由2A A =知

22()()A A A '''==.

反过来,

222[()][()]()A A A A A ''''''====.

1)?3)

必要性: 在1.2节性质3中已经给出了证明. 充分性:

2()()E A E A -=- ?222E A A E A A A -+=-?=.

1)?4) 由2A A = 知

1211121()P AP P AP P AP P A P P AP -----=?==.

反过来,

12111121()P AP P AP P AP P AP P A P P AP ------=??==

? 2A A =.

1)?5) 由2A A =,有

2B =2(2)A E -=244A A E E -+=.

反过来,

22244B E A A E E A A =?-+=?=.

1)?6)

必要性: 在1.2节性质7中已经给出了详细证明. 充分性: 对,n a R ?∈有

()()()E A a R E A N A -∈-=,故()()E A a N A -∈

于是有

2[()]0()0A E A a A A a -=?-=.

由a 的任意性得2A A =.

1)?7)

必要性: 由2A A =知()Aa R A ?∈,有

()0()E A Aa Aa N E A -=?∈-()()R A N E A ??-.

又()a N E A ?∈-,有()0E A a -=. 于是

()a Aa E A a =+-()()()Aa R A N E A R A =∈?-?

故有()()R A N E A =-.

充分性: 对n a R ?∈,有

()()()Aa R A N E A Aa N E A ∈=-?∈-

于是有

2

-=?-=.

E A Aa A A a

()()0()0

由a的任意性得2A A

=.

1)?8)

必要性: 由2A A

=知()()

=-.

N A R E A

于是有dim()dim()

=-

N A R E A

即有rank rank()

n A E A

-=-

亦即rank rank()

+-=.

A E A n

充分性: 由rank rank()

+-=易知:

A E A n

dim()dim()

=- (*)

N A R E A

又对()

?∈,有

a N A

Aa=

则有

-=-=.

E A a a Aa a

()

由()()

a R E A

∈-

-∈-知()

E A a R E A

即有()()

?-.

N A R E A

据(*)式知

=-.

N A R E A

()()

=.

再由6)得2A A

8)?9)

必要性: 由rank rank()

+-=.即知:

A E A n

+-=.

dim()dim()

R A R E A n

又对n

?∈,有

a R

=+-,

()

a Aa E A a

而(),Aa R A ∈()()E A a R E A -∈-. 故 ()()n C R A R E A =+-.

又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =. 故有

dim[()()]0R A R E A -= .

于是, {}()()0R A R E A -= .

充分性: 由{}()()0R A R E A -= 有

dim ()dim ()R A R E A n +-=.

即有

rank rank()A E A n +-=.

9)?10)

必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).

充分性:同理可证. 9)?11) 这是显然的[1]. 10)?12) 这是显然的[1]. ▌

定理3.设A 是秩为r 的n n ?矩阵.则A 是幂等矩阵?存在n 阶可逆矩阵P ,

使1000r

E

P AP -??= ???

. 证明:

必要性: 在1.2节性质6中已给出了证明.

充分性: 由1000r

E

P AP -??

= ???,有 100

0r

E A P P -??=

???

. 则

2111

000000000r

r r

E E E A P P P P P P A ---??????=?== ? ? ???????

. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.

定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则

3()0C C AB A B =?+=.

证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵

P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特

征值.从而有

1112,.A P P B P P --=Λ=Λ

进而

112()C P P -=Λ+Λ.

于是

3C C =可以等价为3223

33,1

,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.

又由30,1,1x x x =?=-知,A B 的特征值只有0,-1,1. 即

333,,(1,2,,)i i i i i r λλμμ===

于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== . 即

22

1212O ΛΛ+ΛΛ=.

因此3C C =等价为()0AB A B +=. ▌

注:当2A A =,立即有32A A A ==,同样地,对k ?,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.

推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+. 则 2()0C C AB A B =?+=. ▌

引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ?矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆. 则2A E =且rank rank()rank()2A A E A E n +++-=. 证明: 由3,A A =A 可逆,有

-13-12A A A A A E ?=??=()()A E A E O ?+-=.

于是据引理2有

r a n k

()r a n k ()A E A E n ++-≤ (1)

又2()()E E A E A =++-据引理1有

rank(2)rank[()()]n E E A E A ==++- rank()rank()E A E A ≤++-

rank()rank()A E A E =++-. (2)

有(1)式和(2)式有

rank()rank()A E A E n ++-=.

由于A 可逆知rank A n =. 因此有

rank rank()rank()2A A E A E n +++-=. ▌

定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.

证明: 对A ',

()()k k A A A '''==.

对*,A

**

***()()k k k A A A A A =??==

. 对,A '

()()()k k k A A A A ''''===. ▌

定理7. 设矩阵A 满足,(2)k A A k =≥. 则A 的特征值为0和22cos

sin ,(0,1,,2)11

m m m i m k k k ππ

ε=+=--- . 证明: 由k A A =,有

k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=

可得

220cos sin ,(0,1,,2)11

m m i m k k k ππλ=+=--- 以及. ▌

2.2 幂等变换

数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加

法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间

n n F ?同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.

定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换. 由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子. 性质1.可逆的幂等变换是恒等变换.

证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌

性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换?2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换.

性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌

我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多.

例如:在线性空间[]n P x 中令 (())()f x f x ?'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然

1[]n P x -+P ≠[]n P x .

性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:

由2()T U T U +=+, 可得

0TU UT +=……………………………………①

对①式左乘T 得

0TU TUT +=…………………………………②

对①式右乘T 得

0TUT UT +=……………………………………③

比较②和③得 TU UT =. 代入到①式得到 20TU =.

于是就有 0TU UT ==. ▌

性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =?==. 2) 11(0)(0),T U TU T UT U --=?==.

伴随矩阵的性质知识讲解

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (4) 摘要 (5) 关键词 (5) 0引言 (5) 1主要结论 (6) 1.1伴随矩阵的基本性质 (6) 1.2伴随矩阵的特征值与特征向量的性质 (9) 1.3矩阵与其伴随矩阵的关联性质 (10) 1.4两伴随矩阵间的关系性质 (11) 2应用举例 (12) 例1 (12) 例2 (12) 结束语 (13) 参考文献 (13) 致谢 (14)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1)i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A *= 112111222212n n n n nn A A A A A A A A A ????? ???????L L M M O M M 称为矩阵A 的伴随矩阵.

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目幂等矩阵的性质及应用 英文题目Properties and Application of Idempotent Matrix 院系理学院 专业数学与应用数学 姓名邱望华 年级A0411 指导教师王侃民 二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。 [关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices. [Key Words] the idempotent, the nature, the idempotence, linear combination

正定矩阵的性质及其应用_____

如对您有帮助,请购买打赏,谢谢您! 正定矩阵的性质及其应用 姓名: 学号: 指导教师: 摘 要;矩阵是数学中的一个重要基本概念,是代数学中的一个主要研究对象,而正定矩阵作为一类特殊的矩阵,固然有它与其它矩阵不同的性质和应用。本文主要是给出了正定矩阵的若干等价条件,对正定矩阵的一些重要性质进行了归纳整合并给出部分性质的证明过程,最后给出了正定矩阵在不等式证明问题、多元函数极值问题、最优化的凸规划问题以及解线性方程组问题中的应用。 关键词:矩阵;正定矩阵;性质;应用 The Properties of Positive Definite Matrix and Its Applications Abstract: Matrix is one of the important basic concepts and it is one of the main research object in math . Positive definite matrix is a kind of special matrix, no doubt it has its properties and applications different from other matrix. This paper states some equivalent conditions on how to determine a positive definite matrix, integrates some important properties, then puts forward several applications of the positive definite matrices on inequation problems, multiple function extreme problems, the optimization of convex programming problem and solving linear equations. Key Words: matrix; positive definite matrix; property; application 1. 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具实用价值、应用广泛的数学理论。矩阵是矩阵理论中一个重要基本概念,是代数学的一个主要研究对象,而正定矩阵作为一类常用矩阵,其在计算数学、数学物理、运筹学、控制论、数值分析等领域中都具有着广泛的应用。本文主要介绍正定矩阵的等价定理及其一些重要的性质,最后给出正定矩阵在数学及其它学科中的若干应用。 2. 正定矩阵的等价定理 首先我们给出正定矩阵的定义。 定义1[1] 设()T f x X AX =为一个实二次型,若对任意一组不全为零的实数12,,,n c c c ,都有 12(,,,)0n f c c c >,

正定矩阵和半正定矩阵的性质及应用

摘要 本文主要针对正定矩阵和半正定矩阵进行讨论,归纳和总结了正定矩阵和半正定矩阵的性质,通过实例介绍了正定矩阵(半正定矩阵)的判别方法诸如:定义法、主子式法、特征值法等,并且给出了它们在不等式的证明问题中以及多元函数极值问题中的一些应用. 关键词:正定矩阵;半正定矩阵;二次型;主子式;特征值

ABSTRACT This paper mainly discusses positive definite matrices and positive semi-definite matrix,the properties of positive definite matrix and semi-positive definite matrix are summarized.Through examples, the judgment methods of positive definite matrix and semi-positive definite matrix are introduced, such minor method, master type method, eigenvalue method, etc. Some applications of positive definite matrices and semi-positive definite matrix in the proof of inequality extreme value problems of multivariate functions are given. Keywords:positive definite matrix; positive semi-definite matrix; quadratic form; principal minor determinant;characteristic value

正投影及其性质

29.1 投影 第2课时正投影 【学习目标】 (一)知识技能: 1.进一步了解投影的有关概念。 2.能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【知识回顾】 正投影的概念:投影线于投影面产生的投影叫正投影。 【自主探究】 活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面: (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状? (1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1; (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2; (3)当线段AB垂直于投影面P时,它的正投影是。 设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。 活动2 如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

4、证明:和是幂等矩阵当且仅当是幂等矩阵。

幂等矩阵 1、如果A 是幂等阵, 证明:A ,),2,1( =k A T 和A E -都是幂等阵。 证:A E A A E A E -=+-=-222)(。 证毕 2、设A 是幂等阵,问:A -是否幂等矩阵? 答:当0≠A ,A A A A -≠==-22)(。 3、问:幂等矩阵是否是对称阵? 答:一般不是。 设T ab A =,满足1=T ba ,其中? ??? ? ??=n a a a 1,????? ??=n b b b 1, 发现A 是幂等矩阵; 而? ? ??? ???? ???=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 21211 1一般不是对称阵。 4、证明:A 和B 是幂等矩阵当且仅当?? ? ???=B A Z 00是幂等矩阵。 证:?? ? ? ??=2220 0B A Z 。 A 和B 是幂等矩阵当且仅当A A =2且B B =2 当且仅当Z Z =2 当且仅当Z 是幂等矩阵。 证毕 5、以下命题成立吗?

方阵A 是幂等矩阵当且仅当其特征值为0或1。 答:方阵A 是幂等矩阵,则其特征值为0或1。 反之一般不成立。 例如??????????=000110111A ,但A A ≠???? ??????=0001102212 。 6、设A 是特征值为0或1的方阵, 证明:A 幂等矩阵当且仅当A 可对角化。 证: 必要性。 因为A 与若当形矩阵J 相似,所以J AT T =-1 ,且?? ????=01 00J J J , 其中r r J ?? ? ?? ?? ??????=11111 ,()() r n r n J -?-????????????=01100 。 发现J J =2 ,即J 是幂等矩阵。 于是i J 是幂等矩阵,1,0=i ,进而i J 是对角矩阵,1,0=i 。 所以J 是对角矩阵。 即A 可对角化。 充分性。 因为A 可对角化,所以D AT T =-1 ,其中D 是主对角元是0或1的对角矩阵。 有D D =2 , 所以A TDT TDT TDT TDT A ====----11 1 2 12 )(。 证毕 7、问:n 阶幂等矩阵按相似关系来分类,可以分成几类? 答:记r 是幂等矩阵特征值1的个数,n r ≤≤0,所以有1+n 类。 8、设A 是n 阶幂等矩阵,

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

幂等矩阵的质

幂等矩阵的质

目录 中文摘要 (1) 英文摘要 (1) 1 引言 (1) 2 幂等矩阵的概念 (3) 3 幂等矩阵的性质 (4) 3. 1 幂等矩阵的主要性质 (4) 3. 2 幂等矩阵的等价性命题 (7) 3. 3 幂等矩阵的线性组合的相关性质 (11) 4 幂等矩阵与其他矩阵的关系 (14) 4. 1 幂等矩阵与对合矩阵 (14) 4. 1. 1 对合矩阵 (14) 4. 1. 2 幂等矩阵与对合矩阵的关系 (15) 4. 2 幂等矩阵与投影矩阵 (16) 4. 2. 1 投影矩阵 (16) 4. 2. 2 幂等矩阵与投影矩阵的关系 (17) 结束语 (19) 参考文献 (20) 致谢 (21) 英文原文 (22) 英文译文 (29)

数学与应用数学专业2009级王素云 摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系. 关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵 PROPERTIES OF IDEMPOTENT MATRIX Suyun Wang, Grade 2009, Mathematics and Applied Mathematics Abstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.360docs.net/doc/c614217914.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

浅谈幂等矩阵的性质

2009年7月(上 ) [摘要]幂等矩阵的种常规的正定性,虽然在几何学,物理学以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩阵的 其他学科的发展,越来越不能满足人们的需要,现代经济数学等众多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应用上都是有意义的。[关键词]幂等矩阵;高等代数;线性变换浅谈幂等矩阵的性质 侯君芳 黄丽莉 (郑州旅游职业学院,河南郑州 450009) 在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:A T 矩阵A 的转置,A H 矩阵A 的共轭转置R (A )矩阵A 的值域,N (A )矩阵A 的核空间。 幂等矩阵 定义[1]设A ∈C n ×n ,若A 2=A 则称A 是幂等矩阵。定理1若P 是幂等矩阵,则 1)P T ,P H ,E-P T ,E-P H 是幂等矩阵。2)P (E-P)=(E-P )P=03)Px=x 的充要条件是x ∈R (P ) 证明:1)P 2=P =>(P T )2=(P 2)T =P T =>P T 为幂等矩阵P 2=P =>(P H )2=(P 2)H =P H =>P H 为幂等矩阵 (E-P )2=(E-P )(E-P )=E 2-EP-PE+P 2=E-2P+P 2=E-P 故E-P 为幂等矩阵 (E-P T )2=(E-P T )( E-P T )=E 2-EP T -P T E+(P T )2 =E-P T 故E-P T 为幂等矩阵 (E-P H )2=(E-P H )( E-P H )=E 2-EP H -P H E+(P H )2=E-P H 故E-P H 为幂等矩阵 2)P (E-P )=PE-P 2=P-P 2=0(E-P )P=EP-P 2=P-P 2=0故P (E-P )=(E-P )P=0 3)设x 满足Px=x ,则x ∈R (P )。反之,若x ∈R (P ),则必存在y ∈C n ,使得Py=x ,于是,Px=P (Py )=Py 结论的几何意义是P 的特征值为1的特征子空间就是P 的值域。定理2秩为r 的n 阶。矩阵P 是幂等矩阵的充要条件是存在C ∈C n ×n 使得 C -1PC= Er 0(1) 证明:必要性:设J 是P 的Jordan 标准形,C ∈C n ×n ,且 C -1PC=J=J 1J 2··J i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i s ,J i = λi 1λi 1··λi i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i ×n i J i 是Jordan 块。由于P 2=P ,则J 2i =J i (i=1,2,3…s )。欲使J i 2=J i ,必须n i =1。因此J 是对角阵。又由P 2=P 。知λi =0或1,故r=rankJ=trP 。 充分性:由 Er 02 =Er 0知P 2 =P 。推论[1]rankP=trP 证明:由上题的(1)知幂等矩阵的特征值非1即0。且r=rankP 又有式(1)知 trP=λ1+λ2+…+λN =r 其中λ1,λ2…λN 是P 的n 个特 征值 矩阵的性质通常从以下几方面来研究:矩阵的秩,矩阵的相似对角化,矩阵的特征值对于幂等矩阵我们也从这几方面入手,讨论其具有的性质。 性质1若A 为n ×n 矩阵且A 2=A ,则A 相似于一对角阵 Er 证明:取一线性空间V (n 维)及一组基ε1,ε2…εn 定义一线性变换A :V →V ,A α=A α则A (ε1,ε2,…εn )=(ε1,ε2…εn )A 。由A 2=A ,则A 2=A 。A α∈A ∩A -1(0),设α=A β,β∈V ,A α=A 2β=β=α。又A α=0,则α=0,则AV+A -1(0)为直和。所以V=A +A -1(0)。在子空间AV 中取基η1η2…ηr ,在子空间A -1(0)取基ηr+1ηr+2…ηn ,则向量组η1,η2…ηr ηr+1…ηn 就是V 的一组基。又A η1=η1,A η2=η2…A ηr =ηr 且A ηr+1=0,A ηr+2=0…A ηn =0,A (η1,η2…ηn )=(η1,η2…ηn )Er 所以А相似于Er 性质2若А为n ×n 幂等矩阵,且R ( A 2 )=R (A )则有以下结论成立 1)Ax=0与A 2x=0同解 2)对于任意自然数P ,均有R (A p )=R (A ) 证明:设R (A )=r 显然Ax=0的解均为A 2x=0的解;设有一基础解系η1,η2…ηn-r 则此基础解系也为A 2x=0的解,并且线性无关,而 R (A 2 ) =r ,所以η1,η2…ηn-r 也为A 2x=0的基础解系,那么Ax=0与A 2x=0同解 若α为A 2x=0的解,则A 2α=0= >A 3α=0,则α为A 3E=0的解,反之,若α为A 3x=0的解,则A 3α=0即A 2A α=0,说明向量A α=0为方程组A 2x=0的解,由(1)则A α为Ax=0的解,则有A 2α=0,即α也为A 2x=0的解,所以A 2x=0与A 3x=0同解。因此,照 此方法类推,则必有R ( A p ))=R (A )。性质3若A 为n 阶方程,且R (A )+(E-A )=n ,则A 2=A 证明:设V 为n 维线性空间,其基ε1,ε2...εn 定义下述线性变换A :V →V ,A (ε1,ε2...εn )=(ε1,ε2...εn )A (E-A )(ε1,ε2...εn )=(ε1,ε2...εn )(E-A ),dim (AV )=R (A ),dim [(E-A )]=R (E-A )由题设,则dimAV+dim (E-A )=n (1) A α∈V ,α=A α+(α-A α)∈AV+(E-A )V ,则V=AV+ (E-A )V 则V=AV +(E-A )V 。下证A 2=A ,其实A α∈V ,有A 2α-A α=A (A-E )α∈AV ∩(E-A )α={0}。因此A 2α=A ,则 A 2=A ,从而A 2=A 。 下面通过三个例题说明幂等矩阵的性质与应用 例1设A 为n ×n 矩阵,且R (A )=r ,证明:A 2=A 当且仅当A=CB ,其中C 为n ×r 矩阵,秩为r ,B 为r ×n 矩阵,秩也为r ,且有BC=E r 。 证明:必要性:由于A 2=A ,由性质(1)则A 必(下转第13页)6

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要:正定矩阵是线性代数中一个极其重要的应用广泛的概念,深入探讨其基本性质对于其他科研领域的研究有着重要的意义。基于此,本文首先对正定矩阵的定义进行了描述,其次研究了正定矩阵的性质与判定方法,最后简单介绍了其具体应用。 关键词:正定矩阵;基本性质;推论;判定;应用 前言:矩阵是线性代数中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。这就使矩阵成为代数特别是线性代数的一个主要研究对象。作为矩阵的一种特殊类型,正定矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具。本文就此浅谈一下正定矩阵的各种性质和应用。 1.正定矩阵的基本性质 1.1 正定矩阵的定义 设M是n阶实系数对称矩阵,如果对任何非零向量X=(x1,……,xn) 都有X′MX>0,就称M正定(Positive Definite)。正定矩阵在相合变换下可化为标准型,即单位矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵,正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵。 1.2 正定矩阵的性质 当矩阵A为正定矩阵的时候,则必有以下几个性质,即: (1)aii>0,i=1,2,……,n; (2)A的元素的绝对值最大者,必定为主对角元; (3)≤annAn-1 ,其中,An-1是A的n-1阶主子式; (4)≤a11a22……ann,当且仅当A为对角阵的时候成立; 而除了以上这几个性质外,还有若干个推论也是比较重要的,在很多应用中

浅谈伴随矩阵的性质及其应用【开题报告】

开题报告 数学与应用数学 浅谈伴随矩阵的性质及其应用 一、综述本课题国内外研究动态, 说明选题的根据和意义 矩阵是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一概念自19世纪英国数学家凯利首先提出以后, 就形成了矩阵代数这一系统理论, 而且还广泛应用于实际生活. 把现实世界中的实际问题抽象成数学模型, 求出模型的解, 验证模型的合理性后, 用它的解来解释现实问题, 这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具, 在数学模型中具有重要的作用, 如在各循环赛中常用的赛况表格、国民经济的数学问题等. 矩阵可以分为很多类, 有初等矩阵、分块矩阵、幂等矩阵、伴随矩阵等, 在不同的矩阵类型中近几年来分别取得了不同的成果与进展. 而伴随矩阵作为矩阵中较特殊的一类, 其理论与应用有自身的特点, 它是矩阵理论及线性代数中的一个基本概念, 是许多数学分支研究的重要工具. 在线性代数的解题方面, 灵活地运用这些伴随矩阵的性质有效地解决了线性代数中的问题, 且它有助于拓宽解决线性代数问题的思路. 比如, 矩阵间一些关系的证明, 求矩阵的逆, 一些复合矩阵的行列式等. 运用伴随矩阵的性质还可以用来解决一些复杂的问题. 比如, 用伴随矩阵的性质: I A A A AA ==**可以解决《美国数学月刊》上的E3227号问题(注: 若A 和B 为n 阶矩阵, 存在非零向量x 和向量y , 使得0=Ax , Bx Ay =. 设i A 为A 中第i 列被B 中的第i 列替换后所得到的矩阵,证明01=∑=n i i A ). 现今不仅专业研究伴随矩阵 的数学工作者愈加众多, 而且量子力学、刚体力学、流体力学、自动控制等各个学科或尖端技术领域内的研究工作者也都以它为必需的工具. 如蔡建乐提出了用特征矩阵的伴随矩阵求惯量主轴的代数方法, 这有利于刚体力学的发展, 体现伴随矩阵的物理意义. 正因为它有如此重要的作用, 古今中外对其研究颇多, 并且得到了许多重要的成果. 如杨闻起探讨了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特征值等方面的性质; 王航平也在伴随矩阵的定义与基本性质的基础上, 探讨了伴随矩阵的运算性质, 特别研究了

投影法的基本性质

一、投影法的基本性質 在一定的投影條件下,求得空間投影面上的投影的方法,稱為投影法。 投影法分為中心投影法和平行投影法 1.中心投影法 空間形體各頂點引出的投射線都通過投影中心。投射線都相交於一點投影法,稱為中心投影法,所得的投影稱為中心投影。在中心投影法中,將形體平行移動靠近或遠离投影面時,其投影就會變小或變大,且一般不能反映空間形體表面的真實形狀和大小,作圖又比較復雜,所以中心投影法在機械工程中很少采用。 2.平行投影法 將投影中心移至無限遠處時,則投射線成為互相平行。這种投射線互相平行的投影法,稱為平行投影法,所得的投影稱為平行投影。在平行投影法中,投射線相對投影面的方向稱為投影方向。當空間形體平行移動時,其投影的形狀和大小都不會改變。平行投影法按投影方向的不同又分為斜投影法各正投影法 a.斜投影法投影方向傾斜於投影面時稱為斜投影法,由此法所得的投影稱為斜投影。 b.正投影法投影方向垂直於投影面時稱為正投影法,由此法所得的投影稱為正投影。 平行投影的基本性質 (1)同類性

一般情況下,直線的投影仍是直線,平面圖形的投影仍是原圖形的類似形(多邊形的投影仍為同邊數的多邊形)。 (2)真形性 當直線或平面平行於投影面時,其投影反映原線段的實長或平面圖形的真形。(3)積聚性 當直線或平面平行於投影方向時,直線的投影積聚成點,平面的投影積聚成直線。這種性質稱為積聚性,其投影稱為積聚性的投影 (4)從屬性 若點在直線上,則點的投影仍在該直線的投影上。 (5)平行性 若兩直線平行,則其投影仍相互平行。 (6)定比性 直線上兩線段長度之比或兩平行線段長度之比,分別等於其長度之比。 二、軸測投影圖和正投影圖 1.軸測投影圖按平行投影法把空間形體連同確定其空間位置的直角坐標 系一並投影到一個適當位置的投影面上,使其投影能現時反映形體三度 的空間形狀。這種投影法稱為軸測投影法,所得的投影圖稱為軸測投影圖, 簡稱軸測圖。 這种圖有較好的直觀性,容易看懂,但形體表面的形狀在投影圖上變形,致命

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

相关文档
最新文档