决策树算法的研究及实例分析

决策树算法的研究及实例分析
决策树算法的研究及实例分析

R语言-决策树算法知识讲解

R语言-决策树算法

决策树算法 决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于 2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是 virginica(图中黑色的分类) 我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树: 这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。 前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。 决策树的构建 一、KD3的想法与实现 下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。 先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。 问题:我们如何确定起决定作用的划分变量。 我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。 为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。 关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。 直接给出计算熵与信息增益的R代码:

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

Clementine决策树CHAID算法

CHAID算法(Chi-Square Automatic Interaction Detection) CHAID提供了一种在多个自变量中自动搜索能产生最大差异的变量方案。 不同于C&R树和QUEST节点,CHAID分析可以生成非二进制树,即有些分割有两个以上的分支。 CHAID模型需要一个单一的目标和一个或多个输入字段。还可以指定重量和频率领域。 CHAID分析,卡方自动交互检测,是一种用卡方统计,以确定最佳的分割,建立决策树的分类方法。 1.CHAID方法(卡方自动交叉检验) CHAID根据细分变量区分群体差异的显著性程度(卡方值)的大小顺序,将消费者分为不同的细分群体,最终的细分群体是由多个变量属性共同描述的,因此属于多变量分析。 在形式上,CHAID非常直观,它输出的是一个树状的图形。 1.它以因变量为根结点,对每个自变量(只能是分类或有序变量,也就是离散性的,如果是连续 变量,如年龄,收入要定义成分类或有序变量)进行分类,计算分类的卡方值(Chi-Square-Test)。如果 几个变量的分类均显著,则比较这些分类的显著程度(P值的大小),然后选择最显著的分类法作为子节点。 2.CHIAD可以自动归并自变量中类别,使之显著性达到最大。 3.最后的每个叶结点就是一个细分市场 CHAID 自动地把数据分成互斥的、无遗漏的组群,但只适用于类别型资料。 当预测变量较多且都是分类变量时,CHAID分类最适宜。 2.CHAID分层的标准:卡方值最显著的变量 3.CHAID过程:建立细分模型,根据卡方值最显著的细分变量将群体分出两个或多个群体,对 于这些群体再根据其它的卡方值相对最显著的细分变量继续分出子群体,直到没有统计意义上显著的细分变量可以将这些子群体再继续分开为止。 4.CHAID的一般步骤 -属性变量的预处理 -确定当前分支变量和分隔值 属性变量的预处理: -对定类的属性变量,在其多个分类水平中找到对目标变量取值影响不显著的分类,并合并它们; -对定距型属性变量,先按分位点分组,然后再合并具有同质性的组; -如果目标变量是定类变量,则采用卡方检验 -如果目标变量为定距变量,则采用F检验 (统计学依据数据的计量尺度将数据划分为三大类,即定距型数据(Scale)、定序型数据(Ordinal)和定类型数据(Nominal)。定距型数据通常指诸如身高、体重、血压等 的连续性数据,也包括诸如人数、商品件数等离散型数据;定序型数据具有内在固有大 小或高低顺序,但它又不同于定距型数据,一般可以数值或字符表示。如职称变量可以 有低级、中级和高级三个取值,可以分别用1、2、3等表示,年龄段变量可以有老、中、青三个取值,分别用A、B、C表示等。这里无论是数值型的1、2、3还是字符型的A、B、C,都是有大小或高低顺序的,但数据之间却是不等距的。因为低级和中级职称之间的差距与中级和高级职称之间的差距是不相等的;定类型数据是指没有内在固定大小或高低 顺序,一般以数值或字符表示的分类数据。) F检验:比较两组数据的方差2s, 2 2 s F s 大 小 ,假设检验两组数据没有显著差异,FF表,拒绝原假设,两组数据存在显著差异。属性变量预处理的具体策略

决策树算法分析报告

摘要 随着信息科技的高速发展,人们对于积累的海量数据量的处理工作也日益增重,需发明之母,数据挖掘技术就是为了顺应这种需求而发展起来的一种数据处理技术。 数据挖掘技术又称数据库中的知识发现,是从一个大规模的数据库的数据中有效地、隐含的、以前未知的、有潜在使用价值的信息的过程。决策树算法是数据挖掘中重要的分类方法,基于决策树的各种算法在执行速度、可扩展性、输出结果的可理解性、分类预测的准确性等方面各有千秋,在各个领域广泛应用且已经有了许多成熟的系统,如语音识别、模式识别和专家系统等。本文着重研究和比较了几种典型的决策树算法,并对决策树算法的应用进行举例。 关键词:数据挖掘;决策树;比较

Abstract With the rapid development of Information Technology, people are f acing much more work load in dealing with the accumulated mass data. Data mining technology is also called the knowledge discovery in database, data from a large database of effectively, implicit, previou sly unknown and potentially use value of information process. Algorithm of decision tree in data mining is an important method of classification based on decision tree algorithms, in execution speed, scalability, output result comprehensibility, classification accuracy, each has its own merits., extensive application in various fields and have many mature system, such as speech recognition, pattern recognition and expert system and so on. This paper studies and compares several kinds of typical decision tree algorithm, and the algorithm of decision tree application examples. Keywords: Data mining; decision tree;Compare

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

决策树算法的原理与应用

决策树算法的原理与应用 发表时间:2019-02-18T17:17:08.530Z 来源:《科技新时代》2018年12期作者:曹逸知[导读] 在以后,分类问题也是伴随我们生活的主要问题之一,决策树算法也会在更多的领域发挥作用。江苏省宜兴中学江苏宜兴 214200 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类方式建树。如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它的熵就是

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

C45算法生成决策树的研究

精心整理 C4.5算法生成决策树 1、基础知识 当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均SEE5、SLIQ 算法的的标准,克服了ID3算法中信息增益选择属性时偏向选择取值多的属性的不足,并能够完成对连续属性离散化的处理,还能够对不完整数据进行处理。根据分割方法的不同,目前决策的算法可以分为两类:基于信息论(InformationTheory )的方法和最小GINI 指标(LowestGINIindex )方法。对应前者的算法有ID3、C4.5,后者的有CART 、SLIQ 和SPRINT 。

C4.5算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。 2、算法 以下图数据为例,介绍用C4.5建立决策树的算法。 表1 ID3算法最初假定属性都是离散值,但在实际应用中,很多属性值都是连续的。C4.5对ID3不能处理连续型属性的缺点进行了改进。如果存在连续型的描述性属性,首先将连续型属性的值分成不同的区间,即“离散化”。

对上表中将实际耗电量分为10个区间(0—9) (300~320,320~340,340~360,360~380,380~400,400~420,420~440,440~460,460~480,480~500)因为最终是要得到实际的耗电量区间,因此“实际耗电量”属于“类别属性”。“室外温度”、“室内温度”、“室外湿度”、“风力大小”、“机房楼层”、“机房朝向”、“机房开启设备总额定功率”属于“非类别属性”。 表2 通过表 知,实 际耗电的个数表3

决策树原理与应用:C5.0

决策树原理与应用:C5.0 分类预测指通过向现有数据的学习,使模型具备对未来新数据的预测能力。对于分类预测有这样几个重要,一是此模型使用的方法是归纳和提炼,而不是演绎。非数据挖掘类的软件的基本原理往往是演绎,软件能通过一系列的运算,用已知的公式对数据进行运算或统计。分类预测的基本原理是归纳,是学习,是发现新知识和新规律;二是指导性学习。所谓指导性学习,指数据中包含的变量不仅有预测性变量,还有目标变量;三是学习,模型通过归纳而不断学习。 事实上,预测包含目标变量为连续型变量的预测和目标变量为分在变量的分类预测。两者虽然都是预测,但结合决策树算法和我们之前介绍过的时间序列算法知,二者还是有明显的差别的。 Clementine决策树的特点是数据分析能力出色,分析结果易于展示。决策树算法是应用非常广泛的分类预测算法。 1.1决策树算法概述1.11什么是决策树决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量。决策树之所以如此命名,是因为其分析结果以一棵倒置的树的形式呈现。决策树由上到下依次为根节点、内部节点和叶节点。一个节点对应于数据中的一个字段,即一个字段——即Question——对数据进行一次划分。决策树分为分类决策树

(目标变量为分类型数值)和回归决策树(目标变量为连续型变量)。分类决策树叶节点所含样本中,其输出变量的众数就是分类结果;回归树的叶节点所含样本中,其输出变量的平均值就是预测结果。这一点需要格外注意。 与其它分类预测算法不同的是,决策树基于逻辑比较(即布尔比较)。可以简单描述为:If(条件1)Then(结果1);If (条件2)Then(结果2)。这样,每一个叶节点都对应于一条布尔比较的推理规则,对新数据的预测就正是依靠这些复杂的推理规则。在实际应用中,一个数据产生的推理规则是极为庞大和复杂的,因此对推理规则的精简是需要关注的。 1.12决策树的几何理解将训练样本集(即操作中常说的Training Data)看做一个n维空间上的一个点,则上面我们提到的布尔比较后的推理规则就像是存在于这个n维空间中的“线”。决策树建立的过程形象上看,就是倒置的树生长的过程,其几何意义上是,每个分枝(每条推理规则)完成对n维空间区域划分的过程。决策树正式生成,则n维空间正式划分完毕,则每一个小区域,代表一个叶节点。通常n 维空间不易于理解,故采用倒置的树来表示此结果。需要注意的一点是,在划分过程中,要尽量做到不同类别的结果归于不同的“区域”。 1.13决策树的核心问题:生成与修剪决策树核心问题有二。一是利用Training Data完成决策树的生成过程;二是利用

决策树算法的原理与应用

决策树算法的原理与应用 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发 展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结 构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部 节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的 预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的 不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结 构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树 算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算 法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使 用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。 2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据 均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作 为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类 前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类 方式建树。 如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它 的熵就是 在得到基尼指数增益之后,选择基尼指数增益最大的特征来作为当前步骤的 分类依据,在之后的分类中重复迭代使用这一方法来实现模型的构造。 3. 决策树算法的优缺点 3.1决策树算法的优点[3] (1)计算速度快,算法简单,分类依据清晰 (2)在处理数据时,有很高的准确度,同时分类结果清晰,步骤明朗。 (3)可以处理连续和种类字段 (4)适合高维数据 3.2决策树算法的缺点 (1)决策树算法可以帮助使用者创建复杂的树,但是在训练的过程中,如

企业CRM系统中决策树算法的应用

企业CRM系统中决策树算法的应用 河北金融学院郭佳许明 保定市科技局《基于数据挖掘的客户关系管理系统应用研究》09ZG009 摘要:客户资源决定企业的核心竞争力,更多的关心自己的销售群体,并与之建立良好的、长期的客户关系,提升客户价值,对全面提升企业竞争能力和盈利能力具有重要作用。本文以某企业销售业绩为对象,利用决策树分类算法,得到支持决策,从而挖掘出理想客户。 关键字:客户关系管理;数据挖掘;分类算法 决策树分类是一种从无规则、无序的训练样本集合中推理出决策树表示形式的分类规则的方法。该方法采用自顶向下的比较方式,在决策树的内部结点进行属性值的比较,然后根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论。 本文主要研究决策树分类算法中ID3算法在企业CRM系统中的应用情况。 1.ID3算法原理 ID3算法是一种自顶向下的决策树生成算法,是一种根据熵减理论选择最优的描述属性的方法。该算法从树的根节点处的训练样本开始,选择一个属性来区分样本。对属性的每一个值产生一个分支。分支属性的样本子集被移到新生成的子节点上。这个算法递归地应用于每个子节点,直到一个节点上的所有样本都分区到某个类中。 2.用于分类的训练数据源组 数据挖掘的成功在很大程度上取决于数据的数量和质量。我们应从大量的企业客户数据中找到与分析问题有关的,具有代表性的样本数据子集。然后,进行数据预处理、分析,按问题要求对数据进行组合或增删生成新的变量,从而对问题状态进行有效描述。 在本文研究的企业数据中,是将客户的年龄概化为“小于等于30”、“30到50之间”和“大于50”三个年龄段,分别代表青年、中年和老年客户,将产品价格分为高、中、低三档等,详见表1,将企业CRM系统数据库中销售及客户信息汇总为4个属性2个类别。4个属性是客户年龄段、文化程度、销售地区、产品档次,类别是销售业绩,分为好和差两类。

完整word版,决策树算法总结

决策树研发二部

目录 1. 算法介绍 (1) 1.1.分支节点选取 (1) 1.2.构建树 (3) 1.3.剪枝 (10) 2. sk-learn中的使用 (12) 3. sk-learn中源码分析 (13)

1.算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1.分支节点选取 2.构建树 3.剪枝 1.1.分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 基尼系数:同上,也可以作为信息混乱程度的衡量指标。

有了量化指标后,就可以衡量使用某个分支条件前后,信息混乱程度的收敛效果了。使用分支前的混乱程度,减去分支后的混乱程度,结果越大,表示效果越好。 #计算熵值 def entropy(dataSet): tNum = len(dataSet) print(tNum) #用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] #获取标签 if curL not in labels.keys(): labels[curL] = 0 #如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 #将标签记录个数加1 #此时labels中保存了所有标签和对应的个数 res = 0 #计算公式为-p*logp,p为标签出现概率 for node in labels: p = float(labels[node]) / tNum res -= p * log(p, 2) return res #计算基尼系数 def gini(dataSet): tNum = len(dataSet) print(tNum) # 用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] # 获取标签 if curL not in labels.keys(): labels[curL] = 0 # 如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 # 将标签记录个数加1 # 此时labels中保存了所有标签和对应的个数 res = 1

决策树分类算法

决策树分类算法 决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。 1.决策树的组成 决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。图1就是一棵典型的决策树。 图1 决策树 决策树的每个节点的子节点的个数与决策树所使用的算法有关。例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 下面介绍一个具体的构造决策树的过程,该方法

是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。 ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。 首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。 当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为: n p n log n p n n p p log n p p )n ,p (I 22++-++- = 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。以属性A 作为树根所要求的期望信息可以通过加权平均得到

分类论文决策树相关算法论文:决策树相关算法研究

分类论文决策树相关算法论文:决策树相关算法研究 摘要:id3算法和c4.5算法是经典的决策树算法,通过对id3算法和c4.5算法的数据结构、算法描述和分裂属性选取等方面进行比较,为其他研究者提供参考。 关键词:分类;id3;c4.5 an association explore based on decision tree algorithm wang hui, hou chuan-yu (school of information engineering, suzhou university, suzhou 234000, china) abstract: id3 algorithm and c4.5algorithm is classic decision tree algorithm in data mining. the article has some comparisons about c4.5 algorithm and id3 algorithm ,for example, data structure of decision tree, the process of algorithm of c4.5 and id3, and the choice of division attribute and so on, in order to provide this for others. key words: categories; id3; c4.5 随着计算机的普及和网络的高速发展,人们获得信息的途径越来越多,同时获取信息的量呈几何级数的方式增长。如何从海量信息获得有用知识用于决策,成为大家关注的问

决策树算法总结

决策树决策树研发二部

目录 1. 算法介绍 (1) 1.1. 分支节点选取 (1) 1.2. 构建树 (3) 1.3. 剪枝 (10) 2. sk-learn 中的使用 (12) 3. sk-learn中源码分析 (13)

1. 算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作 为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对 ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1. 分支节点选取 2. 构建树 3. 剪枝 1.1. 分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 Entropy = -V p ” 基尼系数:同上,也可以作为信息混乱程度的衡量指标。 Gini = 1 - p: l-L

(完整word版)项目管理实战利器之八——决策树分析和EMV

项目管理实战利器之八——决策树分析和EMV 作者: 楼政 一、决策者的工具包 “决策就是从多种方案中选择一个行动方针的认知过程。每一个决策过程都会产生一个最终选择。”这是在维基百科所阐述的。但它没有说的是,有些决策必须为未来发生的结果而做出。有数种工具可以用来帮助做出复杂的决策,即决策树分析和预期货币价值。 二、预期货币价值(EMV,Expected Monetary Value) EMV是一种对概率和各种可能情景影响所做的平衡。以下两种方案,哪一种会提供更大的潜在收益呢? 方案1 最好的情景(Best case):盈利$180,000的概率为20%。 BC=20%*$180,000=$3 6,000 最坏的情景(Worst case):损失- $20,000的概率为 15%。 WC= 15%*(- $ 20,000)=-$3,000 最可能的情景(Most likely case):盈利$75,000元 的概率为65%。 MLC= 65%*$75,000 = $48,750 Total EMV = BC+WC+MLC = $36,000+(-$3,000)+$48,750=$81,750 方案2 最好的情景(Best case):盈利$200,000的概率为15%。BC=15%*$200,000=$30,00 最坏的情景(Worst case):盈利$15,000的概率为25%。WC= 25%*$15,000 = $ 3,750 最可能的情景(Most likely case):盈利$45,000元的概 率为60%。 MLC= 60%*$ 45,000 = $ 27,000 Total EMV = BC+WC+MLC = $30,000+$3,750+$27,000=$60,750 你选择哪种方案?当然选方案一,因为它具有更高的EMV为$81,750。 三、决策树分析(Decision Tree Analysis) 在决策树分析中,一个问题被描述为一个图表,这个图表显示了所有可能行动、事件和回报(成果),在一段时期内不同的时间点对上述内容必须作出的选择。 制造业的一个实例

数据挖掘决策树算法概述

决策树是分类应用中采用最广泛的模型之一。与神经网络和贝叶斯方法相比,决策树无须花费大量的时间和进行上千次的迭代来训练模型,适用于大规模数据集,除了训练数据中的信息外不再需要其他额外信息,表现了很好的分类精确度。其核心问题是测试属性选择的策略,以及对决策树进行剪枝。连续属性离散化和对高维大规模数据降维,也是扩展决策树算法应用范围的关键技术。本文以决策树为研究对象,主要研究内容有:首先介绍了数据挖掘的历史、现状、理论和过程,然后详细介绍了三种决策树算法,包括其概念、形式模型和优略性,并通过实例对其进行了分析研究 目录 一、引言 (1) 二、数据挖掘 (2) (一)概念 (2) (二)数据挖掘的起源 (2) (三)数据挖掘的对象 (3) (四)数据挖掘的任务 (3) (五)数据挖掘的过程 (3) (六)数据挖掘的常用方法 (3) (七)数据挖掘的应用 (5) 三、决策树算法介绍 (5) (一)归纳学习 (5) (二)分类算法概述 (5) (三)决策树学习算法 (6) 1、决策树描述 (7) 2、决策树的类型 (8) 3、递归方式 (8) 4、决策树的构造算法 (8) 5、决策树的简化方法 (9) 6、决策树算法的讨论 (10) 四、ID3、C4.5和CART算法介绍 (10) (一)ID3学习算法 (11) 1、基本原理 (11) 2、ID3算法的形式化模型 (13) (二)C4.5算法 (14) (三)CART算法 (17) 1、CART算法理论 (17) 2、CART树的分支过程 (17) (四)算法比较 (19) 五、结论 (24) 参考文献...................................................................................... 错误!未定义书签。 致谢.............................................................................................. 错误!未定义书签。

机器学习--决策树(ID3)算法及案例

机器学习--决策树(ID3)算法及案例 1基本原理 决策树是一个预测模型。它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,每个分支路径代表某个可能的属性值,每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。一般情况下,决策树由决策结点、分支路径和叶结点组成。在选择哪个属性作为结点的时候,采用信息论原理,计算信息增益,获得最大信息增益的属性就是最好的选择。信息增益是指原有数据集的熵减去按某个属性分类后数据集的熵所得的差值。然后采用递归的原则处理数据集,并得到了我们需要的决策树。 2算法流程 检测数据集中的每个子项是否属于同一分类: If 是,则返回类别标签; Else 计算信息增益,寻找划分数据集的最好特征 划分数据数据集 创建分支节点(叶结点或决策结点) for 每个划分的子集 递归调用,并增加返回结果到分支节点中

return 分支结点 算法的基本思想可以概括为: 1)树以代表训练样本的根结点开始。 2)如果样本都在同一个类.则该结点成为树叶,并记录该类。 3)否则,算法选择最有分类能力的属性作为决策树的当前结点. 4 )根据当前决策结点属性取值的不同,将训练样本根据该属性的值分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。匀针对上一步得到的一个子集,重复进行先前步骤,递归形成每个划分样本上的决策树。一旦一个属性只出现在一个结点上,就不必在该结点的任何后代考虑它,直接标记类别。 5)递归划分步骤仅当下列条件之一成立时停止: ①给定结点的所有样本属于同一类。 ②没有剩余属性可以用来进一步划分样本.在这种情况下.使用多数表决,将给定的结点转换成树叶,并以样本中元组个数最多的类别作为类别标记,同时也可以存放该结点样本的类别分布[这个主要可以用来剪枝]。 ③如果某一分枝tc,没有满足该分支中已有分类的样本,则以样本的多数类生成叶子节点。 算法中2)步所指的最优分类能力的属性。这个属性的选择是本算法种的关键点,分裂属性的选择直接关系到此算法的优劣。 一般来说可以用比较信息增益和信息增益率的方式来进行。 其中信息增益的概念又会牵扯出熵的概念。熵的概念是香农在研究信息量方面的提出的。它的计算公式是: Info(D)=-p1log(p1)/log(2.0)-p2log(p2)/log(2.0)-p3log(p3)/log(2.0)+...-pNlog(pN) /log(2.0) (其中N表示所有的不同类别)

相关文档
最新文档