电阻电路的等效变换习题及答案解析

电阻电路的等效变换习题及答案解析
电阻电路的等效变换习题及答案解析

第2章 习题与解答

2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。

(a)

(b)

题2-1图

解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω

2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。

a

b

a

b

(a)

(b)

题2-2图

解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω

2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

a

b

(a) (b)

题2-3图

解:(a )开关打开时(84)//43ab R =+=Ω

开关闭合时4//42ab R ==Ω

(b )开关打开时(612)//(612)9ab R =++=Ω

开关闭合时6//126//128ab R =+=Ω

2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b

)所示电路的电压U 。

6Ω6Ω

(a) (b)

题2-4图

解:(a )从左往右流过1Ω电阻的电流为

1I 21/(16//123//621/(142)3A =++++=)=

从上往下流过3Ω电阻的电流为36

I 32A 36

=

?=+ 从上往下流过12Ω电阻的电流为126

I 31A 126

=

?=+ 所以 312I I -I =1A =

(b )从下往上流过6V 电压源的电流为 66

I 4A 1.5

=

==(1+2)//(1+2)

从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =??

2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。

(a)

(b)

题2-5图

解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥

1

a

所以 111

//11332

ab R =++=Ω()()

(b )将图中的两个Y 形变成△形,如图所示

a

b

即得

4021

Ωa

b

所以 1.269ab R =Ω

2-6计算题2-6图所示电路中a b 、两点间的等效电阻。

a

a

b

(a)

(b)

题2-6图

解:(a )将图中的Y 形变成△形,如图所示

所以 12//64ab R ==Ω

(b )将图中的Y 形变成△形,如图所示

a

b

所以 123//47

ab R ==

Ω 2-7对题2-7图所示电路,应用Y —△等效变换求电路ab 端的等效电阻ab R 、对角线电压U

及总电压ab U 。

8

题2-7图

解:将图中的Y 形变成△形,如图所示

a

所以 (32.5//526//2)//2655510ab R =++=+=Ω

10880ab U V =?=

回到原图

8

已知128I I += 348I I += 1310840I I += 245240I I += 联立解得 1 2.4I A = 2 5.6I A = 32I A

= 46I A = 所以 121054U I I V =-+=

2-8试求题2-

8图所示电路的输入电阻in R 。

1

1

R (a)

(b)

题2-8图

解:(a )如图所示,在电路端口加电压源U ,求I

1

U

211U R I u u μ=-+ 11u R I =

所以 21(1)in U

R R R I

μ=

=+- (b )如图所示,在电路端口加电压源U ,求I

1

R 11U R i =- 112

U i i I R β++=

112()U U U I R R R β-

+-+= 121112

111

()(1)R I U U R R R R R ββ=++=++ 所以 1221

(1)in R R U

R I R R β

=

=++ 2-9 将题2-9图所示各电路化为最简形式的等效电路。

55V -+

1(a)

(b)

题2-9图

解:(a )化简过程如图所示

55V

(b )化简过程如图所示

5

5V

10V

515V

2-10 利用含源支路等效变换,求题2-10图所示电路中的电流I 。

4V +-

题2-10图

解:先化简电路,如图所示

4V

4V 2Ω

4V

2V

4V 4Ω

4V

4V

6 所以 2I A =

2-11试求题2-11图所示电路中的电流i ,已知12

342,4,1R R R R =Ω=Ω==Ω。

9+-

题2-11图

解:先化简电路,如图所示

9

43

Ω 所以有 41(2)933

i i +-= 3i A =

2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。

4V +-

题2-12图

解:先求电路右边电阻块的等效电阻ab R ,如图所示

a

b

a

b

将中间的Y 形化成△形。

1a

b

[(1//3)(1//3)]//(1//3)1/2ab R =+=Ω

化简电路为

1/2

4V

4V 2i

4V

65

i

列写KVL

86

455

i i -= 所以 10i A =

2-13利用含源支路等效变换,求题2-13图所示电路中电压o u 。已知

122,R R ==Ω341,10S R R i A ==Ω=。

o u +-

u +-

 

题2-13图

解:先化简电路,如图所示

u

u 0

所以有 030

32100

2i u i u u u i

-+=+== 解得 06u V =

2-14题2-14图所示电路中13421,2,R R R R R ===CCVS 的电压为114,d u R i =利用含源支路等效变换求电路中电压比

o

S

u u 。

4

R S u +-

题2-14图

解:先化简电路,如图所示

u 34

R R

+

u 234//()

R R R +

u 34234

()d u R R R R R +++

已知114d u R i = 13421,2,R R R R R === 列KVL

3423234

411234()]()

[d s R R R R i u R R u R R R R R R ++

++=++++

即 134111342312344

()

2()4[]s R R R R R i i R R R R R u R R R +=++++

+++

又 011s u u i R -=

解得 034

s u u = 2-15将题2-15图所示各电路化为最简形式的等效电路。

-+

6V

(a) (b)

题2-15图

解:(a )化简电路,如图所示

(b )化简电路,如图所示

2-16求题2

-16图所示各电路的最简等效电路。

+-

S u

S i (a) (b)

2-16图

解:(a )化简电路,如图所示

2

s u

(b )化简电路,如图所示

2-17题2-17图所示电路中,已知128,4,3,3S S U V R R I A ==Ω=Ω=

。试求电源输出的功率和电阻吸收的功率。

U +-

题2-17图

解:1R 上流过的电流11824

S R U I A R =

== 1R 吸收功率11

2

14416R R P R I W ==?= 2R 上流过的电流3S I A = 2R 吸收功率22

23927R S P R I W ==?=

因为1231R S I I I A =-=-=-

所以S U 功率8S U S P U I W ==-(非关联,负值为吸收8W ) 因为29817S S U R I U V =+=+=

所以S I 功率31751S I S P I U W ==?=(非关联,正值为输出51W ) 电路功率平衡。

2-18试求题2-18图所示电路中的电压U 。

+

-

U

题2-18图

解:由KVL 11055U V =-?+=-

等效替代法

替代法测电阻 一、解题思想 “曹冲称象”的故事流传至今,最为人称道的是曹冲采用的方法,他把船上的大象换成石头,而其他条件保持不变,使两次的效果(船体浸入水中的深度)相同,于是得出大象的重就等于石头的重,人们把这种方法叫“等效替代法”,请尝试利用“等效替代法”解决下面的问题。 二、测量的电路如图所示. 图 三、实验步骤 1、S接1,调节R2,读出A表示数为I; 2、S接2,R2不变,调节电阻箱R1,使用A表示数仍为I; 3、由上可得R X=R2. 四、误差分析 1、该方法优点是消除了A表内阻对测量的影响,缺点是电阻箱的电阻R1不能连续变 化. 五、其他类型 1. 利用电池、开关、一个标准电阻箱、若干导线和一个刻度不准但灵敏性良好的电流表测量待测电阻R x。 (1)按照图1的方式把实物连成电路,调节电阻箱R0,使电流表指针指向一个适当的位置,记下这时R0的阻值R1。 图1 (2)再把R x从电路中取下,调节R0的电阻,使电流表的指针指向刚才测量的位置,记下这时R0的阻值R2。 (3)由于R1加上R x在电路中所起的作用与R2相同(电流表指针指示同一位置),则有R1+R x=R2,故有R x=R2-R1。 2. 现有两节电池,三个开关,若干导线,还有电流表、滑动变阻器、电阻箱各一个,

请用以上器材设计一个实验方案测出未知电阻R x的值(电阻箱的最大阻值大于R x)。 (1)按图2连接好实物电路,将滑动变阻器接入电路的阻值调到最大值。 图2 (2)闭合开关S1、S2,调节滑动变阻器R1的电阻,使电流表的示数为某一合适 的数值并记为I0。 (3)断开开关S2,闭合开关S3并调节电阻箱R2的阻值,使电流表的数值仍为 I0,则R x的阻值就等于此时电阻箱R2的阻值。 点评:这里用电阻箱R2(已知阻值电阻)等效替代了待测电阻R x,电路中的电流仍为I0,所以R x=R2。测量方法突破常规思维,非常独特、新颖。 若在此实验中,将电流表改为电压表,其他器材不变,试用上述等效替代法测出未知电阻R x的阻值。 解析:测量方法和操作步骤与上题大同小异,它的电路图如图3所示,解略。 图3

电阻电路的一般分析方法

电路常用分析方法 第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。 独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程; (2)选择基本回路列写b-(n-1)个KVL 方程。 支路电流法的一般步骤: 第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。它适用于平面和非平面电路。 1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。 2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤: (1)选定)1(--=n b l 个独立回路,并确定其绕行方向; (2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程; (3)求解上述方程,得到l 个回路电流; (4)求各支路电流。 回路电流法的特点: (1)通过灵活的选取回路可以减少计算量; (2)互有电阻的识别难度加大,易遗漏互有电阻。 理想电流源支路的处理: 网孔电流法是回路电流法的一种特例。引入电流源电压,增加回路电流和电流源

电流的关系方程。 i来表示。 第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用 m 1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。 2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。 3.列写的方程:KCL自动满足。只需对网孔回路,列写KVL方程,方程数为网孔数。 网孔电流法的一般步骤: (1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。(通常各网孔电流都取顺时针方向或都取逆时针方向) (2)根据电路,写出自阻、互阻及电源电压。 (3)根据推广公式,列网孔方程。 (4)求解网孔方程,解得网孔电流。 (5)根据题目要求,进行求解。 第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。 结点电压法的一般步骤为: (1)选定参考结点,标定1 n个独立结点; - (2)对1 - n个独立结点,以结点电压为未知量,列写其KCL方程; (3)求解上述方程,得到1 n个结点电压; - (4)通过结点电压求各支路电流; (5)其他分析。

电阻电路的等效变换习题及答案

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2)

第二章电路的等效变换

第二章电子电路的等效变换 一、教学基本要求 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所 谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影 响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变 换的概念是什么?这个概念是根据什么引出的?然后再研究各种具体情况下的 等效变换方法。 重点: 1.电路等效的概念; 2.电阻的串、并联; 3.实际电源的两种模型及其等效变换; 难点: 1.等效变换的条件和等效变换的目的; 2.含有受控源的一端口电阻网络的输入电阻的求解 二、学时安排总学时:6 教学内容学时1.引言电路的等效变换电阻的串联和并联2 2.电阻的Y形连接和△连接的等效变换电压源和电流源的串联和并联2 3.实际电源的两种模型及其等效变换输入电阻2三、教学内容: §2-1引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。

§2-2电路的等效变换 1.两端电路(网络) 任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流,则称这一电路为二端电路(或一端口电路)。若两端电路仅由无源元件构成,称无源两端电路。 2.两端电路等效的概念结构和参数完全不相同的两个两端电路B 与C,当它们的端口具有相同的电压、电流关系(VCR),则称B 与C 是等效的电路。 相等效的两部分电路B 与C 在电路中可以相互代换,代换前的电路和代换后的电路对任意外电路A 中的电流、电压和功率而言是等效的,即满足: 需要明确的是:上述等效是用以求解A 部分电路中的电流、电压和功率,若要求图(a)中B 部分电路的电流、电压和功率不能用图(b)等效电路来求,因为,B 电路和C 电路对A 电路来说是等效的,但B 电路和 C 电路本身是不相同的。结论: (1)电路等效变换的条件: 两电路具有相同的VCR; (2)电路等效变换的对象:未变化的外电路A 中的电压、电流和功率; (3)电路等效变换的目的:化简电路,方便计算。 两端电路 无源两端电路 (a) (b)

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6= S U V ,Ω=2R 。 2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中, 1= S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2 ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是 吸收还是发出。

第2章电阻电路的等效变换习题及答案汇总

; 第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 》 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) @ 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) / 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A =

(b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A $ 所以 U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 2Ω (a) (b) 题2-5图 解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥 1 a 所以 111 //11332 ab R =++=Ω()() % (b )将图中的两个Y 形变成△形,如图所示

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

复杂电路等效电路

复杂电阻网络的处理方法 在物理竞赛过程中经常遇到,无法直接用串联和并联电路的规律求出整个电路电阻的情况,这样的电路也就是我们说的复杂电路,复杂电路一般分为有限网络和无限网络。那么,处理这种复杂电路用什么方法呢?下面,我就结合自己辅导竞赛的经验谈谈复杂电路的处理方法。 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R的6根电阻丝连接而成,求两顶点A、B间的等效电阻。 图1 图2 分析:假设在A、B两点之间加上电压,并且电流从A电流入、B点流处。因为对称性,图中CD两点等电势,或者说C、D 间的电压为零。因此,CD间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB=R/2 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R,试求图中A、B两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A点流到O电流与从O点到B电流必相同;从A1点流到O电流与从O点到B1电流必相同。据此可以将O点断开,等效成如图5所示的简单网络,使问题得以求解。解:根据以上分析求得R AB=5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R。求A、G之间的电阻是多少? 分析: 假设在A 、G两点之间加上电压时,显然由于对称性D、B、E 的电势是相等的,C、F、H的电势也是相等的,把这些点各自连起来,原电路就变成了如图7 A D B C D C A B A A B ' B' B A B' A E B G C H D F 6 图 A 7 图

(完整版)电阻电路的等效变换习题及答案.docx

第 2 章 习题与解答 2- 1 试求题 2-1 图所示各电路 ab 端的等效电阻 R ab 。 1 4 3 a a 6 R ab 4 3 R ab 4 2 6 b 2 b 3 (a) (b) 题 2- 1 图 解:(a ) R ab 1 4 / /( 2 6 / /3) 3 (b ) R ab 4 / /(6 / /3 6 / /3) 2 2- 2 试求题 2-2 图所示各电路 a 、b 两点间的等效电阻 R ab 。 1 5 1.5 4 a 6 10 a 4 9 8 8 3 10 4 b b 4 4 (a) (b) 题 2- 2 图 解:(a ) R ab 3 [(8 4) / /6 (1 5)] / /10 8 (b ) R ab [(4 / /4 8) / /10 4] / /9 4 1.5 10 2- 3 试计算题 2-3 图所示电路在开关 K 打开和闭合两种状态时的等效电阻 R ab 。

4612 a a 48 b 6 K12 b K (a)(b) 题 2- 3 图 解:(a)开关打开时R ab(8 4) / /43 开关闭合时 R ab 4 / /42 (b)开关打开时R ab(6 12) / /(612) 9 开关闭合时 R ab 6 / /12 6 / /12 8 2- 4 试求题 2-4 图(a)所示电路的电流 I 及题 2- 4 图( b)所示电路的电压 U 。 13612 21V I 6V U 12621 (a)(b) 题2- 4 图 解:(a)从左往右流过 1电阻的电流为 I1 21/ (1 6 / /12 3 / /6) =21/ (1 4 2)3A 从上往下流过 3电阻的电流为I 3 6 32A 36 从上往下流过 12电阻的电流为 I12 6 3 1A 126 所以 I I 3 -I12 =1A (b)从下往上流过 6V 电压源的电流为I 66 4A ( 1+2) //( 1+2) 1.5

2电阻电路的等效变换

2电阻电路的等效变换 本章重点:等效电路及网络的化简。实际电压源、电流源的等效互换 本章难点:输入电阻 《 第 四 讲 》 2.1 引言 线性电路: 时不变的线性元件 R,L,C(必须都是常数) 受控源的系数必须为常数 线性电阻电路: (纯电阻电路) 电路中的无源元件只有R, 没有L 和C 2.2 电路的等效变换 将电路中某一复杂部分用一个简单的电路替代,替代之后的电路要与原电路保持相等的效用.即两个伏安特性完全相同.(也称为对外等效) 2.3 电阻的串联和并联 电路元件中最基本的联接方式就是串联和并联。 一、电阻的串联 当元件与元件首尾相联时称其为串联,如下图(a)所示。串联电路的特点是流过各元件的电流为同一电流。 + U _ + U _ 目的: 使电路分析和计算更为方便.

根据KVL知,电阻串联电路的端口电压等于各电阻电压的叠加。即 称R为n个电阻串联时的等效电阻Req。 由上式可知,串联电路中各电阻上电压的大小与其电阻值的大小成正比。 电路吸收的总功率为 即电阻串联电路消耗的总功率等于各电阻消耗功率的总和。 二、电阻的并联 当n个电阻并联联接时,其电路如下图(c)所示。并联电路的特点是各元件上的电压相等,均为u。

根据KCL知: 电导G是n个电阻并联时的等效电导,又称为端口的输入电导。 分配到第k个电阻上的电流为 上式说明并联电路中各电阻上分配到的电流与其电导值的大小成正比。 电路吸收的总功率为 即电阻并联电路消耗的总功率等于各电阻消耗功率的总和。 电路如下图所示。求:(1)ab两端的等效电阻R ab。(2)cd两端的等效电阻R cd。

△形与Y形电阻电路等效变换

(a) △形电路 (b) Y形电路

△形和Y形电路之间的相互变换也应满足外部特性相同的原则,直观地说:就是必须使任意两对应端钮间的电阻相等。具体地说,就是当第三端钮断开时,两种电路中每一对相对应的端钮间的总电阻应当相等。例如上图(a)和(b)中,当端钮3断开时,两种电路中端钮1、2间的总电阻相等,即 R1+R2=R12(R23+R31)/(R12+R23+R31) (1) 同理有 R2+R3=R23(R31+R12)/(R12+R23+R31) (2) R3+R1=R31(R12+R23)/(R12+R23+R31) (3) 将△形变换成Y形,即已知△形电路的R12、R23、R31,求Y形电路的R1、R2、R3。为此,将式(1)、(2)、(3)相加后除以2,可得 R1+ R2+ R3=( R23R12+ R23R31+ R12R31)/(R12+R23+R31) (4) 从式(4)中分别减去式(1)、(2)和式(3),可得 R1=R12R31/(R12+R23+R31) (5) R2=R12R23/(R12+R23+R31) (6) R3=R23R31/(R12+R23+R31) (7) 以上三式就是△形电路变换为等效Y形电路的公式。三个公式可概括为 R Y=△形中相邻两电阻的乘积/△形中电阻之和 当R12=R23=R31=R△时,则

R1= R2= R3=1/3 R△ 将Y形变换成△形,即已知Y形电路的R1、R2、R3,求△形电路的R12、R23、R31。为此,将式(5)、(6)和式(7)两两相乘后再相加,经化简后可得 R1R2+ R2R3+ R3R1= R12R23R31/(R12+R23+R31) (8) 将式(8)分别除以式(7)、(5)和式(6),可得 R12=R1+R2+ R1R2/R3 (9) R23=R2+R3+ R2R3/R1 (10) R31=R3+R1+ R3R1/R2 (11) 以上三式就是Y形电路变换为等效△形电路的公式。三个公式可概括为 R△=Y形中两两电阻的乘积之和/Y形中对面的电阻 当R12=R23=R31=R Y时,则 R12= R23= R31=3 R Y 应当指出,上述等效变换公式仅适用于无源三端式电路。

第2章电阻电路的等效变换习题及答案

第2章习题与解答 2-1试求题2-1图所示各电路血端的等效电阻心,。 解:(a)心,=1 + 4//(2 + 6//3) = 30 (b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻 IQ 5G _| ------ [ ----- 1.5Q 4G (a) (b) 题2—2图 解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G (b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ?5 = 10C 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血o IQ 4Q 3G (b) (a)

题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。 开关闭合时^,=4/74 = 20 (b)开关打开时 R ah =(6 + 12)/7(6+12) = 90 开关闭合时心=6//12 + 6//12 = 8。 2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。 解:(a)从左往右流过1G 电阻的电流为 I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A 3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA 12 + 6 所以1 =【3叫2 = 1 A ⑹从下往上流过6V 电压源的电流为 "击莎 1Q + O1V 3Q 6Q (a) 12Q 6Q 题2—4图

从上往下流过两条并联支路的电流分别为2A 所以U = 2x2-lx2=2V 2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。。 2Q 题2-5图 解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥 所以心,=(*+*)//(1 + 1)= *° (b)将图中的两个Y形变成△形,如图所示 2.5Q 5Q 白80 4Q 4Q T 50 T T 2Q 即得 所以陰=L269G 2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。 (b)

第二章-电阻电路的等效变

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

图 2.1 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

R u =R i =1/G i u s =i s R i =i s /G i 两者等效互换的原则是保持其端口的V AR 不变。 2.2.5 输入电阻的求法 一端口无源网络输入电阻的定义(见图2.2): R in =u/ i 1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。 2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻 R in =u s /i 或 R in =u/ i s 方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比 值即是一端口无源网络的输入电阻。此方法也适用于由纯电阻构成的一端口网络。 2.3 例题 例2.1 求图2.3所示电路等效电阻R in 。 解:由△→Y 将图2.3等效成题解2.3图,其中: 3 211333213223212 1'1 ++++++R R R R R R R R R R R R R R R R R R '= = =’ ()()5 ' '''' in R R R R R R R R R R ++++++=4325243 1 例2. 2 求图2.4所示电路的等效电阻R ab 。 解:本电路包含两个T 型电阻网络,且其参数成比例。若在a 、b 之间加一电压源,则c 、d 两点电位必相 题解2.3图 图 2.3 R 5 ' 5 ' + 图2.2 图 2.4 a b

电阻电路的等效变换

第2章电阻电路的等效变换 主要内容: 1.等效变换概念; 2.电阻的串联、并联、混联等效变换与 形连接、Y形连接之间的等效变换; 3.实际电源的两种等效模型及独立电源的串并联等效变换; 4.无源单口网络的等效电路; 学习要求: 本章内容以第一章阐述的元件特性、基尔霍夫定律为基础,等效变换的思想和几种等效变换对所有线性电路都具有普遍意义,在后面章节中都要用到。具体要求做到: 1.深刻理解电路等效变换概念; 2.掌握电阻不同连接方式下的等效变换方法; 3.掌握实际电源的两种等效模型及独立电源不同连接方式下的等效变换; 4.理解无源单口网络的等效电路,熟练掌握其等效电阻的求取方法; 本章重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. 实际电源的两种模型及其等效变换。 本章难点: 1. 等效变换的条件和等效变换的目的; 2. 含有受控源的一端口电阻网络的输入电阻的求解。 计划课时:6 引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变换的概念是什么这个概念是根据什么引出的然后再研究各种具体情况下的等效变换方法。 电路等效变换概念 一、单口网络 1.单口网络:又称二端网络或一端口网络,它指向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流的任意复杂电路。 2.单口网络的种类:根据单口网络内部是否包含独立电源,可以将单口网络分为无源单口网络(用N表示)和有源单口网络(用P表示)。

第二章-电阻电路的等效变

第二章-电阻电路的等效变

————————————————————————————————作者:————————————————————————————————日期:

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

u - R i u u - - i + + + 图 G i 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 连接情况 等效结果或计算公式 说 明 n 个电压源的串联 sn s s s s u u u u u ±±±=k 21 u s 为等效电压源,当u k 与u s 的参考方向相同时,u sk 前取“+”号,反之取“-”号 n 个电流源的并联 sn sk s s s i i i i i ±±±=21 i s 为等效电流源,当i sk 与i s 的参考方向相同时,i sk 前取“+”号,反之取“-”号 电压源u s 与一个非理想电压源支路并联 对外电路可等效成该电压源u s ⑴与电压源u s 并联可以是电阻、电流源,也可是复杂的支路 ⑵仅是对外电路等效 电流源i s 与一个非理想电流源支路串联 对外电路可等效成该电流源i s ⑴与电流源i s 串联可以是电阻、电压源,也可是复杂的支路 ⑵仅是对外电路等效 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

第3章 电阻电路的一般分析答案

第三章 电阻电路的一般分析 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 利用节点KCL方程求解某一支路电流时,若改变接在同一节点所有其它已知支路电流的参考方向,将使求得的结果有符号的差别。 [×] .2. 列写KVL方程时,每次一定要包含一条新支路才能保证方程的独立性。 [√] .3. 若电路有n个节点,按不同节点列写的n-1个KCL方程必然相互独立。 [√] .4. 如图所示电路中,节点A的方程为: (1/R 1 +1/ R 2 +1/ R 3)U =I S +US /R 3 [×] 解:关键点:先等效,后列方程。 图A 的等效电路如图B : 节点A的方程应为: 3 32)1 1( R U I U R R S S A +=+ .5. 在如图所示电路中, 有 122 32 /1/1/S S A I U R U R R += + [√] 解:图A 的等效电路如图B : .6. 如图所示电路,节点方程为: 12311()S S G G G U GU I ++-=; 3231S G U G U I -=; 13110GU GU -=. [×] 解:图A 的等效电路如图B : S S U G I U G G 1121)(+=+ .7. 如图所示电路中,有四个独立回路。各回路电流的取向如图示, 则可解得各回路 电流为: I1=1A;I2=2A; I3=3A;I4=4A。 [×] 解: ;11A I = ;22A I =

;33A I = ;7344A I =+= 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 对如图所示电路,下列各式求支路电流正确的是 C_。 (A ) 12112 E E I R R -= +; (B) 222E I R = (C) AB L L U I R = .2. 若网络有b 条支路、n 个节点,其独立KCL方程有_C_个,独立KVL方程有_D__个,共计为_A_个方程。若用支路电流法,总计应列_A_个方程;若用支路电压法,总计应列_A_个方程。 (A)b (B)2b (C)n-1 (D)b-n+1 .3. 分析不含受控源的正电阻网络时,得到下列的节点导纳矩阵Yn ,其中肯定错误的为 _ B 、C 、_ D 、E _。 (A) ???? ??--5.13.03.08.0(B) ??????--4.12.12.11 (C) ??????6.18.08.02 (D) ? ?????---14.04.02 (E) ?? ????--35.112 解:自导为正,值大互导;互导为负,其值相等。 .4. 列写节点方程时,图示部分电路中B点的自导为_F_S, BC间的互导为D_S,B点的注入电流为_B_A 。 (A) 2 (B) -14 (C) 3 (D) -3 (E) -10 (F) 4 解:图A 的等效电路如图B :

02分电阻电路的分析方法 (1)资料

电阻电路的分析方法 一、是非题 1.图示三个网络a、b端的等效电阻相等。 2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。 3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。 4.如二端网络的伏安特性为U=-20-5I,则图示支路与之等效。 5.两个电压值都为U S的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。 6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。 7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。

8.图示电路中,节点1的节点方程为 9.实际电源的两种模型,当其相互等效时,意味着两种模型中的电压源和电流源对外提供的功率相同。 10.两个二端网络分别与20Ω电阻连接时,若电流均为5A,电压均为100V,则这两个网络相互等效。 答案部分 1.答案(+) 2.答案(+) 3.答案(+) 4.答案(+) 5.答案(+) 6.答案(-) 7.答案(-)8.答案(-)9.答案(-)10.答案(-)

二、单项选择题 2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将 (A)变亮(B)变暗(C)熄灭 3.右上图示电路中电流I为 (A)趋于无限(B)12A(C)6A(D)9A 4.当标明“100Ω,4W”和“100Ω,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V 5.电路如左下图所示,已知电压源电压U S=230V,内阻R S=1Ω。为使输出电压为220V、功率为100W的灯泡正常发光,则应并联 (A)22盏灯 (B)11盏灯 (C)33盏灯 6.对右上图示电路,节点1的节点方程为 (A)6U1-U2=6 (B)6U1=6 (C)5U1=6 (D)6U1-2U2=2

电路原理(邱关源)习题答案第二章 电阻电路的等效变换练习

第二章 电阻电路的等效变换 “等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。 由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。 2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。若:(1) 38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。试求以 上3种情况下电压2u 和电流23,i i 。 解:(1)2R 和3R 为并联,其等效电阻842R k = =Ω,

则总电流 mA R R u i s 3504210011=+=+= 分流有 mA i i i 333.86502132=== = … V i R u 667.666508222=?== (2)当∞=3R ,有03=i mA R R u i s 1082100212=+=+= V i R u 80108222=?== (3)03=R ,有0,022==u i mA R u i s 502100 13=== 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响影响如何 解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。因此有 3 2332R R i R i += 3 2322R R i R R u s +=

第2章电阻电路的等效变换习题及参考答案

精心整理 第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b 2-2解:(a (b 2-3(a)(b) 解:(a (b 2-4(a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 从上往下流过3Ω电阻的电流为36I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126I 31A 126=?=+ 所以312I I -I =1A =

(b )从下往上流过6V 电压源的电流为66I 4A 1.5 ===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A 所以U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 (a) (b) 题2-5图 解:(a (b 即得 所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图 解:将图中的Y 形变成△形,如图所示 所以(32.5//526//2)//2655510ab R =++=+=Ω 回到原图 已知128I I +=348I I +=1310840I I +=245240I I += 联立解得1 2.4I A =2 5.6I A =32I A =46I A = 所以121054U I I V =-+=

2-8试求题2-8图所示电路的输入电阻in R 。 (a)(b) 题2-8图 解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R I μ==+- (b )如图所示,在电路端口加电压源U ,求I 12R R U 2-(b 2-6 2-题2-11图 解:先化简电路,如图所示 43Ω所以有41(2933 i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。

电阻电路的等效变换

第二章电阻电路的等效变换 本章讨论的问题 1、什么是电路的等效变换?等效变换的条件是什么?为什么要进行等效变换? 2、电阻串联、并联的等效电阻,分压、分流如何计算? 3、电阻的三角形(Δ)联接与星形(Y)联接及其等效变换? 4、在电路分析中,如何表示实际的电源模型?怎样进行二种模型的等效变换? 5、如何求出二端网络的输入电阻? 教学重点 一、电路的等效变换概念 为分析、计算电路,将网络的某一部分进行某种变换后,用一个与其不同的电路替代,且替代前后网络的其它部分电压、电流保持不变。这种方法称为电路的等效变换。如下图所示。等效变换的核心是“对外等效”。等效变换的目的是简化电路。 二、电阻的串联和并联 1、电阻的串联:其等效电阻为各个串联电阻之和;且大于任一个串联 电阻。电阻串联可以作为分压电路;电阻值大的分得电压大。 2、电阻的并联:其等效电阻的倒数等于各个电阻倒数之和;且小于任一 个并联电阻。电阻并联可以作为分流电路,电阻值小的分得电流大。

U R R R U U R R R U 2 12 22 11 1+= += I R R R I I R R R I 2 11 22 12 1+= += 三、含源支路的的等效变换 1、 理想电源的串、并联 1)、理想电压源的串联:当n 个理想电压源串联时,其可用一个理想电压源 s e 等效替代,且有 ∑==n k sk s e e 1 2)、理想电压源的并联:根据KVL 定律,仅当理想电压源的电压相等及极性一致时才能够并联,且可用任一个理想电压源作为其等效电路。 一个理想电压源与一条A 支路并联,对外电路来讲,其等效电路可以将A 支路去掉;不影响外电路的计算结果。如图所示 3)、理想电流源的并联:当n 个理想电流源并联时,其可用一个理想电流源is 等效替代,且有 is=∑=n k isk 1 4)、理想电流源的串联:根据KCL 定律,仅当理想电流源的电流相等及极性一致时才能够串联,且可用任一个理想电流源作为其等效电路。 一个理想电流源与一条B 支路串联,对外电路来讲,其等效电路可以将B 支路去掉;不影响外电路的计算结果。如图所示, 2、实际电源模型的等效变换

相关文档
最新文档