大跨度桥梁复习思考题

大跨度桥梁复习思考题
大跨度桥梁复习思考题

大跨度桥梁与城市桥梁复习思考题

唐茂林沈锐利

西南交通大学土木学院

2012/12/9

目录

第1章概述 (1)

第2章悬索桥结构组成及构造 (1)

第3章悬索桥计算 (2)

第4章悬索桥设计 (3)

第5章悬索桥施工 (3)

第6章斜拉桥的总体布置与结构体系 (4)

第7章斜拉桥塔、索、梁构造 (5)

第8章斜拉桥的设计构思 (5)

第9章斜拉桥的设计计算 (6)

第10章斜拉桥的施工 (6)

第11章城市立交桥 (7)

第12章曲线梁桥 (7)

第13章斜梁桥 (7)

综合练习 (8)

第1章概述

(1).什么是缆索承重桥梁,典型的缆索承重桥型有哪些?

(2).什么是自锚式结构、地锚式结构、部分地锚式结构?

(3).简述主缆材料的演变过程。

(4).简述现代悬索桥发展的历史。

(5).世界上首座采用空中编缆的悬索桥是哪座?其后在哪两座桥使得这种方法成熟?

(6).悬索桥在形成过程中产生过几大流派?各有何特点?

(7).悬索桥能建成上千米甚至几千米的原因有哪几方面?

(8).就你个人的理解,认为可对大跨度悬索桥结构进行哪些方面的改进,或者可在哪些方面

进行创新?

(9).现代斜拉桥发展的原因是什么?

(10).第一座现代斜拉桥是哪座桥?谁设计的?

(11).以2012年12月为限,世界上最大、次大跨度的悬索桥、斜拉桥分别是哪座?我国最

大跨度的悬索桥、斜拉桥是哪座?这些桥的特征是什么?

(12).简述斜拉桥主梁的结构体系的受力特点,说明斜拉桥能建成大跨度桥的原因。

(13).比较悬索桥和斜拉桥的相同点和不同点。

第2章悬索桥结构组成及构造

(1).悬索桥由哪几部分构件组成?各自的英文名称?哪些是主要受力构件?简述各部分的

主要功能和受力特点。

(2).对悬索桥主缆的材料性能有哪些方面的要求?

(3).钢丝绳主缆须具有哪些特性?

(4).对平行丝股主缆为什么要进行有序的排列?你认为何种形状的排列最容易达到目的?

(5).平行丝股主缆具有哪些优点?

(6).什么是主缆的空隙率?该值有何作用?

(7).选择主缆的安全系数时要考虑哪些因素?悬索桥跨度越大,是否应该取更大的安全系数,

说明理由。

(8).按材料的不同,桥塔可分为哪几种?

(9).按纵向刚度的不同,桥塔可分为哪几种?特点是什么?

(10).如何区分刚性桥塔、柔性桥塔悬索桥?

(11).大跨度悬索桥的桥塔顺桥向刚度是否越大越好?说明原因。

(12).悬索桥桥塔纵向布置、横向布置各有哪几种形式?

(13).悬索桥钢塔、混凝土塔断面形式有哪些?

(14).对于钢塔,你认为塔底与基顶应如何连接?说明传力机理。

(15).采用钢加劲梁和混凝土加劲梁的悬索桥断面各有哪几种断面形式?

(16).采用混凝土材料作为悬索桥的加劲梁有什么优缺点?

(17).悬索桥的锚碇有哪些组成部分?有哪几种形式的锚碇,各依靠什么来传递主缆水平力?

悬索桥有哪几种形式的锚固系统?

(18).绘图说明预制平行丝股主缆的几种常用锚固方式。

(19).悬索桥索夹和吊索的作用是什么?吊索与主缆的连接方式有哪两种?各自采用的索夹

形式是什么?吊索与加劲梁的连接方式有哪几种?

(20).悬索桥的鞍座有哪几种形式?各自的功能是什么?主缆相对于鞍座是否可以移动?设

计中如何来满足主缆在鞍座处的活动要求?

(21).悬索桥加劲梁有哪几类支座,如何设置较合理?

第3章悬索桥计算

(1).柔索计算理论的基本假定有哪些?请推导受任意荷载的悬索的静力平衡方程。

(2).试推导柔索受沿跨竖向均布荷载的线形方程和索长的精确计算公式以及索长变化与垂

度变化的关系式。

(3).试推导柔索受沿索竖向均布部荷载的线形方程。

(4).试推导柔索的变形协调方程。

(5).试推导基于挠度理论和一般的微小位移理论的悬索桥加劲梁挠度微分方程,并指出两者

的根本区别。

(6).大跨度悬索桥的非线性表现在哪几方面?如何在有限位移理论中加以考虑?

(7).基于有限位移理论的非线性问题有哪几种解法?

(8).横向荷载作用下,悬索桥有哪几种分析方法?

第4章悬索桥设计

(1).你认为悬索桥的总体设计中要从哪几方面考虑?列出各参数的常用范围。

(2).主缆的跨度比对悬索桥有哪些方面的影响?

(3).悬索桥加劲梁高度是否与跨度大小有关?为什么?

(4).对于多跨悬索桥,各跨简支或者连续的优缺点是什么?

(5).缆扣有哪些形式,作用是什么?

(6).悬索桥整体的空间计算模型有哪几种?各构件用什么单元模拟?绘图示意之。

(7).简述悬索桥结构有限元分析步骤。

(8).简述悬索桥摆柱式钢塔的优缺点。

(9).简述悬索桥桥塔的设计步骤。

(10).简述主缆索股技术要求和工艺要求。

(11).悬索桥的吊索布置要考虑哪些因素?吊索设计中可能有哪些误差对结构受力产生影响?

应考虑哪些附加索力的影响?

(12).确定吊索设计长度时应考虑哪些问题,影响吊索长度的因素是什么?

(13).索夹高强螺栓预拉力损失的主要原因有哪些?

(14).试推导主缆空隙率的计算公式。

(15).悬索桥加劲梁设计应作哪些方面的计算?

(16).流线形正交异性钢桥面板箱梁中有哪几种形式的纵向加劲肋?绘图说明纵向加劲肋与

横隔板的相互关系(相交的形式)。

(17).扁平钢箱式悬索桥的上翼缘有哪些作用?简述钢桥面板设计计算的三种体系。

(18).箱形截面的应力计算有哪些项目?

(19).锚碇设计计算的项目有哪些?

第5章悬索桥施工

(1).主缆有哪几种施工方法?英文名称是什么?分别是在哪座桥发明的?

(2).混凝土桥塔有哪几种施工方法?说明其特点。

(3).先导索过海(江﹑河)有哪几种方法?

(4).简述AS法的编缆过程。

(5).简述预制平行丝股法丝股的架设过程。

(6).悬索桥加劲梁的吊装方向有哪几种,绘图说明之。

(7).从吊装方式分,悬索桥加劲梁的架设方法有哪几种,绘图说明之。

(8).对不能直接吊装的加劲梁段,你认为可采用哪几种方法架设,绘图说明。

第6章斜拉桥的总体布置与结构体系

(1).简述斜拉桥的发展四代结构特点?

(2).斜拉桥的孔跨布置有哪几种形式?绘图说明之,不同形式的边中跨比的范围是多少?

(3).多塔多跨斜拉桥有哪几种形式,绘图说明之。

(4).斜拉桥辅助墩的作用是什么?

(5).斜拉索有哪几种空间布置形式? 各自的优缺点?

(6).斜拉索有哪几种立面布置形式? 各自有什么力学特点?

(7).与双索面斜拉桥相比,单索面斜拉桥有哪些优缺点,设计中应注意哪些问题?

(8).有哪几种索距布置形式?

(9).简述斜拉桥密索体系的优缺点。

(10).绘图说明斜拉索在塔上的布置形式,并说明各种形式的优缺点。

(11).斜拉桥塔梁连接形式有哪几种?绘图说明之,各自的优缺点是什么?

(12).斜拉桥有哪些形式的非连续体系?优缺点是什么?

(13).斜拉桥主梁梁高可以变化吗?密索体系的高跨比范围是多少?

(14).桥塔的纵向结构形式有哪几种?绘图说明之。

(15).桥塔的横向结构形式哪几种?绘图说明之。

(16).什么是桥塔的有效高度?桥塔合理的高跨比是什么?

(17).斜拉索的锚固张拉体系有哪几种?

(18).斜拉桥桥塔的支承体系有哪几种?

(19).如何设置斜拉桥梁体的支承?

第7章斜拉桥塔、索、梁构造

(1).斜拉桥桥塔一般可由哪些材料制作?

(2).绘图说明斜拉桥桥塔的各种形式,并说明各种形式的特点或者优缺点。

(3).斜拉桥桥塔截面形状有哪几种?

(4).斜拉桥主梁按材料类型可以分为哪几种?什么是结合梁、什么是混合梁?试绘制一个结

合梁断面并指出各构件名称。

(5).试根据斜拉桥不同的索面形式指出适合的钢梁截面形式、混凝土梁截面形式。

(6).选用斜拉索有哪些要求?斜拉索的种类有哪些?

(7).斜拉索的锚头类型有哪几种?请问热铸锚的疲劳强度大还是冷铸锚的疲劳强度大?

(8).简述斜拉索与钢梁的锚固型式及力的传递方向。

(9).简述斜拉索与混凝土主梁的锚固型式。

(10).斜拉索与混凝土桥塔的锚固型式有哪些。

第8章斜拉桥的设计构思

(1).简述斜拉桥的总体设计设计步骤。

(2).按斜拉索、塔、梁的关系可将斜拉桥结构划分为哪几种体系?简述其共同点和不同点,

如何选择结构体系。

(3).如何考虑斜拉桥的跨度布置?

(4).按材料分,斜拉桥主梁有哪些类型?各自的优缺点是什么?

(5).适应单索面、双索面的桥塔造型分别有哪些?如何选择桥塔的高度?

(6).斜拉索应符合哪些基本要求?斜拉索角度控制范围是多少?

(7).斜拉桥设计中应特别注意哪些问题?

(8).你认为斜拉桥可在哪些方面进行改进或创新?

(9).根据你的了解和认识,更大跨度斜拉桥设计施工中可能会遇到哪些问题。

第9章斜拉桥的设计计算

(1).斜拉桥的计算分析一般包含哪几类?

(2).采用微小变形理论计算分析斜拉桥时的基本假定是什么?在此理论中如何近似地考虑斜

拉索的非线性?

(3).斜拉桥计算分析的复杂性体现在哪些方面?

(4).斜拉桥静力分析理论有哪些?跨度大于300m时,最好采用何种理论进行分析?

(5).斜拉桥几何非线性体现在哪些方面?与悬索桥的几何非线性有何不同?

(6).斜拉桥的静力分析方法有哪几种?简述斜拉桥的静力分析步骤。

(7).简述斜拉桥活载的计算方法。

(8).绘图并简述斜拉桥的动力计算的空间模型。

(9).什么是斜拉桥的合理成桥状态?斜拉桥为什么有合理成桥状态的问题?什么是斜拉桥

的合理施工状态?斜拉桥合理状态实现的关键技术手段是什么?

(10).斜拉桥索力优化的概念是什么?设计中索力优化的目标是什么?

(11).确定斜拉桥索力的方法有哪些?确定并且能够优化斜拉索索力的方法有哪些?

(12).简述斜拉桥索力优化的试算过程。

(13).斜拉桥施工过程计算中有哪些关键步骤必需计算模拟?

第10章斜拉桥的施工

(1).斜拉桥主梁的施工方法有哪几种,简述其要点和适用性。

(2).斜拉桥钢塔的施工方法有哪些?混凝土桥塔施工方法有哪些?

(3).斜拉索的引架有哪几种方法?

(4).简述斜拉索索力张拉调整与控制步骤。

(5).斜拉索索力测试有哪几种方法?

(6).现代斜拉桥的斜拉索有哪几种主要形式,各种斜拉索施工方面有什么不同。

(7).与其它方法相比,采用高密度聚乙烯PE防护有什么优点?

第11章城市立交桥

(1).立体交叉通常有哪些组成部分?

(2).什么是正线、匝道、冲突点、交织点?

(3).三路立体交叉、四路立体交叉各有哪些型式?

(4).简述立交桥的结构特点。

第12章曲线梁桥

(1).试绘图示意曲线梁的平面形状?

(2).简述曲线梁的力学特性。

(3).曲线梁常用分析方法有哪些。

(4).曲线梁中预应力配置有哪些特殊性?

第13章斜梁桥

(1).绘图示意斜梁桥的斜度、斜交角?

(2).根据斜度的不同可以分为哪几种斜梁?绘图示意之。

(3).什么是单跨斜支承梁、多跨斜支承梁?

(4).简述斜梁桥的力学特性。

综合练习

(1).悬索桥综合计算

如图所示的单跨加劲梁悬索桥,主跨跨径L = 630m,主缆分跨为166m+630m+166m,即边跨主缆跨径为L1 = 166m,设计矢跨比f/L = 1/10,主缆采用91股91丝的预制平行索股,钢丝直径为5.1mm,强度为1670MPa;两桥塔不等高,左塔顶鞍座IP点标高为1890m,右塔顶鞍座IP点标高为1900m,左侧散索鞍IP点标高1815m,右侧散索鞍IP点标高1830m;吊索采用73丝直径为5.0的预制平行索股,强度为1670MPa,共51对吊索,编号为1#~51#,每个索夹2根吊索,吊索间距为12m,边吊索距桥塔中心线为15m;采用钢箱加劲梁,共53个梁段,编号为0~52,标准梁段长为12m,,编号为1~51,,左侧端梁段长度为9.1m,为0号梁段,右侧端梁段长度为7.6m,为52号梁段,梁段距桥塔中心线为0.65m,端梁支座中心线距离梁端为1.45m,加劲梁采用铰接法施工。

设计恒载如下:

①主缆沿缆恒载为14kN/m,其中包括主缆自重及防护、索夹自重;

②加劲梁一期恒载为120kN/m,其中包括加劲梁自重、吊索自重;

③加劲梁二期恒载为50kN/m,其中包括桥面铺装、防撞护栏、路缘石等;

④设计活载为公路-I级,为计算简便,计算时可忽略其中集中荷载作用,即取10.5kN/m;

⑤主缆所受风荷载为1kN/m,加劲梁为6.5kN/m,桥塔为40kN/m。

结构几何物理参数如下:

①加劲梁的几何特性面积A = 1.1345m2,横向弯曲惯性矩 I y = 72.7659 m4,竖向弯曲惯性矩I z= 1.6049 m4,扭转惯性矩I x = 4.0362 m4,形心到梁顶的距离d s = 1.1m,到梁底的距离d x = 1.9m,形心到主缆中心的距离为4.6m;

②钢材的弹性模量E g = 2×105 MPa;桥塔混凝土材料采用C50,弹性模量为E h = 3.45×104 MPa。

根据上述已知条件,试作以下解答:

①请画出一期恒载作用下吊索力的计算图示,并由此计算1#~5#吊索、47#~51#吊索的一期恒载内力以及加劲梁段0~5的弯矩;

②按抛物线理论计算主缆左、右边跨跨中在恒载状态下的垂度;指出主缆发生最大内力的截面,计算该截面在恒载状态下的内力和活载最大内力,对该位置进行恒载、活载、温度作用组合,验算该处主缆的强度(提示:已知该截面在温度作用下的最大应力为20MPa,恒载分项系数为1.1,可变作用分项系数为1.4,第二种可变荷载组合系数为0.8,材料强度分项系数为1.85);

③按抛物线理论计算左侧端吊索对应的索夹在恒载状态下的倾角,计算端吊索在恒载状态下的抗滑安全系数(提示:索夹与主缆的摩擦系数取0.2);对该吊索进行恒载、活载作用组合,验算该吊索的强度(提示:已知二期恒载及活载作用下该吊索的最大内力分别为160kN、400kN;恒载分项系数为1.1,可变作用分项系数为1.4,材料强度分项系数为2.2);

④试根据抛物线理论计算在恒载作用下鞍座底部的最大压力及活载作用下鞍座底部的最大压力;

⑤忽略桥塔横向位移对加劲梁横向位移的影响,试计算加劲梁的横向位移,并验算加劲梁的横向刚度是否满足要求(提示:根据《公路悬索桥设计细则》,加劲梁在风荷载(桥面无车)作用下,最大横向位移不宜大于跨径的1/150)。

(2).悬链线与抛物线的比较

已知:两支点等高的两根悬索,跨度均为L=100m,荷载为q=100kN/m,跨中垂度f相同;求解:

①绘出当线形分别为悬链线和抛物线时,所对应的荷载分布图式;

②在f/L=0.05~0.5范围内,位置x = L/4处的两种线形差值。

(3).拉索索力调整

如图所示面积为A c、长度为L c

一根梁的跨,其中梁的弹性模量为E

的抗弯惯性矩为I,受均布荷载为q,

①假定未加载q时,拉索的张力为0,则加

载q后,拉索的张力T为多少?

②采用简支梁法调整拉索张力T,使梁跨中点的弯矩为0,试计算拉索张力T。

③以主梁弯矩平方和最小作为目标函数,优化调整主梁受力,试计算拉索张力T。

④试按刚性支承连续梁法计算拉索张力T。

大跨度桥梁的颤振研究综述(小学期作业)

大跨度桥梁的颤振研究综述 桥梁颤振是由结构内部弹性力、惯性力、阻尼力和自激力共同作用而引起的一种复杂的气动弹性不稳定现象。当风速达到某一临界值时,风的动力作用与桥梁自身震动相互影响并可能导致桥梁发生颤振现象。由于桥梁颤振是发散性(振幅不断增大)的,所以桥梁一旦发生颤振现象,将导致桥梁整体灾难性的结构破坏,1940年美国的塔科马海峡吊桥因颤振而倒塌就是一个例子。故而桥梁颤振一直是桥梁振动中研究的重点。 影响桥梁颤振主要有气动方面和结构方面两个方面的因素。气动方面主要是结构断面的气动外形,结构方面则主要是结构的质量、刚度、阻尼等。桥梁颤振是由以上二者的共同作用而导致的,故而要避免桥梁发生颤振现象,就必须研究二者影响颤振的机理和并且通过合理设计提高桥梁的颤振临界风速。 发生颤振的必要条件是:结构上的瞬时气动力与弹性位移之间有位相差,因而使振动的结构有可能从气流中吸取能量而扩大振幅。在气流速度较低的情况下,结构所吸取的能量会被阻尼消耗而不发生颤振,只有在速度超过某一值时,才会发生颤振。若吸取的能量正好等于消耗的能量,则结构维持等幅振动,与此状态对应的速度称为颤振临界速度v(简称颤振速度)。当气流速度跨越颤振速度时,振动开始发散。因此,桥梁设计中必须使桥梁颤振临界风速大于设计基准风速,还要有一定的安全储备,从而避免在使用过程中出现颤振现象。

桥梁颤振物理关系非常复杂,振动机理也非常深奥,故此桥梁颤振的研究也经历的由古典耦合颤振理论到二维分离流颤振理论再到三维桥梁颤振分析的发展阶段,并且由线性过渡到分线性。 人们最早接触到颤振现象是在航空领域,第一次世界大战初期就有轰炸机因发生颤振而坠毁,这促使人们开始研究空气动弹性颤振问题。到1934年,美国科学家Theodorson首先从理论上研究了薄平板的气动自激力,并给出了其解析表达式和精确解,自此,求解机翼颤振有了解析方法——即二维经典耦合颤振理论。 经典耦合颤振理论只适合于流线型断面的颤振分析,该类截面的气流绕流形态与平板十分接近,满足Theodorson形式的非定常气动力成立的前提条件,但是实际桥面棱角明显,流动情况十分复杂,势流理论无法描述作用在非线性流体上的非定常力。 由此,1966年日本科学家Saknta等人对比了桥梁断面和机翼断面的气动导数的差别后,建立了桥梁结构的分离流颤振理论。其建议用6个实函数的气动导数来表示钝体截面气动自激升力和扭矩,后又被Sarkar和Jones等人推广到18个气动导数表示的气动自激力公式,以满足不同需求。 二维分离流颤振理论既可以用于求解鼓点扭耦合颤振问题,也可以用于分析分离流颤振问题,但是其必须满足线性化假定(小幅震动假定)和攻角不变假定等局限性假定条件,而这些假定一定程度上将气动力定常化,且忽略了结构运动沿桥梁纵向的变化,只能用于一般的悬索桥。

大跨度钢桁架结构桥梁架设方案

1、工程概况 XX桥梁工程是连接场内左、右岸低线的跨黄河下承式简支钢桁梁桥,总重204t,桥轴线距离下游围堰中心线55m,采用1x84m装配式组合钢桁梁桥,单车道净宽4m,桥梁全长97m,桥面设计高程为2615m,左岸接30m道路与后期临时施工道路衔接,右岸桥头接100m道路与右岸低线公路相接。 本工程的内容包括装配式组合钢桁梁材料运输(从积石峡水电站运输至羊曲水电站施工场地,约460公里)、架设安装、钢桥的检测及荷载试验。 2、工程施工重点、难点及措施 2.1工程施工重点难点 2.1.1 钢桥自重达到204T,跨度84m,安装时最大悬臂长度达到60m,梁端变形大,导梁结构选择困难,同时给牵引端桥台布置及顶落梁施工带来较大的困难,是本工程的一个难点。 2.1.2桥位两侧施工场地狭窄,地形高差大,主桥钢梁的进场、组拼、存放及施工较困难,是本工程另一个难点。 2.1.3钢梁宽跨比小,对钢梁架设的横向稳定也带来了较大的影响。如何保证钢梁架设横向稳定及精度是本工程的一个重点。 2.1.4大型跨河钢结构施工、悬臂长、临空工作面多,确保钢结构架设的施工安全,是本工程的又一个重点。 2.2解决措施 2.2.1因钢桥跨度大,拖拉时钢桥和导梁悬臂长度过长,为减小施工难度,保证施工安全,在两岸桥台靠河侧12m处各设置一道临时施工栈柱,以减小钢梁拖拉施工时悬臂长度,从而满足施工要求。 2.2.2为保证钢桥进场、组拼、存放及施工要求,采用拖拉法进行安装,在左岸进行组拼,钢桥主桁架根据其结构进行预拼,每榀在组拼平台旁预拼成小单元后直接组装。 2.2.3采用导梁、滑道及全程测量监控的手段,确保钢梁安装的稳定性及精度要求。导梁、滑道均在临时场地制作成型后现场组装,施工过程中利用现有的测量设备,加大测量频次保证安装精度,从而满足设计要求。 2.2.4两岸施工面使用标准防护栏杆进行封闭,一方面避免闲杂非施工人员、

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

东北大学考试《桥梁工程》考核作业参考174

东北大学继续教育学院 桥梁工程试卷(作业考核线上2) A 卷(共 4 页) 1. 桥梁可变作用: 在结构使用期间,其量值随时间变化,且其变化值与平均值比较不可忽略的作用。 2. 预拱度: 为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或制造时所预留的与位移方向相反的校正量。 3. 合理拱轴线: 拱轴线上的竖向坐标与相同跨度相同荷载作用下的简支梁的弯矩值成比例,即可使拱的截面内只受轴力而没有弯矩,满足这一条件的拱轴线称为合理拱轴线。 4. 斜拉桥合理成桥状态: 指斜拉桥在施工完成后,在所有恒载作用下,各构件受力满足某种理想状态,如梁、塔弯曲应变能最小。 5. 汽车冲击系数: 冲击系数即冲击电流值对于交流电流幅值的倍数。 二、选择题(20分) 1. 桥梁基本组成部分不包括( B )。 A. 上部结构; B. 路堤; C. 支座; D. 附属设施 2. 对于简支梁桥,其净跨径、标准跨径、计算跨径之间的关系是( B )。 A. 净跨径<标准跨径<计算跨径; B. 净跨径<计算跨径<标准跨径; C. 计算跨径<标准跨径<净跨径; D. 标准跨径<净跨径<计算跨径 3. 车道荷载用于桥梁结构的( B )计算,车辆荷载用于桥梁结构的( )计算。 A. 上部结构,下部结构; B. 局部加载,整体; C. 整体,局部加载、涵洞、桥台和挡土墙土压力等; D. 上部结构,整体 4 对于跨河桥而言,流水压力属于( C )。 A. 永久作用; B. 基本可变作用; C. 其它可变作用; D. 偶然作用 5. 在装配式预应力混凝土简支T形梁跨中部分采用下马蹄形截面的目的是( A )。 A. 便于布置预应力筋; B. 增强梁的稳定性; C. 承受梁跨中较大的正弯矩; D. 增强构件美观 6. 装配式混凝土板桥的块件之间设置横向连接,其目的是(C )。 A. 减少车辆震动; B. 增加行车道的美观; C. 增强板桥的整体性; D. 避免块件之间横桥方向的水平位移 7. 钢筋混凝土简支T形梁桥主梁肋内设置纵向防裂钢筋的目的,主要是为了防止由于( B )产生的裂缝。

超大跨径桥梁结构健康监测关键技术

《超大跨径桥梁结构健康监测关键技术》 2017年度湖南省科技进步奖项目公示材料 一、项目名称:超大跨径桥梁结构健康监测关键技术 二、项目简介 桥梁是公路交通的重要节点,而超大跨径桥梁由于结构形式与结构安全的重要性,成为交通线路的重中之中。大桥在投入使用后,不可避免地会受到外界因素(自然灾害、外荷载等)的影响,造成结构安全隐患,最终影响社会经济发展和人民生命财产的安全。 超大跨径桥梁结构健康监测关键技术主要以矮寨特大悬索桥(吉茶高速公路控制性工程,创造了最大峡谷跨径、塔梁完全分离结构设计、轨索滑移法架梁以及岩锚吊索结构四项世界第一)为工程依托,在课题组累积的前期研究基础之上,从监测系统整体效能优化设计、健康监测元器件开发、结构损伤分析与评估等方面开展了深入系统的研究,主要内容及创新点包括: (1)针对桥梁健康监测与评估系统功能划分不明确、系统框架不完全等问题,结合现代计算机通信技术,提出了基于网格的超大跨径桥梁结构健康监测系统。对桥梁结构健康监测系统中评估分析模块效率低、系统间存在信息孤岛等问题进行了优化,最终实现健康监测系统评估功能共享。 (2)针对超大跨径桥梁监测任务点繁多,数据量大等问题,以K-L信息距离为理论基础,提出了K-L信息距离准则。利用该准则研究了超大跨径桥梁传感器优化布置方法,达到用最少测点监测桥梁全面状态的目的。 (3)研究了超大跨径桥梁有限元模型修正方法,提出了基于径向基函数的桥梁有限元模型修正方法,避免了传统的矩阵型和参数型模型修正中修正目标众多、监测自由度与有限元模型自由度不匹配的问题。 (4)根据桥梁的损伤机理与车匀速过桥时与桥梁的耦合特性,提出了基于动能能量比和小波包能量比边缘算子的桥梁结构损伤识别方法。 (5)提出了基于健康监测系统的桥梁拉索疲劳寿命预测方法,研发了低功耗便携式索力在线监测设备等桥梁结构监测元器件。 (6)研发了超大跨径桥梁结构健康监测综合系统,编制了《湖

大跨度桥梁设计复习题答案讲解

《大跨度桥梁设计》复习题 1.拱桥的受力特点? 拱桥按照是否对墩台产生水平推力,可分为有推力拱桥和无推力拱桥,有推力拱桥的主要承重构件是主拱肋(圈),受压为主;无推力拱桥也成为系杆拱桥,是梁—拱组合体系桥,其主要承重构件是拱肋与系杆,拱肋受压,系杆受压。拱脚处有水平推力,从而使拱主要受压,与梁桥比使拱内弯矩分布大为改变(减小)。 2.中承式拱桥的行车道位于拱肋的中部,桥面系(行车道、人行道、栏杆等)一部分用吊杆悬挂在拱肋下,一部分用钢架立柱支承在拱肋上。 3.简支梁和连续梁桥可自由收缩,收缩使结构只发生变形,但不产生内力;固定梁、连续刚构桥等超静定结构,混凝土收缩产生变形和内力。 4.大跨径混凝土连续梁桥采用悬臂施工法施工的过程中,墩梁临时固结,主梁从墩顶向两边同时对称分段浇筑或拼装,直至合龙;合龙之前,结构受力呈T构状态,属静定结构,梁的受力与悬臂梁相同。 5.大跨径桥梁按结构体系分类? 梁桥、拱桥、悬索桥、斜拉桥、及其他组合体系桥。 6.公路桥梁的车道荷载由哪两种荷载组成,当计算剪力效应时,集中荷载标准值应乘以什么系数? 车道荷载由均布荷载和集中荷载组成。 公路1级车道荷载的均布荷载标准值为q=10.5KN/m,集中荷载标准值为P kk按以下规定选取:桥涵计算跨径≤5m时,P=180 KN;桥涵计算跨径≥50m时,P=360 KN;桥涵计算跨径介kk于上述跨径之间时,采用直线内插法求得:P=(4l+160)KN。计算剪力效应时,上述集中荷载标准值应乘以k系数1.2. 公路2级车道荷载的均布荷载标准值q,集中荷载标准值P,为公路1级车道荷载的0.75倍。kk 车道荷载的均布荷载标准值应满布于使结构产生最不利荷载效应的同号影响线上,集中荷载标准值只有一个,作用于相应影响线的峰值处。 7.连续梁桥施工方法主要分为两大类:整体施工法和分段施工法。中小跨度桥梁施工方法主要采用整体施工法,包括满堂支架法、预制拼装法;大跨度桥梁主要采用分段施工法,包括悬臂施工法、逐跨施工法、顶推施工法、 转体施工法。桥梁分段施工有三种基本形式:纵向分段、横向分段(又称装配式桥梁施工,主要用于中小跨径桥)、竖向分层施工(用于组合桥梁施工,也用于大跨拱桥主拱肋的现浇或安装)。 8.悬浮体系斜拉桥的特点? 塔墩固结,塔梁分离,主梁除两端支承于桥台处,全部用斜拉索吊起,其结构形式相当于在单跨

大跨度桥梁

大跨度桥梁 1.大跨度桥梁现状及未来发展趋势 1.1斜拉桥 斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。它以其跨越能力大,结构新颖而成为现在桥梁工程中发展最快,最具有竞争力的桥型之一。 斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。 斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。 中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 今后斜拉桥的体系多以漂浮式或半漂浮为主。半漂浮式可用柔性墩或在塔上设水平拉索阻止桥面过分的漂浮,所有这些都是为了抵抗温度变形及地震。 斜拉桥的发展趋势主要表现在如下几个方面: 1)桥面继续轻型化,跨径继续增大,中小跨径也具有竞争力 2)塔架构的多样化 3)多跨多塔斜拉桥 1.2悬索桥 悬索桥是特大跨径桥梁的主要形式之一,除苏通大桥、香港昂船洲大桥这两座斜拉桥以外,其它的跨径超过1000m以上的都是悬索桥。如用自重轻、强度很大的碳纤维作主缆理论上其极限跨径可超过8000m。 迄今为止世界上已出现三个悬索桥大国,即美国、英国与日本。全球各类悬索桥的总数已超过100座。 美国在悬索桥的发展上花了将近100年的时间,技术上日趋成熟,为全球悬索桥的发展奠定了基础,并首先使悬索桥成为跨越千米以上的唯一桥型。美国的悬索桥由于出现较早,在风格上有与其时代相适应的特色,主要有一下各点: (1)主缆采用AS法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强螺栓紧固。 (6)鞍座采用大型铸钢件。 (7)桥面板采用RC构件。 英国的悬索桥由于出现较晚些,顾自成流派。其主要特点如下: (1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。

桥梁作业答案

专业概论(桥梁类)阿依沙尔.别克 一. 桥梁工程专业有何特点? 答:桥梁工程专业的设置根据国家建设需要和学科发展而定,具有以下特点: 1.悠久的历史 桥梁工程专业的发展与土木工程专业的发展相伴相随。1896年,山海关北洋铁路官学堂(西南交通大学前身)在山海关创建,是我国创办最早的高等学府之一。学校当时仅设有土木工程系,于1897年春在天津招收了第一届学生20名,这是我国高校成立最早的土木工程系,西南交大也由此成为中国近代土木工程高等教育的一个重要发祥地。在100多年的发展中,桥梁工程专业(方向)从最初单一的本科发展到具有了从本科生、研究生到成人教育的完整培养体系,为国家培养了大批高级专业技术人才,如著名桥梁专家茅以升美国“预应力混凝土先生” 林同炎以及中国科学院、中国工程院院士李国豪、汪菊潜、唐寰澄、范立础、项海帆等等一大批名扬海内外的学界泰斗、工程权威。 2.雄厚的师资力量 桥梁工程专业名师济济,拥有雄厚的师资力量。现有在岗教师52名,其中教授19名(博士生导师15名),副教授15名,讲师18名,超过95%的教师具有博士研究生学历(见图1-2)。教师中有享受国务院特殊津贴的专家1名,有教育部“新世纪优秀人才”3名,有铁道部“优秀中青年专家”2名,有四川省“学术技术带头人”4名及四川省“杰出青年学科带头人”1名,另有多名教师曾获得西南交大的各项优秀教师奖。主讲教师具有坚实的理论基础、科研能力和丰富的教学经验,同时与国内桥梁工程规划、设计、建设、管理等单位有长期稳定的联系,能及时在教学中反映最新研究成果。 3.优良的教学条件 拥有世界一流的抗风实验室,拥有土木工程防灾国家重点实验室,开展了大量桥梁抗风、抗震研究。建成了国家级“土木工程本科实验教学示范中心”,拥有种类齐全、数量充足、性能先进的实验设备,教学实验条件处于国内先进水平。桥梁工程领域部分的实验室建设工作已纳入“现代轨道交通国家实验室”、“交通土建抗震技术国家工程实验室(筹)”建设的范畴,大型轨道交通桥梁结构动力模拟试验子平台已纳入到“轨道交通运输工程优势学科创新平台建设”范畴。 4.理论同实践的结合 专业教学上注重理论同工程实践的结合,教学内容既重理论又重应用,教学方法强调手脑并用、练好基本功。设立了认识实习、毕业设计(论文)等教学环节。鼓励教师及学生参与到桥梁工程的设计、施工及监理工作中,为教学工作提供了有利的学习条件,使教学内容更具先进性、针对性和时代感。同时以科研工作促进专业教学,充实了教学内容,促进了教学水平的提高。 二. 请对你所了解的桥梁工程专业的任意两个研究领域(方向)加以阐述。 1、桥梁空间分析及大跨度桥梁的结构行为 这是传统的研究方向,主要研究现代大跨度桥梁与结构的空间分析理论;大跨度桥梁的空间稳定分析;桥梁结构非线性行为;大跨度桥梁的受力机理和经济性能;悬索桥和斜拉桥的极限承载力研究等。李国豪院士是桥梁空间分析和桥梁稳定与振动方向的创始人。

大跨度桥梁考核作业详解

2016级大跨度桥梁考查题(每题10分,共100分) 一、简述悬索桥中主缆无应力索长的计算思路和方法? 答:悬索桥中、边跨中,各索股由索夹紧箍成一条主缆, 因而,通过求解主缆中线再 求索股的无应力长度。但是,悬索桥不同于其他的桥型,其主缆线形并不能由设计者人为确定,而需根据成桥状 态的受力而定。所以,先确定成桥状态主缆各控制点(IP 点和锚点)的位置、矢跨比和主缆的截面几何形状参数、材料参数等,再采取解析迭代法,确定主缆的线形,并求解主缆的缆力和主缆中线的有、无应力长度,然后进一步求解包括锚跨在内的索股长度。 主缆自由悬挂状态下,索型为悬链线。取中跨曲线最低点 为坐标原点,则对称悬链线方程为: 式中:c=H/q ;H 为索力水平投影;q 为主缆每延米重。 主缆自重引起的弹性伸长量为: 主缆无应力长度为: 210S S S S ?-?-= 根据成桥状态主缆的几何线型、桥面线型,求得各吊索的

有应力长度,扣除弹性伸长量,即得吊索无应力长度。 二、简述悬索桥中主索鞍为何要设置边跨方向的预偏? 答:在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态,此时的偏移量或偏转量就是索鞍的预偏量。 悬索桥桥塔设计的合理成桥状态是塔顶没有偏位,塔底没有弯矩,此时塔顶相邻跨主缆水平分力相等。在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态。 三、简述主缆和吊索的安全系数一般如何设计取值?

桥梁钢结构基础知识..-共23页

桥梁钢结构基础知识讲座 一、常用钢材 1、结构钢牌号说明,对应标准GB221-2019《钢铁产品牌号表示方法》。 如:Q345qC Q-屈服强度; 345-屈服强度345MPa(当δ≤16mm时,其屈服强度大小与牌号数值相同。板厚增加,强度降低,例如Q345C钢,当δ>63mm时,其屈服强度只有315MPa); q-桥梁用结构钢; C-质量等级为C级。 钢材质量等级共有A、B、C、D、E 5个级别,A级最低,E级最高,主要表现在钢中有害杂质S、P含量的多少,耐冲击温度的高低。如: A KV(纵向)Q345A、B级钢,+20℃,34J; A KV(纵向)Q345C级钢,0℃,34J; A KV(纵向)Q345D级钢,—20℃,34J; A KV(纵向)Q345E级钢,-40℃,34J。 2、结构钢的屈强比 即钢材的屈服强度与抗拉强度之比,σs/σ b 屈强比越小,强度储备越大,结构越安全可靠;屈强比越大,强度储备越小,结构越不安全可靠。一般屈强比不超过0.8。一般,钢

材的强度等级越高,屈强比越大,反之,越小。 3、碳素结构钢 对应标准GB/T700-2019,有4个强度等级: Q195(不分级); Q215(A、B级); Q235(A、B、C、D级); Q275(A、B、C、D级)。 用的比较多的是Q235C钢,相当于过去的A3钢。 4、低合金高强度结构钢 对应标准GB/T1591-2019, 有8个强度等级: Q345(A、B、C、D、E级); Q390(A、B、C、D、E级); Q420(A、B、C、D、E级); Q460(C、D、E级); Q500(C、D、E级); Q550(C、D、E级); Q620(C、D、E级); Q690(C、D、E级)。 过去的16Mn相当于Q345的A、B级。 与GB/T1591-1994对照,新标准增加了Q500、Q550、Q620、Q690强度等级,取消了Q295强度等级。 5、桥梁用结构钢

桥梁工程作业

2015—2016第2学期 离线作业 科目:桥梁工程 姓名:罗菲 学号: 14927317 专业:土木工程(工程造价)2014-48班(专本) 西南交通大学远程与继续教育学院 直属学习中心

《桥梁工程》第一次离线作业 三、主观题(共3道小题) 17.请归纳桥上可以通行的交通物包括哪些(不少于三种)?请总结桥梁的跨越对象包括哪些(不少于三种)?答:桥梁可以实现不同的交通物跨越障碍。最基本的交通物有:汽车、火车、行人等。其它的还包括:管线(管线桥)、轮船(运河桥)、飞机(航站桥)等。桥梁跨越的对象包括:河流、山谷、道路、铁路、其它桥梁等。18.请给出按结构体系划分的桥梁结构形式分类情况,并回答各类桥梁的主要受力特征。 答:桥梁按结构体系可以分为:梁桥、拱桥、悬索桥、组合体系桥梁。梁桥是主要以主梁受弯来承受荷载;拱桥主要是以拱圈受压来承受荷载;悬索桥主要是以大缆受拉来承受荷载;组合体系桥梁则是有多种受力构件按不同受力特征组合在一起共同承受荷载。 19.请简述桥梁设计的基本原则包括哪些内容? 答:桥梁的基本设计原则包括:安全、适用、经济和美观。桥梁的安全既包括桥上车辆、行人的安全,也包括桥梁本身的安全。桥梁的适用能保证行车的通畅、舒适和安全;桥梁运量既能满足当前需要,也可适当照顾今后发展等方面内容。在安全、适用的前提下,经济是衡量技术水平和做出方案选择的主要因素。桥梁设计应体现出经济特性。在安全、适用和经济的前提下,尽可能使桥梁具有优美的外形,并与周围的环境相协调。 《桥梁工程》第二次离线作业 一、主观题(共4道小题) 1.请归纳简支梁桥的主要特点包括哪些? 答:简支梁桥的主要特点是:受力明确(静定结构)、构造简单、易于标准化设计,易于标准化工厂制造和工地预制,易于架设施工,易于养护、维修和更换。但简支梁桥不适用于较大跨度的桥梁工程。 2.综合题-计算题3(仅限道桥专业):一个30m跨度的装配式简支梁,已知其1片边梁的跨中横向分布系数m c= 0.8,试计算其在公路-I级车道荷载和车辆荷载分别作用下的跨中弯矩值。并对比二者的大小关系。车道荷载和车辆荷载简图参见附图。(计算中假定计算跨度也为30m;不计冲击系数;不计车道折减系数;并假定横向分布系数沿全桥均取相同数值)(10分) 答:根据车道荷载和车辆荷载中的均布与集中力大小,计算出30m简支梁的跨中弯矩。均布荷载跨中弯矩公式为M =1/8*q*L*L;每一个集中荷载产生的跨中弯矩按结构力学公式计算或依据其产生的支点反力后进行计算。 3.综合题-计算题类1:(仅限道桥专业) 下图为一双车道布置的多主梁公路桥横截面布置,主梁间距为1.5m+2.0m+2.0m+1.5m。试采用杠杆原理法,

钢结构桥梁的入门精选

钢结构桥梁的入门级别 小跨度与大跨度钢箱梁 建国以来长江上几座里程牌式钢桥,高瞻远瞩,胸怀大志,入门开始 武汉长江大桥(128m 跨度,3 号钢Q240) 南京长江大桥(160m跨度,16M nq Q345) 九江长江大桥(216m 跨度,15MnVNq Q420) 芜湖长江大桥(312m跨度,14MnNbq Q345) 天兴洲长江大桥(504m 跨度,14MnNbq Q345) 一、桥梁用钢牌号 1 、Q235qD Q345qD Q370qD Q420QD 第一个Q 为屈服拼音第一个字母,屈服之意; 数字235表示屈服强度(是一个应力数值), 数字后q 为桥梁第一个拼音q, 表示为桥梁用结构钢;最后一个大写字母 D 为钢材等级, 钢材等级之分有A、B、C、D、E5个等级,A不做冲击功要求,B表示常温20。冲击功,C 为0°冲击功,D表示-20。是冲击功,E为-40独冲击功要求.冲击功与钢材韧性相关, Q345qE 联合起来意为:屈服强度为345MPa应力的桥梁用钢,-40。有冲击功要求,一般不小于47J.钢材安全系数一般取为,那么Q345钢材容许应力为345/=,规范中采用中345 为屈服强度,抗拉强度更大,一般为容许应力的倍,所以Q345 抗拉强度为200*=500MPa, 规范中取值510MPa. 抗剪容许应力为基本容许应力的倍,局部承压为基本容许应力的倍,规范中Q345 钢材抗剪容许应力120MPa, 局部承压容许应力为300MPa. 钢结构桥梁的设计方法

公路钢结构桥梁设计规范2015 没出来之前,公路钢结构桥梁仍然采用容许应力法 设计:各项荷载系数为1,荷载组合下外力应力只要小于容许应力200MPa 即可.现在新出钢桥规范为了与混凝土统一采用两个极限状态设计法一致,钢结构桥梁也采用了极限 状态设计法,以Q345qD 钢为例说明问题的实质性: 1) 容许应力法 外荷载组合系数:1x恒载+1x活载+1x其它可变活载 荷载组合下的应力小于规范中的容许应力200MPa (345/=203) 2) 极限状态法 外荷载组合系数:恒载+活载+其它可变活载 综合起来极限状态法相比于容许应力法荷载综合系数采用了荷载组合下的应力小于规范中的容许应力275MPa 所以极限状态法相当于外荷载系数乘了个的数值,相对于容许应力法中的容许应力相应同时乘以的数值,本质一样,游戏而已. 三、钢结构桥梁几个主体问题钢结构核心问题为强度、稳定、疲劳 1) 强度 受拉杆件或者弯矩中的受拉部位:应力小于容许应力即可,假如为螺栓连接,计算应力时采用净面积计算 2) 稳定 稳定问题转为强度模式控制,只不过将容许的压应力转换为容许应力x小于1的一个数字,此数字结合杆件的计算长度与杆件回转半径相结合的长细比,如下表

大跨度桥梁结构理论专题研究之一--每人任选一题

大跨度桥梁结构理论专题研究之一?1.桥梁结构的可靠度研究(可选任一类桥梁,如梁、拱、索桥等) ?2.大跨桥梁的结构静、动力分析(可选任一类桥梁,如梁、拱、索桥等) ?3.桥梁结构全寿命耐久性设计的主要理论和方法及应用 ?4.钢桥的疲劳分析与试验研究及应用 ?5.新型材料在大跨桥梁中的应用 ?6.大跨桥梁检测与质量评定技术研究(可选任一类桥梁,如梁、拱、索桥等)7.大跨斜拉桥施工智能监控研究(悬臂灌注,悬臂拼装) ?8.大跨拱桥施工智能监控研究(悬臂拼装,转体施工) ?9.大跨桥梁健康监测与评估(可选任一类桥梁,如梁、拱、索桥等) ?10.钢桥合理刚度与冲击系数研究(高速铁路300km/h) ?11.局部稳定与整体稳定分析 ?12.高速铁路车桥共振的危险性分析研究(可选任一类桥梁,如梁、拱、索桥等) ?13.大跨度桥梁抗震设计减震隔震桥研究(可选任一类桥梁,如梁、拱、索桥等) ?14.斜拉桥拉索的风雨振与制减震措施研究 ?15.钢桥长效防腐涂装技术研究, ?16.大跨度桥梁深水基础工程的设计施工技术与监测分析研究 ?17. 国内外钢桥规范的对比研究(荷载与荷载谱的不同,抗弯构件,拉压构件,稳定,疲劳等; 中国,日本,美国,欧洲,俄罗斯) ?18. 自选与大跨桥相关的科研课题 ?19. 自列题目做一篇大跨桥梁的论文---与导师的研究方向相同或不同均可以。 课程报告要求: ?1、PPT文件,可报告10分钟左右,并负责研讨回答问题。 ?每人做一篇课题研究的报告,希望有一定深度;在课堂上交流! ?2、大跨度桥梁专题研究书面报告---上交老师和学校留存记分! ?书面打印稿格式要求(word 文档A4纸,空白左边2.5cm,上下右均为2cm;1.25倍行间距); 字体要求: 报告大标题: 宋体2 号字 第一层次标题: 宋体小 3 号字 第二层次标题: 宋体 4 号字 第三层次标题: 宋体小4 号字 正文字体: 宋体 5 号字 标题:排序号: 1. 1.1, 1.2,… 1.1.1, 1.1.2 ,… 1) 2),…; (1),(2),.. ①,②,… 提交给老师电子版WORD和书面打印稿(书面打印稿上交学院研究生科---计入课程成绩)雷老师的电子邮箱: jqlei@https://www.360docs.net/doc/c66110774.html,, 电子版WORD 请发送这个邮箱.

大跨度桥梁作业2

一、简述桥梁的分类及主要特点 按用途分类:公路桥、城市桥、铁路桥、公铁两用桥、人行桥、管道桥、机场跑道桥等; 按材料分类:木桥、石桥、混凝土桥、钢桥、组合桥与复合桥、圬工桥等; 按跨径分类:特大桥、大桥、中桥、小桥、涵洞; 按平面形状分类:正桥、斜桥、曲线桥; 按结构类型分类:梁桥、拱桥、悬索桥、斜拉桥、刚构桥等。 1、梁桥 在竖向荷载作用下无水平反力,以受弯为主; 梁内产生的弯矩最大,需要抗弯能力强的材料来建造; 简支桥梁结构简单,施工方便,对地基承载力要求也不高,适用跨径在50m以下; 跨径较大时可修建悬臂式获连续式梁桥。 2、拱桥 跨越能力较大,外形美观; 在竖向荷载作用下,墩台将承受水平推力; 与同跨径梁相比,拱的弯矩和挠度小得多; 可用抗压能力强的圬工材料和钢筋混凝土等来建造。 3、刚构桥 主要承重结构是梁和柱整体结合在一起的刚架结构,梁和柱的连接处具有很大刚性; 受力特点介于梁与拱之间,竖向作用下,梁部主要受弯,柱脚处也有水平反力; 跨中正弯矩小于梁桥,跨中建筑高度可较小。 4、斜拉桥 由承压的塔、受拉的索与受压弯的梁体组合而成; 主梁截面较小,跨越能力大; 刚度大,抗风能力较好; 自锚体系,在大跨径桥梁中造价较低; 可用悬臂施工工艺,施工不妨碍通航。 5、悬索桥 由桥塔、锚碇、缆索、吊杆、加劲梁及索鞍等主要部分组成; 主缆具有非常合理的受力形式,截面设计容易; 结构自重较轻,能以较小的建筑高度跨越特大跨度,经济跨径在500m以上; 桥塔承受缆索传来的各种荷载及梁支承在塔身上的反力,并将其传递到下部墩及基础; 悬索为柔性结构,刚度小,易产生较大的挠曲变形; 在风荷载等动荷载作用下易产生振动。 二、悬索桥、斜拉桥、大跨度拱桥的组成构件有哪些?三种桥的受力特点如何? 有何本质区别? 1、组成构件 悬索桥:主缆、加劲梁、塔柱、吊杆、锚碇、索鞍等; 斜拉桥:主梁、索塔、斜拉索; 大跨拱桥:主拱圈、拱座、墩台、拱上建筑。

大跨度桥梁结构计算书

大跨度桥梁结构计算书

大跨度桥梁结构计算书 1 结构概况 该桥为双薄壁墩刚构桥,主梁采用变高度箱梁,该桥跨径为85+130+85m。桥梁的结构形式如下: 图1.1 桥梁结构形式 2技术标准和设计参数 2.1计算依据 1、交通部《公路桥涵设计通用规范》(JTJ 021-89); 2、交通部《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85); 3、交通部《公路桥涵设计通用规范》(JTG D60-2004); 4、交通部《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); 2.2设计技术条件 公路等级:公路Ⅰ级。 2.3 主要设计参数 桥梁结构所承受的荷载(或作用)包括结构自重、预应力、混凝土收缩徐变、支座强迫位移(按沉降量按1.0cm考虑)、活载、结构整体升降温和温度梯度等。上部结构设计计算取用的有关参数如下: 1、结构重力:混凝土容重取26KN/m3 2、二期恒载:包括桥面铺装、栏杆等 二期恒载的总荷载为:60.8 KN/m 3、收缩徐变影响力:按04设计规范取用,天数3650天 4、基础变位影响力:不均匀沉降按1.0cm计 5、相对湿度 70% 6、纵向预应力锚下控制应力 1395MPa 7、孔道偏差系数 0.0015 8、一端锚具回缩 0.006m 9、钢束松弛率 0.3 10、预应力孔道摩擦系数 0.17

11、施加预应力混凝土强度≥90% 12、温度荷载 整体温差+20℃、-20℃ 温度梯度:按04规范取值,即14.0℃—5℃—0℃,反温差为上述值的-0.5倍。 3 有限元模型 3.1单元和截面的建立 该桥有限元模型共106个单元,101个节点。具体模型如下图。 图3.1.1 消隐模式的全桥模型 图3.1.2 全桥模型 3.2边界条件 该桥支座采用固结形式。

大跨度桥梁习题集整理后

1.什么事缆索承重桥梁?典型的缆索承重桥型有哪些? 答:如果受拉构件——缆索是桥梁荷载的主要承担构件之一,并使桥梁跨越构件成为多点弹性支承结构而增加跨越能力,这类桥梁就称为缆索承载桥梁。缆索承载桥梁主要用于跨度在300以上的大跨度桥梁,目前典型的缆索承重桥型有悬索桥和斜拉桥。 知识点补充:桥梁跨越的主要承力结构是由抗弯刚度很小的几乎只能受拉的构件组成,具有抗弯刚度的梁被等间距或不等间距的受拉构件竖向或斜向悬吊,在桥梁结构活载作用下,成为具有多点弹性支撑的结构。这类桥梁结构中,受拉构件被称为缆索或斜拉索,支撑受拉构件的结构被称为桥塔。这类桥梁可统一称为缆索承重桥梁。 2.简述缆索材料、梁、塔和吊索的演变过程。 答:缆索材料: 梁: 塔: 吊索: 3.空中编缆技术是谁发明的?首次在哪座桥上使用?是谁将其机械化并将其发展为现代化施工技术的? 答:空中编缆技术是由法国工程师路易斯维卡在1830年发明。 首次用于在1834年建成的位于瑞士弗里堡柴林根大桥(由约瑟夫·查理设计) 约翰·奥古斯塔斯·罗勃林将其机械化并将其发展为现代化施工技术。 4.预制平行索股架编缆技术是谁发明的?首次在那座桥上使用的? 答:预制平行索股架编缆技术是由杰克逊·L·德基发明。 首次在1969年美国在罗德岛修建的克莱本佩尔新港大桥。 5.历史上的首座现代悬索桥结构是何年谁发明的?首座永久性铁丝缆悬索桥是哪座?何年谁发明的? 答:历史上首座现代悬索桥结构是1801年美国修建的雅各布溪桥,由詹姆斯·芬利发明。 首座永久性铁丝缆悬索桥是由美国人乔赛亚·怀特和厄斯金修建的斯库尔基尔瀑布蜘蛛桥。 眼链杆技术是由英国工程师塞缪尔·布朗发明的。 6.简述缆索承重桥梁发展各历史时期的特点,悬索桥建设出现过几次建造高潮?各自发生的场地在哪里?简述美式悬索桥、英式悬索桥、日式悬索桥各自的特点。 答:缆索承重桥梁发展各历史时期的特点:1.中国古代缆索承载梁桥的特点是:无加劲梁,竹索、柳索或者铁链缆索上直接铺木板满足行人和马车的使用,不设桥塔而是直接锚固或者采用刚性桥塔。 2.在18世纪中叶到十九世纪中叶,缆索承载桥梁结构已经演变为现代桥梁结构,与中国古代相比:具有浅加劲或者加劲梁;缆索材料从铁链改进为眼链杆或者铁丝,眼链杆缆悬索桥技术已经由英国发展成熟;采用刚性桥塔,圬工砌体结构。在计算理论方面,知道1823年才有了无加劲梁的悬索计算理论,在1858年才有了有加劲梁的悬索桥计算理论。 3.在19世纪中叶至20世纪三十年代以前这段时间,所建桥梁以斜拉——悬索组合体系为主,通过美国工程师和学者研究,钢缆索材料、制作、架设、防护技术已经成熟;悬索桥计算理论已经发展到较精确的挠度理论;在缆索承载桥梁中,悬索桥已可以在较精确的理论和成熟的专利技术指导下进行建造。 悬索桥建设出现四次高潮,分别在美国,欧洲,日本,中国。 美式悬索桥的特点:1.主缆采用空中编缆法;2.加劲梁采用非连续体系的钢桁梁,并在塔处设吊拉支承及伸缩缝,适应双层桥面;3.桥塔采用铆接或栓接钢结构;4.吊索采用竖直4股骑跨式钢丝绳;5索夹分左右两块,在其上下采用水平高强螺栓紧固;6.鞍座采用大型铸

大跨径桥梁

斜拉桥的施工问题浅析 摘要:随着国民经济和交通量的日益发展及越来越多的高等级公路有待建设,给桥梁的发展带来了新的机遇。现代桥梁正朝着大跨径、更轻巧的方向发展。斜拉桥则是其中一种最为常用的结构。斜拉桥也称为斜拉吊桥、斜张桥,由主梁、斜向拉紧主梁的钢缆索以及支承缆索的索塔等部分组成,属于组合体系的桥梁。通过桥塔上多条斜向拉索的支承,斜拉桥结构可以跨越较大的山谷、河流等障碍物。 关键词:拉索索塔施工 斜拉桥的构思可以追溯到17世纪,但由于受当时科技水平的限制,在300多年的漫长岁月中没有得到很大发展,又因为19世纪20年代前后修建的几座斜拉桥的坍塌事故,使斜拉桥的发展在相当长的一段时期内处于被人遗弃的状态。 20世纪30年代,德国工程师迪辛格(Dischinger)首先认识到斜拉桥结构的优越性并加以发展,由他研究设计的第一座现代斜拉桥——主跨182米的新斯特雷姆伍特于1955年在瑞典建成,接着在德国的杜塞尔道夫建成了主跨260米的杜塞尔道夫北莱茵河桥。从此,斜拉桥得到迅速发展,至今,全球已建成各类斜拉桥300余座,遍布30多个国家和地区。1994年底法国建成的主跨为856米的诺曼底大桥,是目前世界上最大跨径的混合型斜拉桥。1998年底日本建成的主跨为890米的多多罗大桥,是本世纪最大跨径的钢斜拉桥。1962年委内瑞拉建成的马拉开波桥是第一座现代混凝土斜拉桥,其跨径布置为160m+5*235m+160m,进入本世纪70年代后,混凝土斜拉桥得

到迅速发展。 我国是在本世纪70年代中期开始修建斜拉桥的,首先在1975年和1976年建成了主跨分别为76m和56m的两座混凝土斜拉桥,在取得了设计和施工经验后,全国各地开始修建斜拉桥。在近20年中,已建成斜拉桥近40座,其中除少数为钢斜拉桥和结合梁斜拉桥外,大都是混凝土斜拉桥。我国在1993年建成了上海杨浦大桥,主跨602m,是目前世界上最大跨径的结合梁斜拉桥;1996年建成通车的重庆长江二桥是主跨444m的混凝土斜拉桥。中国在斜拉桥的设计、施工方面已进入世界领先水平,随着工业现代化进程的加快,为适应大跨径结构的需要,预计在我国结合梁斜拉桥及钢斜拉桥将逐渐增加。 一、斜拉桥简介 斜拉桥又称斜张桥,数组和体系桥梁,它的上部结构有主梁、拉索和索塔三种构件组成。它是一种桥面体系以主梁承受轴力或弯矩为主、支承体系以拉索受拉和索塔受压为主的桥梁。 斜拉桥是索塔上用若干斜向拉索支承起主梁以跨越较大的河谷等障碍。拉索的作用相当于在主梁跨内增加了若干弹性支承,使主梁跨径显著减小,从而大大减少了梁内弯矩、梁体尺寸和梁体重力,使桥梁的跨越能力显著增大。与悬索桥相比,斜拉桥不

大跨度桥梁的施工工艺

大跨度桥梁的施工工艺 摘要:大跨度桥梁的施工主要包括基础工程、索塔工程和上部结构工程施工三个方面。各个方面有着自己不同的施工特点,针对不同的施工特点和所处的不同环境应该选择合理的施工技术和方法。大跨度桥梁的施工技术是桥梁技术中的重要内容,要建造超大型桥梁,首先必须有较好的施工工艺,大跨度桥梁结构的施工工艺研究是一门迅速发展的学科,它对保证桥梁结构建设的顺利完成具有特别重要的意义。斜拉桥、悬索桥和拱桥等几种结构跨度较大桥梁的主要施工工艺的重点和难点在本文中进行了比较详细的介绍。 关键词: 大跨度桥梁;施工技术;结构 1 引言 近年来,随着我国经济的发展,在大江大河流域及沿海地区深水、特殊地质条件下不断兴建超大、超长结构的悬索桥、斜拉桥及拱桥,其建设规模国内空前,基础庞大、塔柱高耸、跨度超长。大跨度桥梁施工主要包括基础工程、索塔工程和上部结构工程施工三个方面。 其中,基础工程主要有深水高桩承台基础、沉井基础、地下连续墙基础,其主要代表工程有苏通大桥和润扬大桥深水承台基础、江阴长江大桥北锚陆上沉井基础和泰州大桥中塔柱水中沉井基础,润扬大桥北锚矩形地下连续墙基础和武汉阳逻长江公路大桥南锚圆形地下连续墙基础。索塔工程主要有混凝土塔和钢塔结构,其主要代表工程有苏通大桥的高塔施工和南京三桥钢塔安装。上部结构工程主要有大跨径斜拉桥、悬索桥和拱桥施工等,其主要代表工程有苏通大桥的大跨径主梁架设、超长斜拉索张挂,贵州坝陵河大桥桁架梁架设和江苏泰州长江公路大桥主梁安装,重庆朝天门大桥超大跨桁架拱架设等。 2基础施工 2.1深水高桩承台基础施工 深水高桩承台基础施工时有以下特点: (1)处于深厚覆盖层,水深、流急、流态紊乱,钻孔平台及钻孔桩施工难度大。 (2)承台结构尺寸较大,无论是采用钢吊箱还是钢套箱结构,其规模尺寸庞大,设计、 制作和安装难度均较大。 (3)钻孔桩密集、桩间间距小,钻孔垂直度要求高,穿越易坍孔土层以及溶洞等特殊地 层,对护壁泥浆要求高,要求成孔速度快。 基于上述特点,采取的施工技术为: (1)深水急流中大型钻孔平台设计施工技术。 水流复杂时,船定位困难;平台钢管桩刚度小,悬臂较长,水动力作用下产生涡振、易断裂。因此,采用直接利用钢护筒作为平台的支承结构的方案,研制大刚度悬臂式钢护筒导向装置,提高护筒沉放精度和速度。

相关文档
最新文档