数理逻辑的发展

数理逻辑的发展
数理逻辑的发展

数理逻辑

——证明论、递归论、模型论和公理集合论的发展

1930年以后,数学逻辑开始成为一个专门学科,得到了蓬勃发展。哥德尔

的两个定理证明之后,希尔伯特的有限主义纲领行不通,证明论出现新的情况,主要有两方面:通过放宽有限主义的限制来证明算术无矛盾性以及把证明形式化、标准化,这些主要是在三十年代完成。同时哥德尔引进递归函数,发展成递归论的新分支,开始研究判定问题。而哥德尔本人转向公理集合论的研究,从此出现公理集合论的黄金时代。五十年代模型论应运而生,它与数学有着密切联系,并逐步产生积极的作用。

1、证明论

证明论又称元数学,它研究数学的最基本活动—证明的合理性问题。研究这类数学基础的问题原来一直是哲学家的事,后来才成为数学家的事。这个转变发生在1893年弗雷格发表《算术基础规则》之时,后来希尔伯特和他的许多合作者使这种思想发展成一门学科—元数学,目的是用数学方法来研究整个数学理论。要使数学理论成为一个合适的研究对象,就必须使之形式化。自从希尔伯特和阿克曼所著《理论逻辑纲要》第一版在1928年出版以来,在实践中用得最多的是具有等式的一阶谓词演算(以及高阶谓词演算)。许多理论可以用一阶理论来表述,它比较简单方便,具有多种形式。

从基础的观点来看,有两个理论最为重要,因而研究也最多。这两个理论就是形式化的皮亚诺算术理论与形式化的集合论。因为大多数观代数学理论都可以在这两个理论范围内发展,所以这两个理论的合理性如果得到证实,也就是向数学的可靠性迈进了一大步。“希尔伯特计划”无非就是要找到一个有限的证明步骤来证明算术的无矛盾性。

这里“有限”的意义是由法国年轻数学家厄布朗明确提出的,他认为下列条件必须满足:必须只讨论确定的有限数目的对象及函数;这些对象及函数要能确

定它们的真值产生协调一致的计算结果;一个对象如不指出如何构造它就不能肯定其存在;必须永远不考虑一个无穷集体中所有对象的集合;一个定理对于一组对象都成立的意思是,对于每个特殊的对象,可以重复所讲的普遍论证,而这普遍论证只能看成是结果特殊论证的原型。

数学理论的无矛盾性有了这种有限的、可构造性的论证之后,任何人都可以放心了。希尔伯特计划提出后,几组数学家分别为实现它而努力:一组是希尔伯特及贝耐斯,以及阿克曼关于把数学理论形式化的研究;一组是冯?诺依曼关于算术无矛盾性的初步研究及哥德尔的不完全性定理以及甘岑的最后解决;还有一组是厄布朗及甘岑关于证明的标准形式等的研究。

厄布朗是法国天才的青年数学家,1931年8月在登阿尔卑斯山时遇难,年仅23岁。他对代数数论尤其是数理逻辑进行过重要的研究工作,1929年他在博士论文《证明论研究》中提出他的基本定理。从某种意义上来讲,这个定理是想把谓词演算归结为命题演算。由于前一理论是不可判定的,而后一理论是可判定的,因此这种归结不可能是完全的。但是,由于厄布朗局限于希尔伯特有限主义立场,他应用的证明方法比较绕弯子。而且在1963年发现,他的证明中有漏洞,他的错误很快就得到了弥补。厄布朗定理可以使我们在证明中摆脱三段论法。他的许多结果,后来也为甘岑独立地得出。

甘岑的自然演绎系统是把数学中的证明加以形式化的结果。他由此得出所谓“主定理”,即任何纯粹逻辑的证明,都可以表示成为某种正规形式,虽然正规形式不一定是唯一的。为了证明这个主定理,他又引进了所谓的式列(Sequenz)演算。

在普通的数学证明中,最常用的是三段论法,即如果A→B,且若A成立,则B成立。其实这就是甘岑推论图中的“断”。但是甘岑的主定理就是从任何证明图中可以消除掉所有的“断”。也就是:如果在一个证明中用到三段论法,那么定理表明,它也可以化成为不用三段论法的证明,也得到同样的结论。这个定理乍一看来似乎不可理解,其实正如甘岑所说,一个证明图中有三段论法实际上是“绕了弯子”,而不用三段论法是走直路。这种没有三段论法的证明图称为“正

规形式”,利用这没有三段论法的证明图称为“正规形式”。利用这个主定理很容易得出许多重要结果,其中之一就是极为简单地证明“一阶谓词演算是无矛盾的”,而且能够推出许多无矛盾性的结果。后来还可以用来证明哥德尔的完全性及不完全性定理。当然,最重要的事还是要证明算术的无矛盾性。

希尔伯特引进证明论的目标是证明整个数学的无矛盾性,其中最重要的是集合论的无矛盾性(至少ZF系统无矛盾)、数学分析的无矛盾性,最基本的当然是算术的无矛盾性。哥德尔的不完全性定理说明,用有限的办法这个目标是达不到的。由于哥德尔不完全定理的冲击,希尔伯特计划需要修改。有限主义行不通就要用非有限的超穷步骤。1935年,甘岑用超穷归纳法证明自然数算术形式系统的无矛盾性。其后几年,他和其他人又给出了其他的证明。这种放宽了的希尔伯特计划在第二次世界大战之后发展成为证明论的分支,这些证明也推广到分支类型论及其他理论。

甘岑在第二次大战行将结束时去世,他的结果代表当时证明论的最高成就,希尔伯特和贝纳斯的《数学基础》第二卷中总结了他的工作,但是证明论远远未能完成它的最初目标。战后随着模型论和递归论乃至六十年代以来公理集合论的发展,证明论一直进展不大。五十年代中,日本数学家竹内外史等人开始对于实数理论(或数学分析)的无矛盾性进行探索。因为实数一开始就同有理数的无穷集合有关,描述它的语言用一阶谓词演算就不够了,所以第一步就要先把甘岑的工作推广到高阶谓词演算中去。1967年,日本年轻数学家高桥元男用非构造的方法证明,单纯类型论中也可以消去三段论法。由此可以推出数学分析子系统的无矛盾性。但是,由于证明不是构造的,数学分析的无矛盾性至今仍然有待解决。厄布朗及甘岑的结果虽然不可能完成希尔伯特计划的最初目标,但是由于其有限性、可构造性的特点,现在已广泛地应用于机械化证明,成为这门学科的理论基础。

证明论的方法对于数理逻辑本身有很大的推动,特别是得出新的不可判定命题。最近,英国年轻数学家巴黎斯等人有了一项惊人的发现。他们发现了一个在皮亚诺算术中既不能证明也不能否证的纯粹组合问题,这不仅给哥德尔不完全性

定理一个具体的实例,而且使人怀疑要解决许多至今尚未解决的数论难题可能都是白费力气。这无疑开辟了证明论一个完全新的方向。

2、递归论

递归论讨论的是从形式上刻画一个运算或一个进程的“能行”性这种直观的观念,也就是从原则上讲,它们能机械地进行而产生一个确定的结果。“能行”的这个概念含有可具体实现的、有效的、有实效的等等意思。法国数学家保莱尔首先在1898年他的函数论教科书中引进了这个词,他把数学的对象局限于能行的对象,这种主张实际上就是“法国经验主义”。因为函数论主要讨论集合、函数、积分等等,从这种观点产生出描述集合论、拜尔函数等概念。递归论中所讨论的函数是比较简单的。它讨论有效可计算的函数,也就是递归函数。递归函数在历史上曾从不同角度提出来,后来证明它们都是等价的。

1931年秋天,丘奇在普林斯顿开了一门逻辑课,克林和罗塞尔当时作为学生记了笔记。丘奇在讲课中引进了他的系统,并且在其中定义自然数。这就很自然引起一个问题,在丘奇系统中如何发展一个自然数理论。于是克林开始进行研究,结果克林和丘奇得到一类可计算的函数,他们称之为A可定义函数。1934年春天,哥德尔在普林斯顿做了一系列讲演(克林和罗塞尔记了笔记)。在讲演中,哥德尔引进了另外一套可以精确定义的可计算函数类,他称为一般递归函数。据他讲,他是受了厄布朗的启发得到的。这时自然出现了一个问题。一般递归函数类是否包括所有能行可计算的函数,它是否与克林与丘奇研究的A可定义函数类重合。1934年春末,丘奇和哥德尔讨论一般递归函数问题,结果丘奇明确提出他的“论点”,所有直觉上可看成能行可计算函数都是λ可定义函数,于是丘奇花了好几个月反复思考。当时克林表示怀疑,他认为这论点不太可能是对的,他想如果从A可定义函数类用对角化方法可以得出另外一个能行可计算函数,那么它就不是A可定义的。但他又想到这事行不通。不久之后,丘奇和克林在1936年分别发表论文,证明A可定义函数类正好就是一般递归函数类。有了这个有力的证据,丘奇于是公开发表他的“论点”。也是在1936年,英国年轻数学家图灵发表了另外一篇重要文章,这标志着所谓图灵机的产生。在这篇文章中,图灵也定义了一类可计算函数,也就是用图灵机可以计算的函数。同时,他也提出他

的一个论点:“能行可计算的函数”与“用图灵机可计算的函数”是一回事。1937年图灵证明了用图灵机可计算的函数类与可定义函数类是一致的,当然,也就和一般递归函数类相重合。这样一来,丘奇的论点与图灵的论点就是一回事。当时许多人对于丘奇的论点表示怀疑,由于图灵的思想表述得如此清楚,从而消除了许多人的疑虑,哥德尔就是其中一位。从这时起大家对于丘奇—图灵论点一般都抱支持的态度了。

与图灵同时,美国数学家波斯特也发表了一篇文章,类似于图灵的可计算函数,他的文章过于简短,一直到1943年波斯特才发表了第四个表述,结果证明他的与别人的也都一样。递归的概念并不难理解,它就是由前面的结果可以递推得到后面的结果。哥德尔等人引进的实际上是一般递归函数,一般递归函数都可以由原始递归函数算出来。另一个复杂一些的概念称为递归集合S,它的定义是存在一种能行的办法来判断任何正整数n是否属于S。正整数集合是递归的当且仅当它与它在N中的补集都是递归可枚举的。任何无穷递归可枚举集都包含一个无穷递归集。但是,存在正整数的递归可枚举集而不是递归集。于是波斯特提出问题:是否存在两个递归可枚举但是非递归的集合,使得第一个集合相对于第二个是递归的,但第二个相对于第一个却不是递归的。一直到十二年后的1956年,苏联人穆其尼克及美国人弗里德伯格才独立地肯定地解决了这个问题。

苏联数学家马尔科夫在1947年发表《算法论》,首先明确提出算法的概念。但是它同以前定义的递归函数及可计算函数的计算过程都是等价的。这几个定义表面上很不相同,并有着十分不同的逻辑出发点,却全都证明是等价的。这件事看来决非巧合。它表明:所有这些定义都是同一个概念,而且这个概念是自然的、基本的、有用的。这就是“算法”概念的精确的数学定义。大家都接受了这个定义之后,判定问题从我们平时直观的概念也上升为精确的数学概念,判定问题也成为一门数理逻辑的重要分支了。从这时起,判定问题有突飞猛进的发展。判定问题有了精确的数学表述之后,立即在数学基础乃至整个数学中产生了巨大的影响。因为这时一些不可判定命题的出现,标志着人们在数学历史上第一次认识到:有一些问题是不可能找到算法解的。在过去,人们一直模模糊糊地觉得,任何一个精确表述的数学问题总可以通过有限步骤来判定它是对还是错,是有解还是没

有解。找到不可判定问题再一次说明用有限过程对付无穷的局限性,它从另外一个角度反映了数学的内在固有矛盾。

怎样得到这些结果的呢?丘奇的论点发表之后,不难看出存在不可计算的函数,也就是非一般递归的函数。因为所有可能不同的算法共有可数无穷多(粗浅来讲,算法都是用有限多个字来描述的),可是所有数论函数的集合却是不可数的。不过,头一个明显的不可判定的结果是1936年丘奇得到的。他首先得到与λ可定义性有关的不可判定结果。然后,他把这个结果应用到形式系统的判定问题上,特别地,他证明形式化的一阶数论N是不可判定的。也是在1936年,丘奇证明纯粹的谓词演算也是不可判定的。当时大家的反应是:这种不完全性的范围到底有多广?甚至于象丘奇这样的数学家,也想找到一条出路能避开哥德尔的结果。比如说,可以采用哥德尔所用的系统完全不同的其他的特殊系统。一旦算法的精确定义和丘奇论点出现之后,大家就认识到躲不过哥德尔不完全性定理的影响,可计算性和不完全性这两个概念是紧密联系在一起的。实际上克林在1936年就证明了(作为丘奇论点的应用):甚至在能够能行地认出公理和证明的形式系统中,哥德尔的定理仍然成立。消去量词方法对许多理论行不通。一般的判定问题是试图找出一个能行的步骤,通过这个步骤可以决定什么东西具有某种指定的元数学特征。在纯粹逻辑演算的元理论中,有最明显的一类判定问题:对于给定的演算和给定类的公式,求出一个步骤,能够在有限多步内判定这类的任何特殊公式是否可以形式地推导出来。有些情形、问题已经得到肯定的解决,在另外一些情形,答案是否定的,可以证明不存在这样一个步骤。这种否定的证明,特别对于数学理论,很大程度上依赖于递归论。

最早明确提出的数学判定问题是希尔伯特第十问题。他在1900年国际数学家大会上提出了著名的二十三个问题,其中第十个问题是:给定一个有任意多未知数的、系数为有理整数的丢番图方程,设计一个步骤,通过它可以经有限步运算判定该方程是否有有理整数解。这个到1970年才被否定解决的问题不仅解决了一个重大问题,而且解决问题过程中所得到的工具和结果对数理逻辑和数学发展有着极大影响,比如表示素数的多项式,尤其与整个数理逻辑有关的是得出了一个更确切的哥德尔不完全性定理。

现在我们来看希尔伯特第十问题,为了清楚起见,我们考虑多项式方程,看看一般的多项式丢番图方程的次数和未定元的数目是否可以降低。1938年斯科

兰姆证明,任何丢番图方程的次数可约化成次数小于等于4的方程;1974年马

蒂亚谢维奇和罗滨逊证明未定元的数目可约化成小于等于3。对于齐次方程,阿德勒在1971年证明,任何齐次方程可以能行地约化为二次齐次方程组,从而等价于一个四次齐次方程。对于一次方程早就有具体方法解丢番图方程了。对于任意多未定元的二次方程,1972年西格尔也找到一个算法。四次方程不能判定,

三次方程尚不知道。

解决丢番图方程解是否存在的判定问题的方法是引进丢番图集。每个丢番图集合是递归可枚举集。1970年,苏联大学生马蒂亚谢维奇证明了每个递归可枚

举集也是丢番图集合。这样一来,由于存在不可判定的递归可枚举集,所以存在一些特殊的丢番图方程,使得对是否有解的判定问题不可解。当然对一般丢番图方程的判定问题就更不可解了。另一个判定问题是半群和群论中字的问题,半解问题是挪威数学家图埃在1907年首先提出来的。问题是对于一个半群,如果给定它的有限多生成元和有限多关系,那么能否找到一个方法来判定任何一个特殊的字是否等于单位元素。1947年,波斯特否定地解决了这个问题。群论中字的

问题更为重要,它是在1911年由德恩首先研究的,一直到1955年才由苏联数学家诺维科夫否定解决。这些结果给数学家指明了新的方向:不要妄图去解决一大类问题。不过对于更窄的一类的对象比如一类特殊的群,群的字问题是可解的。

3、模型论

模型论是数理逻辑的一个分支,讨论形式语言与其解释或者模型之间的关系。如语言是一阶谓词逻辑,则这种模型论就称为“古典模型论”。最简单的模型是数学中的一些结构,例如5阶循环群,有理数域,以及所有按照包含关系形成

的偏序结构,由整数构成的集合等等。在数学里我们直接研究这类模型,而不管形式语言。这个理论可以说是泛代数(当然也包含通常代数中的群论、环论、域论等等),它们研究同态、同构、子结构、直积等等。可是关于这些模型的性质,都要表示成为语言。反过来,一个语句可以真也可以假,看你是说哪一个模型。这样看来,模型论和代数学是有区别的,有人把模型论看成是逻辑加上泛代数,

这也是十分形象的。模型论一定要明显地涉及语句,并且以语句为出发点,这是它同一般代数学有区别的地方。另外模型论的语言是形式语言,它与模型的关系是语法和语义的关系。对于形式语言,我们只是按照一定的规则(文法规则)去造出一些语句,至于这些语句含义如何、是真是假,就不是语法所能管得了的。语法只考虑形式的结构,比如构成语句的符号是哪些,符号之间的关系如何(谁在谁的前面而不能在后面)等等,而语义则提供解释或者意义,只有意义才能确认语句的真假(除了重言式或恒真语句或同语反复之外)。因此可以说,模型论是研究形式语言的语法和语义之间关系的学科。

在数学中,我们对模型还不是很陌生,在非欧几何中就是靠引进模型才论证了非欧几何公理系统是不矛盾的。但一直到1950年左右,模型论才正式成为一门新学科。主要标志就是1949年亨肯发表的完全性定理的新证明,以及1950

年国际数学家大会上塔尔斯基与罗滨逊的报告,以及1951年罗滨逊《代数的元数学》的发表。自此之后,模型论大致可分为两条路线,一条是美国西海岸的斯科兰姆—塔尔斯基路线,他们从四十年代起就由数论、分析、集合论的问题所推动,强调研究一阶逻辑所有公式的集合模型。另一条是美国东海岸的罗滨逊路线,他们的问题由抽象代表的问题所推动,它强调无量词公式集与存在公式集。关于两块量词的理论很多,它们有许多应用。罗滨逊主要用于域论,前苏联马力茨夫等人主要用于群论。

属于纯粹模型论主题的最早的定理有两个,一个是罗文汉姆的定理。他在1915年证明每一组有限多公理如果有模型的话,则它也有一个可数模型。把这个定理推广到有可数个公理的情况。另一个定理是紧性定理。三十年代,哥德尔对可数语言证明紧性定理,1936年苏联马力茨夫推广到不可数语言。紧性定理在代数学方面有许多应用。这两个定理都肯定某种模型的存在性,特别是罗文汉姆—斯科兰姆定理及紧性定理指出有想不到的特别大的模型存在。最明显的就是自然数集合的皮亚诺公理(其中归纳公理加以改变),不仅有通常自然集N为其标准模型(即包括可数多个元素),还有包括不可数多个元素的模型,这就是所谓非标准算术模型。第一个非标准算术模型是由斯科兰姆在1934年首先造出的。这两个定理的证明都依赖于造模型的方法。

模型论中常用的构造模型方法与工具有:初等链方法、图式、紧性定理、罗文海姆—斯科兰姆定理、省略类型定理、力迫法、超积、齐性集合等8种,这些方法都是相当专门的。图式方法是亨金及罗滨逊首创的,它有许多用处,不仅能证明紧性定理、罗文海姆—斯科兰姆定理、哥德尔完全性定理等等,而且可以得出许多新定理。初等链是塔尔斯基及沃特在1957年提出的。超积是最常用的构造模型的方法,超积和超幂的用处表现在同构定理上。超幂的另一个很大的用处是构造非标准分析的模型。

对于数学理论最重要的事是公理化。在模型论中,公理数目可以有限多,称为有限公理化的理论。这类理论有:群、交换群、环、整域、域、有序域、全序集、格、布尔代数、贝纳斯—哥德尔集合论等等。许多重要理论是不能有限公理化的,其中一部分是递归可公理化的。如可分群、无挠群、特征0的域、代数封闭域、实封闭域、有限域、尤其重要的是皮亚诺算术和ZF集合论,而有限群论甚至连递归可公理化都不行。一个理论是递归可公理化的充分必要条件是:它的所有推论集合是递归可枚举的。通常它不一定是递归的,如果是递归的,则称为可判定的。可以证明,每个完全、递归可公理化理论是可判定的。因此利用模型论的有力工具可以得出判定理论的一些结果,如早在1948年塔尔斯基等人证明,实闭域理论是完全的,因此是可判定的。

早在十九世纪,数学家利用造模型的方法来肯定非欧几何的真实性,他们造过许多模型,但这些模型本质上没有区别,也就是“同构”。在二十世纪初,数学家一般认为,一个理论的模型都是同构的,如自然数理论就是皮亚诺公理所刻画的一种。但是这种想法很快就由于自然数非标准模型的存在而被打破,所以人们又在模型论当中引进重要的概念—范畴性:一个理论或一组公式如果其所有模型均同构,它就称为范畴的。实际上,这对于形式系统(或公理系统)是仅次于协调性(无矛盾性)、完全性、独立性之后的第四个重要要求。但是这个要求实在太强了,实际上,只要一个理论有一个无穷模型,那么它就不是范畴的,所以我们把范畴性的要求降低。

模型论给数学带来许多新结果,我们大致可以分成三大部分:在代数方面的应用主要是在群论和域论方面;在分析方面的应用主要是非标准分析;在拓扑学、代数几何学方面的应用主要是拓扑斯理论。

模型论在代数学中最早的应用是量词的消去,早在三十年代,就由此得到了整数加法群的判定步骤,塔尔斯基得到实数的可定义集和实数域的判定步骤。1965年以后,数理逻辑的发展逐步影响到数学本身,因而重新引起数学家们的

注意,特别是集合论与模型论的结果不断冲击数学本身。模型论在解决代数问题方面显示巨大威力,特别是艾柯斯及柯辰解决了著名的阿廷猜想,这个问题曾使代数学家为难了几十年。

非标准分析是罗滨逊在1960年创造的。1961年1月,在美国数学大会上,罗滨逊宣布了他的非标准分析,其实这就是逻辑学家所谓的实数的非标准模型。在这篇报告中,他总结了新方法的所有重要方面,因此无可争辩地成为这个新领域的独一无二的创造者。他指出,实数系统是全序域,具有阿基米德性质,也就是任何一个正实数经过有限次自己加自己之后可以超过任何一个实数。但是非标准实数一般并不满足这个条件,比如说一个无穷小量的一千倍,一万倍、一亿倍甚至更多,也大不过 1,这个性质称为非阿基米德性质。最近,非标准分析在分析、微分几何学、代数几何学、拓扑学有一系列的应用,使数学家对非标准分析也不得不另眼相看了,特别是非标准拓扑和非标准测度论近来更是有重要的突破。非标准测度论已经得出许多新的“标准”结果,如关于测度的扩张、位势理论、布朗运动理论、随机微分方程、最优控制理论,甚至运用到数理经济学及高分子物理化学当中。其中关键来自1975年洛布的工作。他从非标准测度空间能造出丰富的标准测度空间,使得非标准分析真正能对标准数学作出自己的贡献。

拓扑斯是统一现代数学的最新基础,它反映了数理逻辑与范畴论的结合。范畴论大约在六十年代初由同调代数学脱胎而出,而同调代数则在四十年代末到六十年代初由代数拓扑学发展而来。代数拓扑学则是用群、环、域、模等代数结构来刻化几何图形的拓扑结构。同调代数学则用代数结构来刻化代数结构,比如说一组群与另一组的对应关系。把这个组发展到集合或其它任何结构,研究范畴与范畴之间的关系就是范畴论。我们可以考虑几何的范畴和范畴的范畴。1963年

出现了层的范畴,这就是拓扑斯。托普斯使范畴方法迅速推广到其他数学分支中去。1970年,劳威尔等人引进一种特殊的范畴—初等拓扑斯。几年之后,证明了一个重要结果,一个初等拓扑斯正好是高阶直觉主义集合论的模型。因此,初等拓扑斯就像集合一样成为数学的基础,而且更接近数学的内容。

4、公理集合论

1930年以后,迎来了公理集合论的黄金时代。对于数学家们来说,策梅罗的公理系统ZF大致够用。他们仍不太关心集合论的细微未节,以及一层一层的无穷大,这些在他们的数学中难得碰到。不过除了九条可靠的ZF公理之外,他们也往往需要选择公理(AC),有时也要考虑连续统假设(CH)。他们希望这两个公理是真的,这样似乎就可以天下太平了。谁知事情越来越麻烦,现在居然找出一大堆玄妙的公理和假设,它们能推出一些我们想要的结果来,同时又出现许多荒唐矛盾的现象。这些现象十分有趣,但是从外行看来实在乱七八糟。这里还是简单归纳介绍一下

4.1 选择公理

选择公理是现代数学中最常用的假设,过去许多人曾不自觉地使用。对这个问题引起注意,是因为康托尔在1883年提出任意集合是否都可良序化的问题。希尔伯特也曾把这个问题引入其23问题的头一问题的后半部分。1904年,策梅罗提出选择公理,并通过选择公理证明了良序定理。这个公理有极多的等价形式,其中有在代数中常用的造恩引理。这个应用极广、看来正确的选择公理,却可以证明出一些看来荒唐的结果。如1914年的豪斯道夫的分球面定理和1923年的巴拿赫—塔尔斯基悖论。可是选择公理的用途太大,不能忽视,许多学科的基本定理少不了它:泛函分析中的哈恩—巴拿赫定理(关于巴拿赫空间上的线性泛函的可扩张性);拓扑学的吉洪诺夫定理(关于任意多紧空间的直积为紧);布尔代数的斯通表示定理,每个布尔代数皆同构于集代数;自由群论的尼尔森定理,自由群的子群也是自由的。其他还有许多定理,如果没有选择公理也不行。

4.2连续统假设

连续统假设的历史最久,它可以说是随着集合论一起产生的。1883年康托尔就提出了这个假设,可数无穷集的基数的后面就是连续统的基。康托尔花了毕生精力去证明,但没有成功。希尔伯特把它列入自己著名的23个问题的头一个。希尔伯特本人也曾经用了许多精力证明它,并且宣布过证明的大纲,但终究未能成功。这个问题终究悬而未决。1930年哥德尔完成了他的两大贡献以后,曾说过“现在该轮到集合论了”。他从1935年起就开始研究连续统假设及广义连续统假设。这一次他又出人意料地证明了ZF和GCH是协调一致的,不过当然要假设ZF本身也是协调的,虽然这一点一直没有得到证明。哥德尔应用可构造性公理证明ZFC和ZFC+GCH的相对无矛盾性,他用可构造集的类L作为ZFC的模型。1963年7月,美国年轻数学家科恩发明了影响极为重大的力迫法,并证明连续统假设的否定命题成立,这样一来CH在ZF中既不能证明也不能否定。

4.3可构成性公理

哥德尔证明选择公理和连续统假设协调性的方法是定义一种类型的集合,叫做可构成集。假如把集合论中集合的概念完全用可构成集合的概念来理解,那么集合论中的一些概念就会有相应的改变。但是有一些概念不会改变,这种概念我们称为绝对的,特别是可构成性这个概念是绝对的。所以“一切集合是可构成的”,这称为可构成性公理。可构成性的概念非常重要,表现在:1、可构成性公理与ZF的其他公理是协调的;2、可构成性公理蕴涵连续统假设和选择公理;3、如果可测基数存在,则不可构成集合存在,这是斯科特1961年证明的。随后,罗巴通在他1964年的博土论文中证明可测基数的存在蕴涵整数不可构成集合的存在性,后来他又证明可测基数的存在蕴涵只有可数无穷多个整数的可构成集合。

4.4 马丁公理

马丁公理是1970年由马丁等人提出来的,它与ZFC的其他公理完全不同,不像一个“真”的公理,但是由它可以推出数学上重要的结果。马丁公理是连续统假设的推论,因此可以看成是弱连续统假设。马丁公理在数学上有一系列的重要应用。特别重要的是,舍拉在1974年证明怀特海猜想在ZFC下是不可判定的。同样,许多拓扑学问题也有类似情况。

4.5 大基数公理

连续统假设及广义连续统假设反映了最理想的大基数产生的方法,也就是一个接一个由幂集的基数产生出来。但是,这种理想的情况现在还无法证明,而与它不同或矛盾的情形也不可能得到否定。因此,这种种特殊大基数的存在性能得到更加特殊的结果,而且对数学本身产生了不可忽视的影响。虽然这些大基数极为玄乎,可是由它们可以推出许多重要的数学结果。因此我们不得不重视它,而它们的存在性作为公理就是大基数公理。可以料到这些大基数公理同原来的一些公理是矛盾的。比如,可构造公理就蕴涵可测基数不存在。大基数公理对数学问题的重要性可以由下面问题的解决看出:拓扑学中一个著名的几十年末解决的正规莫尔空间猜想归结为可测基数的存在问题,而像过去局限于ZFC系统的证明是没有希望的。

4.6决定性公理

决定性公理是与描述集合论密切相关的公理,它涉及到自然数列的集合是否能够通过某种方法决定。决定性公里的基本问题是:什么集合是可决定的?经过许多人的努力,马丁在1975年证明,数学中最常用的保莱尔集合是可决定的。下一个猜想是证明所有解析集合(即二维保莱尔集合的射影集合)是可决定的,但这个猜想与哥德尔的可构成性公理相矛盾。上面讲过,可构成性公理是与ZFC是相容的,因此这个猜想无法在集合论中证明。这样一来,它本身可以成为一个新公理。比这个公理更加激进的公理是:R的所有子集合都是决定的。这个公理太过激烈了,以致很难为“真”,因为它首先同选择公理有矛盾。不过,由这个决定性公理却能推出一系列有趣的数学事实;其中最突出的是,由它可推出所有实数集合都是勒贝格可测的。这样一来,许多数学成为没有意思的了。因此,数学家还是不太想要这个太强的公理。可是,它带来的一系列问题仍有待解决。

离散数学数理逻辑部分考试试

离散数学形成性考核作业(四) 数理逻辑部分 本课程形成性考核作业共4次,内容由中央电大确定、统一布置。本次形考作业是第四次作业,大家要认真及时地完成数理逻辑部分的形考作业,字迹工整,抄写题目,解答题有解答过程。 第6章命题逻辑 1.判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题. (1)8能被4整除. (2)今天温度高吗? (3)今天天气真好呀! (4)6是整数当且仅当四边形有4条边. (5)地球是行星. (6)小王是学生,但小李是工人. (7)除非下雨,否则他不会去. (8)如果他不来,那么会议就不能准时开始. 解:此题即是教材P.184习题6(A)1 (1)、(4)、(5)、(6)、(7)、(8)是命题,(2)、(3)不是命题。 其中(1)、(5)是简单命题,(4)、(6)、(7)、(8)是复合命题。 2.翻译成命题公式 (1)他不会做此事. (2)他去旅游,仅当他有时间. (3)小王或小李都会解这个题. (4)如果你来,他就不回去. (5)没有人去看展览. (6)他们都是学生. (7)他没有去看电影,而是去观看了体育比赛. (8)如果下雨,那么他就会带伞. 解:此题即是教材P.184习题6(A)2

会带伞。 :如果下雨,那么他就:他会带伞。 :天下雨。)(。是去观看了体育比赛。:他没有去看电影,而。 :他去观看了体育比赛:他去看电影。)(:他们都是学生。 )(:没有人去看展览。 :有人去看展览。)(去。 :如果你来,他就不回:他回去。:你来。)(道题。:小王或小李都会解这:小李会解这道题。 :小王会解这道题。)(时间。 :他去旅游,仅当他有:他有时间。 :他去游泳。)(:他不会做此事。:他会做此事。)(Q P Q P Q P Q P P P P Q P Q P Q P Q P Q P Q P P P →∧???→∧→?87654321 3.设P ,Q 的真值为1;R ,S 的真值为0,求命题公式(P ∨Q )∧R ∨S ∧Q 的真值. 解:此题即是教材P.184习题6(A )4(2) (P ∨Q )真值为1,(P ∨Q )∧R 真值为0,S ∧Q 真值为0, 从而(P ∨Q )∧R ∨S ∧Q 真值为0。 4.试证明如下逻辑公式 (1) ┐(A ∧┐B )∧(┐B ∨C )∧┐C ? ┐(A ∨C ) (2) (P →Q )∧(Q →R )∧┐R ??P (此题即是教材P.185习题6(A )5(1)、(4)) ) 7() () 8()6)(5()7()4)(2()6()4)(3()5()4()3()1() 2()() 1()(), (),(由由由由由证明:结论:前提:T B A T B A T A T B P C P C B T B A P B A B A C C B B A ∨??∧????∨?∨??∧?∨??∨??∧? ) 4)(3() 5()4()2)(1()3() 2() 1(), (),(由由证明:结论:前提:T P P R T R P P R Q P Q P P R R Q Q P ??→→→??→→

数理逻辑复习题

一、选择题 1、永真式的否定是(2) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 2、设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,则下列真命题为(1) (1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。 3、设P :我听课,Q :我看小说,则命题R “我不能一边听课,一边看小说”的符号化为⑵ ⑴ P Q → ⑵Q P ?→(3) Q P →? ⑷ P Q ?→?()P Q ?∧ 提示:()R P Q P Q ??∧?→? 4、下列表达式错误的有⑷ ⑴()P P Q P ∨∧? ⑵()P P Q P ∧∨? ⑶()P P Q P Q ∨?∧?∨ ⑷()P P Q P Q ∧?∨?∨ 5、下列表达式正确的有⑷ ⑴ P P Q ?∧ ⑵ P Q P ?∨ ⑶ ()Q P Q ???→⑷Q Q P ??→?)( 6、下列联接词运算不可交换的是(3) ⑴∧ ⑵∨ (3)→ ⑷ ? 6、设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“有的人喜欢所有的花”的逻辑符号化为⑷ ⑴(()(()(,))x M x y F y H x y ?∧?→ ⑵(()(()(,))x M x y F y H x y ?∧?→ (3) (()(()(,))x M x y F y H x y ?∧?→ ⑷(()(()(,))x M x y F y H x y ?∧?→ 7、设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些 老 师”的逻辑符号化为⑵ ⑴)),()((y x A x L x →? ⑵))),()(()((y x A y J y x L x ∧?→? (3) )),()()((y x A y J x L y x ∧∧?? ⑷)),()()((y x A y J x L y x →∧?? 8、谓词公式)())()((x Q y yR x P x →?∨?中的 x 是⑶ ⑴自由变元 ⑵约束变元 ⑶既是自由变元又是约束变元 ⑷既不是自由变元又不是约束变元 9、下列表达式错误的有⑴ ⑴(()())()()x A x B x xA x xB x ?∨??∨? ⑵(()())()()x A x B x xA x xB x ?∧??∧? (3) (()())()()x A x B x xA x xB x ?∧??∧? ⑷(()())()()x A x B x xA x xB x ?∨??∨?

数学史选择题集锦知识分享

数学史选择题集锦

1、首先获得四次方程一般解法的数学家是( D )。 A. 塔塔利亚 B. 卡尔丹 C. 费罗 D.费拉里 2、最先建立“非欧几何”理论的数学家是( B )。 A. 高斯 B. 罗巴契夫斯基 C. 波约 D. 黎曼 3、提出“集合论悖论”的数学家是( B )。 A.康托尔 B.罗素 C.庞加莱 D.希尔伯特 4、( 泰勒斯 )在数学方面的贡献是开始了命题的证明,被称为人类历史上第一 位数学家 A. 阿基米德 B. 欧几里得 C. 泰勒斯 D. 庞加莱 5、数学史上最后一个数学通才是( B ) A、熊庆来 B、庞加莱 C、牛顿 D、欧拉 7、当今数学包括了约 A 多个二级学科。 A、400 B、500 C、600 D、700。 1、秦九韶是“宋元四大家”之一,其代表作是()。 (A)九章算术(B)九章算术注(C)数书九章(D)四元玉鉴 2、下面哪位数学家最早得到了正确的球的体积公式()。 (A)欧几里得(B)祖冲之(C)刘徽 (D)阿基米德 3、古代几何知识来源于实践,在不同的地区,不同的几何学的实践来源不尽相同,古代埃及的几何学产生于

(A)测地(B)宗教(C)天文 (D)航海 4、“零号”的发明是对世界文明的杰出贡献,它是由下列国家发明的()。 (A)中国(B)阿拉伯(C)巴比伦(D)印度 5、最早发现圆锥曲线的是下列哪位数学家()。 (A)欧几里得(B)阿波罗尼奥斯(C)毕达哥拉斯 (D)梅内赫莫斯 6、下列哪位数学家提出猜想:每个偶数是两个素数之和;每个奇数是三个素数之和()。 (A)费马(B)欧拉(C)哥德巴赫(D)华林 7、下列哪位数学家首先证明了五次和五次以上的代数方程的根式不可解性()。 (A)拉格朗日(B)阿贝尔(C)伽罗瓦(D)哈密顿 8、在非欧几何的先行者中中,最先对“第五公设能由其他公设证明”表示怀疑的数学家()。 (A)克吕格尔(B)普罗克鲁斯(C)兰伯特(D)萨凯里 9、下列数学家中哪位数学家被称作“现代分析学之父”()。

数理逻辑测试题

玛 氏 食 品 ( 中国 ) 有 限 公 司 姓名:武英杰 性别:男 1-25 题均为选择题,只有一个正确答案。答案写在( ) 内 1-6 题根据下列数字规律,选择( )内应填数字: ( B ) 1、 2,9,16,23,30,( ) A.35 B.37 C.39 D.41 ( C ) 2、 5,11,20,32,( ) A .43 B .45 C .47 D .49 ( C )3、 1,2,3,5,( ),13 A 9 B 11 C 8 D7 ( A )4、 5,7,( ),19,31,50 A 12 B 13 C 10 D11 ( C )5、 8,4,2,2,( ) A 、2 B 、3 C 、4 D 、5 ( C)6、 14,20,29,41,( ) A.45 B.49 C.56 D.72 ( A ) 7、. 15.025.053÷?的值是: A .1 B .1.5 C .1.6 D .2.0 ( C ) 8、 1994年第二季度全国共卖出汽车297600辆,与上年同期相比增长了 24%。上年同期卖出多少辆汽车?

A.714224 B.226176 C.240000 D.369024 ( D ) 9、甲、乙两地相距42公里,A、B两人分别同时从甲乙两地步行出发, A的步行速度为3公里/小时,B的步行速度为4公里/小时,问A、B步行几小时后相遇? A. 3 B. 4 C. 5 D. 6 ( A)10、一根绳子长40米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长多少米? A、5 B、10 C、15 D、20 ( B ) 11、如果一米远栽一棵树,则285米远可栽多少棵树? A、285 B、286 C、287 D、284 (B ) 12、在一本300页的书中,数字“1”在书中出现了多少次? A、140 B、160 C、180 D、120 ( D ) 13、自然数A、B、 C、 D的和为90,已知A加上2,B减去2,C乘以 2,D除以2之后所得结果相同,则B等于() A、26 B、24 C、28 D、22 ( B ) 14、某人工作一年的报酬是18000元和一台全自动洗衣机,他干了7个月, 得到9500和一台全自动洗衣机,问这台洗衣机值多少元? A.8500元 B.2400元 C.2000元 D.1700元 ( B ) 15、橱窗:商品;相当于 A 电影:明星 B 书架:书籍 C 宇宙:星球 D 餐馆:厨师

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

数理逻辑考试题及答案

“离散数学”数理逻辑部分考核试题答案 ━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━ 一、命题逻辑基本知识(5分) 1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。共2分) (0)小刘既不怕吃苦,又爱钻研。 解:p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。 (1)只有不怕敌人,才能战胜敌人。 解:q→p,其中,P:怕敌人;q:战胜敌人。 (2)只要别人有困难,老张就帮助别人,除非困难已经解决了。 解:r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。 (3)小王与小张是亲戚。 解:p,其中,P:小王与小张是亲戚。 2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。共1分) (0)A:((p q)((p q) (p q))) r (1)B:(p(q p)) (r q) (2)C:(p r) (q r) (3)E:p(p q r) (4)F:(q r) r 解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。 3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。共2分) (0)设y=2|x|,x为实数。推理如下:如y在x=0处可导,则y在x=0处连续。发现y在x=0处连续,所以,y在x=0处可导。 解:设y=2|x|,x为实数。令P:y在x=0处可导,q:y在x=0处连续。由此,p为假,q为真。本题推理符号化为:(p q) q p。由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。 (1)若2和3都是素数,则6是奇数。2是素数,3也是素数。所以,5或6是奇数。 解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。由此,p=1,q=1,r=1,s=0。本题推理符号化为: ((p q) →s) p q) →(r s)。计算推理公式真值为真,由此,本题推理正确。 二、命题逻辑等值演算(5分) 1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。共2分) (0)求公式p→((q∧r) ∧(p∨(q∧r)))的主析取范式。 解:p→((q∧r) ∧(p∨(q∧r)))p∨(q∧r∧p) ∨(q∧r∧q∧r) p∨(q∧r∧p) ∨0 (p∧q∧r) ∨ (p∧1∧1) ∨(q∧r∧p) (p∧(q∨q)∧(r∨r)) ∨(q∧r∧p) (p∧(q∨q)∧(r∨r)) ∨m7 (p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨m7 m0∨m1∨m2∨m3∨m7. (1)求公式((p→q)) ∨(q→p)的主合取范式。 解:((p→q)) (q→p) (p→q) (p→q) (p→q) p q M2.

中国古代逻辑为何未能进一步发展

中国古代逻辑为何未能进一步发展 冯颜利周芬 [摘要]:古代中国和古希腊几乎同时产生了逻辑,但前者逻辑却并未像后者逻辑一样得到长足的发展,原因是什么呢?古希腊传统逻辑中产生和使用了符号促进了其逻辑的发展,西方近代逻辑的进一步符号化产生了数理逻辑,带来了逻辑史上的重大革命,现在数理逻辑是世界逻辑发展的主流;中国方块文字的整体结构特点和语言表述上的特点,以及中国汉字的自我完善性,致使中国古代逻辑不易引入符号,缺乏符号障碍了逻辑的发展,这可能是中国古代逻辑未能进一步发展的主要原因。 [关键词]:中国,古代逻辑,未能发展,原因,符号 Why Didn't Logic Further Developed in Ancient China Feng Yanli, ZhouFen (Feng Yanli :Academy of Logic and Intelligence in Xinan University /Academy of Marxism in Chinese Academy of Social Sciences. ZhouFen: School of Politics and Public Management in Xinan University) Abstract :Logic was produced in ancient China and ancient Greece almost at the same time, but later the Chinese logic stopped developing by leaps and bounds as the Greece logic. What is the main reason? The symbols invented and adopted in Greek traditional logic promoted the development of logic in ancient Greece. Mathematical logic which originated in the further evolution of symbols has brought an important revolution in the history of logic. It is now the mainstream of the world logic. However, the features of Chinese characters, namely the overall ideographic structure and the self-perfection of the language system, impeded the introduction of symbols in ancient Chinese logic. The lack of symbols is probably the main reason why Chinese ancient logic ceased advancing. Keyword:China; Ancient logic; Reason; Symbol (作者:冯颜利,男,1963.8出生,湖南临湘人,教授,博士,西南大学逻辑与智能研究中心\政管学院,中国社科院马克思主义研究院,主要研究逻辑哲学、发展问题与公正理论;周芬,女,1982.11出生,山东临清人,西南大学政治与公共管理学院研究生,主要研究逻辑哲学与发展理论。) 引言 逻辑是推理的学问,是对思维的思维,是思维的科学。逻辑既体现着思维方式,又影响着思维方式。逻辑的表达方式既有自然语言也有人工语言,而人工语言即是指逻辑符号,它排除了自然语言中修辞之类的内容,专注于概念本身和概念之间的联系,因此它就排除了自然语言的模糊性和不确定性,比自然语言更严格地遵守规则,用这套符号系统来重新表述逻辑的基本概念和推理规则,使推理不再依赖于直觉,也没有跳跃和脱节。遵循这些规则,任何人都可以检验每一推理的前提和步骤,无歧义地达到同样的结论。逻辑只有建立在这样一套高度概括、抽象、严格化和精确化的符号系统中,才能得到飞跃发展。而中国古代逻辑虽然产生早而且有过辉煌的历史,但是由于中国汉字的象形与会意特点,其语言表达不易符号

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

离散数学数理逻辑部分期末复习题

离散数学数理逻辑部分综合练习辅导 一、单项选择题 1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ). A .P Q → B .Q P → C .Q P ? D .Q P ?∨? 因为语句“仅当我有时间时”是“我将去打球”的必要条件,所以选项B 是正确的. 正确答案:B 一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→. 问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,会符号化吗? 2.设命题公式G :)(R Q P ∧→?,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ). A .0, 0, 0 B .0, 0, 1 C .0, 1, 0 D .1, 0, 0 个人收集整理 勿做商业用途 当P 为真值为1时,P ?的真值为0,无论()Q R ∧的真值是1还是0,命题公式G 的真值为1.所以选项D 是正确的. 正确答案:D 3.命题公式P ∨Q 的合取范式是 ( ). A .P ∧Q B .(P ∧Q )∨(P ∨Q ) C .P ∨Q D .?(?P ∧?Q ) 复习合取范式的定义: 定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式: A 1∧A 2∧…∧A n , (n ≥1) 其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式. 由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的. 正确答案:C 4.命题公式)(Q P →?的析取范式是( ). A .Q P ?∧ B Q P ∧? C .Q P ∨? D .Q P ?∨ 复习析取范式的定义: 定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式: A 1∨A 2∨…∨A n , (n ≥1) 其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式. 公式)(Q P →?与Q P ?∧是等价的,Q P ?∧满足析取范式的定义,所以,

数理逻辑心得

数理逻辑的心得 数理逻辑:是计算机科学的基础,应熟练掌握将现实生活中的条件化成逻辑公式,并能做适当的推理,这对程序设计等课程是极有用处的。是大四接触到的,现简单介绍一下数理逻辑的发展史,算是一点感悟吧 1数理逻辑的发展前期 ·前史时期——古典形式逻辑时期:亚里斯多德的直言三段论理论 ·初创时期——逻辑代数时期(17世纪末) ·资本主义生产力大发展,自然科学取得了长足的进步,数学在认识自然、发展技术方面起到了相当重要的作用。 ·人们希望使用数学的方法来研究思维,把思维过程转换为数学的计算。 ·莱布尼兹(Leibniz, 1646~1716)完善三段论,提出了建立数理逻辑或者说理性演算的思想: ·提出将推理的正确性化归于计算,这种演算能使人们的推理不依赖于对推理过程中的命题的含义内容的思考,将推理的规则变为演算的规则。 ·使用一种符号语言来代替自然语言对演算进行描述,将符号的形式和其含义分开。使得演算从很大程度上取决与符号的组合规律,而与其含义无关。 ·布尔(G. Boole, 1815~1864)代数:将有关数学运算的研究的代数系统推广到逻辑领域,布尔代数既是一种代数系统,也是一种逻辑演算。 数理逻辑的奠基时期 ·弗雷格(G. Frege, 1848~1925):《概念语言——一种按算术的公式语言构成的纯思维公式语言》(1879)的出版标志着数理逻辑的基础部分——命题演算和谓词演算的正式建立。 ·皮亚诺(Giuseppe Peano, 1858~1932):《用一种新的方法陈述的算术原理》(1889)提出了自然数算术的一个公理系统。 ·罗素(Bertrand Russell, 1872~1970):《数学原理》(与怀特黑合著,1910, 1912, 1913)从命题演算和谓词演算开始,然后通过一元和二元命题函项定义了类和关系的概念,建立了抽象的类演算和关系演算。由此出发,在类型论的基础上用连续定义和证明的方式引出了数学(主要是算术)中的主要概念和定理。 ·逻辑演算的发展:甘岑(G. Gentzen)的自然推理系统(Natural Deduction System),逻辑演算的元理论:公理的独立性、一致性、完全性等。 ·各种各样的非经典逻辑的发展:路易斯(Lewis, 1883~1964)的模态逻辑,实质蕴涵怪论和严格蕴涵、相干逻辑等,卢卡西维茨的多值逻辑等。 集合论的悖论使得人们觉得数学产生了第三次危机,提出了数学的基础到底是什么这样的问题。 ·罗素等的逻辑主义:数学的基础是逻辑,倡导一切数学可从逻辑符号推出,《数学原理》一书是他们这一思想的体现。为解决悖论产生了逻辑类型论。 ·布劳维尔(Brouwer, 1881~1966)的直觉主义:数学是心灵的构造,只承认可构造的数学,强调构造的能行性,与计算机科学有重要的联系。坚持潜无穷,强调排中律不能用于无穷集合。海丁(Heyting)的直觉主义逻辑。 ·希尔伯特(D. Hilbert)的形式主义:公理化方法与形式化方法,元数学和证明论,提倡将逻辑演算和数学证明本身形式化,把用普通的语言传达的内容上的数学科学变为用数学符号和逻辑符号按一定法则排列的一堆公式。为了消除悖论,要数学建立在公理化基础上,将

“数学”简介、含义、起源、历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。 形的研究属于几何学的范畴。古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。欧洲自文艺复兴时期起出现了射影几何学。18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;

10秋作业6(06任务):数理逻辑部分概念

离散数学作业6 数理逻辑部分概念及性质 单项选择题 1.设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ). A.P ∨ P? ?Q→B.Q P?D.Q P→C.Q 答 B 2.设命题公式G:) ?,则使公式G取真值为1的P,Q,R赋值 → P∧ (R Q 分别是( ). A.0, 0, 0 B.0, 0, 1 C.0, 1, 0 D.1, 0, 0 答 D 3.命题公式(P∨Q)→R的析取范式是( ). A.?(P∨Q)∨R B.(P∧Q)∨R C.(P∨Q)∨R D.(?P∧?Q)∨R 答 D 4.命题公式(P∨Q)的合取范式是( ). A.(P∧Q)B.(P∧Q)∨(P∨Q) C.(P∨Q)D.?(?P∧?Q) 答 C 5.命题公式) ?的析取范式是( ). P→ (Q A.Q ?D.Q ∨ P∨ P? ?C.Q ∧B Q P? P∧ 解()() ?→???∨ P Q P Q ?∧? P Q 答 A 6.下列等价公式成立的为( ). A.?P∧?Q?P∨Q B.P→(?Q→P) ??P→(P→Q) C.Q→(P∨Q) ??Q∧(P∨Q) D.?P∨(P∧Q) ?Q 解A.?P∧?Q??(P∨Q) B.P→(?Q→P)??P∨(Q∨P)? P∨(?P∨Q)??P→(P→Q) C.Q→(P∨Q)??Q∨(P∨Q) D.?P∨(P∧Q)?(?P∨P)∧(?P∨Q)?1∧(?P∨Q)??P∨Q

答 B 7.下列公式成立的为( ). A .?P ∧?Q ?P ∨Q B .P →?Q ??P →Q C .Q →P ? P D .?P ∧(P ∨Q )?Q 解 A .?P ∧?Q ??(P ∨Q ) B .P →?Q ??P ∨?Q C .(Q →P )→P ??(?Q ∨P )∨P ?(Q ∧?P )∨P ?(Q ∨P )∧(?P ∨P ) ?(Q ∨P )∧1?P ∨Q (不是永真式) D .?P ∧(P ∨Q )?Q (析取三段论,P171公式(10)) 答 D 8.下列公式中 ( )为永真式. A .?A ∧? B ? ?A ∨?B B .?A ∧?B ? ?(A ∨B ) C .?A ∧?B ? A ∨B D .?A ∧?B ? ?(A ∧B ) 解 A .A B A B ?∧???∨?/,1A B A B ?∧???∨??/ B .()A B A B ?∧???∨,()1A B A B ?∧???∨? C .A B A B ?∧??∨/,1A B A B ?∧??∨?/ D .()A B A B ?∧???∧/,()1A B A B ?∧???∧?/ 答 B 9.下列公式 ( )为重言式. A .?P ∧?Q ?P ∨Q B .(Q →(P ∨Q ))?(?Q ∧(P ∨Q )) C .(P →(?Q →P ))?(?P →(P →Q )) D .(?P ∨(P ∧Q )) ?Q 解 A .P Q P Q ?∧??∨/,1P Q P Q ?∧??∨?/ B .(())1Q P Q Q P Q →∨??∨∨? (())()()()1Q P Q Q P Q Q P Q ?∧∨??∧∨?∧?∧??/ (())(())1Q P Q Q P Q →∨??∧∨?/ C .()()()()P Q P P Q P P P Q P P Q →?→??∨∨?∨?∨??→→ (P →(?Q →P ))?(?P →(P →Q ))?1 D .()()()P P Q P P P Q P Q Q ?∨∧??∨∧?∨??∨?/ (())1P P Q Q ?∨∧??/ 答 C 10.设A (x ):x 是人,B (x ):x 是学生,则命题“不是所有人都是学生”可符号化为( ).

集合论和中国的发展

论文标题:集合论思想的演变及在当代中国的发展 论文作者姜玉声/朱焕志 论文关键词,论文来源自然辩证法研究,论文单位京,点击次数148,论文页数031-037页1995年1995月论文网https://www.360docs.net/doc/c72754698.html,/paper_143662921/ 集合论自上世纪70年代由德国数学家G.Cantor创立以来,不断促进着许多数学分科的发展,并成为全部现代数学的基础。然而,近30年来又相继出现了Fuzzy集合论与可拓集合论。为说明这两种集合论的产生在数学史中的意义,理清集合论思想演变的脉络,弘扬我国学者在这一发展中的创造精神,本文拟在简要回顾集合论思想从Cantor到Fuzzy的演变的基础上,就可拓集合论的产生与发展加以分析、研讨集合论思想发展的规律,谈谈我们的浅见。 1集合论思想从Cantor到Fuzzy的演变 长期以来,人们利用数学处理问题的主导思想通常是“枝是枝,蔓是蔓”,不允许半点儿“含混”,语言的“准确”,推理的“严格”,结论的“确定”从来天经地义。[(1)a]数学中的这种传统观念,把人们的思想局限在“确定性”的小天地里。所谓“确定性”,它要求概念有明确的外延,逻辑上严格地遵从形式逻辑的四条基本规律,结论只能是唯一确定的。与这种观念相适应,数学中便产生了Cantor集合论。 众所周知,集合是数学中的一个不定义概念。所谓集合,是指具有某种特定属性的对象的全体,集合中的每一个体(对象)叫做集合的元素。按Cantor的集合论,一个元素x与一个集合A的关系只能有属于(记作∈)和不属于(记作 )两种,二者必居其一且仅居其一,即 x∈A或x A。如表为特征函数的形式,记集合A的特征函数为C[,A](x),则有在长时间里,这种集合论思想占据统治地位,可以说整个传统数学[(2)a]就建立在这种集合论的基础上。实践表明,Cantor的集合论在研究确定性事物的范围内显现着巨大作用,其光辉是永不磨灭的。 然而,随着社会的发展,人类的知识视野和研究领域不断扩大,需要探讨的问题加速度地增加着。于是,不确定性现象,特别是其中的模糊性现象,逐渐被人们意识。具体地说,近几十年来,学者们不断发觉,某些现象呈现出不确定性,是由于概念本身就没有明确的外延,逻辑上并不严格遵从传统的排中律,表现为客观事物在差异的中介过渡中所呈现的“亦此亦彼”性。例如,人的年轻与年老、环境的清洁与脏污及天气的晴与阴等许多对立概念之间,都没有绝对分明的界限。严格地说,这些概念都没有明确的外延。若按这些概念去确定“集合”,则相应的“集合”都没有清晰的边界,一个元素是否属于某个“集合”不是很分明的。当然,如果数学家同意把这样的“集合”仍称为集合的话,则这种集合已经不是Cantor意义下的经典集合了。一个对象对于一个这样的集合,除可以属于和不属于外,还可以有某种程度的属于或不属于,而且后者才是更一般的情形。譬如,若用年轻人这个概念构造这种集合,要问一个人是否属于这个集合,即是否年轻,则除了年轻和不年轻这两个极端情形外,还要遇到比较年轻、基本年轻等不少中间过渡的档次,且每一档次内还可细分更小的档次。这就是事物的模糊性。为了研究和处理模糊性事物,美国控制论专家L.A.Zadeh教授于1965年提出了Fuzzy集合论。 Fuzzy集合论的基本思想较集中地体现在下面的开创性概念中:所谓给定了论域U上的一个模糊子集Α,是指对于任意的u∈U,都指定了一个数μ (u)∈〔0,1〕,用它来表示u对A的隶属程度,叫u对 的隶属度。映射叫做 的隶属函数。[(1)]有了这个概

离散数学及其应用数理逻辑部分课后习题答案

作业答案:数理逻辑部分 P14:习题一 1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (3 答:简单命题,真命题。 (9)吸烟请到吸烟室去! 答:不是命题。 (12)8是偶数的充分必要条件是8能被3整除。 答:复合命题,假命题。 14、讲下列命题符号化。 (6)王强与刘威都学过法语。 答::p 王强学过法语;:q 刘威学过法语。 符号化为: p q ∧ (10)除非天下大雨,他就乘班车上班。 答::p 天下大雨;:q 他乘班车上班。 符号化为: p q → (13)“2或4是素数,这是不对的”是不对的。 答::p 2是素数;:q 4是素数。 符号化为:(())p q ??∨ 15、设:p 2+3=5. :q 大熊猫产在中国。 :r 太阳从西方升起。 求下列复合命题的真值。 (2)(())r p q p →∧?? (4)()(())p q r p q r ∧∧???∨?→ 解答: p 真值为1;q 真值为1;r 真值为0. (2)p q ∧真值为1;()r p q →∧真值为1;p ?真值为0; 所以(())r p q p →∧??真值为0. (4) p q r ∧∧?真值为1,p q ?∨?真值为0,()p q r ?∨?→真值为1; 所以()(())p q r p q r ∧∧???∨?→真值为1. 19、用真值表判断下列公式的类型。 (4)()()p q q p →→?→?

所以为重言式。 )s 所以为可满足式。 P36:习题二 3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。 (1)()p q q ?∧→ 解答: 所以为永假式。 (2)(())()p p q p r →∨∨→ 解答: 所以因为永真式。 (3)()()p q p r ∨→∧

中国实证主义思潮的兴起和发展之二

中国实证主义思潮的兴起和发展之二 1923年,个园思想界展开了“科玄之战”,论战的一方以柏格森主义者张君劝为主将,另一方以马赫主义者丁文江为主将。论战中,丁文江写了三篇沦文,即《玄学与科学》、《玄学与科学——答张解劝》和《玄学与科学的讨论的余兴》。这三篇文章是马赫主义在命国传格的重要文字。通过他的论辩、阐述,马赫主义在中国成为其影响仅次于实用主义的实证主义哲学流派。论战之后,马赫主义者的主要著作陆续翻译成中文。RL药理译法国的马赫主义者彭家勒的《科学和假设》(1932年上海商务印书馆出版),文元模译《科学的价值》(1928年上海商务印书馆出版),郑太朴译《科学和方法》(1933年上海商务印书馆出版),谭辅之、沈因明译英国马游主义者毕尔生的《科学入门》(1934—1936年上海辛垦书局出版),陈望道、施存统译俄国马赫主义者波格丹诺夫的《关于社会意识的科学》(1929年上海大江书店出版)。另外,1930年上海商务印书馆出版了中园马赫主义者王星拱的著作《科学概论》。 因此,“五四”期间,实用主义、马赫主义、新实在论等各种实证主义流派广辽传播,彤响最大者数实用主义。胡适对实用主义员为信服,宣传也最为得力。当然,胡适对实用主义也非照搬照如,而是有所取合。其取舍的标被则依据实证主义的原则。例如,他强调实用主义只是一种方法论,是皮尔士所说的“科学实验塞的态皮”。詹的斯的实用主义宗教气味过重,道到胡适的批评,他说“詹姆斯是富于宗教

心的人。他虽是实验主义的宣传者,他的性情报本上和实验主义有点合不拢来。”①而这所谓“合不拢来”,在很大程度上是因为宏姆斯‘反对赫胥黎一班人的存疑主义”。伦理哲学在杖成的实用主义思想体系中占有相当重要的位置:但胡适仅强调杜咸实用主义的方法论方面。他说‘“杜成效终只认实用主义是一种方法论”。其实,西方实用主义到了杜威,已经发展为包括本体论、认识论、伦理观、宗教观的庞大思想体系,而胡适则突出它的方法论的方面。按照实证主义的观点,哲学只是一种方法论,因此,尽管詹姆斯的“淑世主义”很合胡适的口味,并成为他的社会改良思想的理论来源,他却将这种“淑世主义”从实用主义中分割出来,与西方其他个人主义思想相结合,提出一种“易L生主义”’作为反封建和要求个性解放的口号。 小国近现代对西方哲学的态度经历从维新运动时期有选择的介绍到“五四”新文化运动时期大规模引进,最后发展到对西方哲学的融会吸收,进而建造自己的体系。巾围人从自己的研究出发,自打哲学学理、自创哲学理论是从三十年代开始的,到了四十年代,不仅两方的各种哲学理论,如功利主义、实证主义、实用主义、生机主义、尼采主义、唯物辩证法都已经输入并且形成了自己的学派,并且由于重视用西方的观点和方法来整理和研究中国固有文化,传统学术中的哲学思想又得到了发扬。在这近代各哲学学派争鸣时期,实证论思潮得到进一步发展,其中又形成和分化成不同的派别。这个时期受实证主义思潮影响的少园哲学,表现出二种不同的倾向;第一、从传统逻辑的研究转向数理逻辑的研究。自严复介绍穆勒名学,提倡归纳逻辑以

离散数学作业7答案(数理逻辑部分)

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿). 一、填空题 1.命题公式() →∨的真值是 1 . P Q P 2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为P∨Q→R . 3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧┐R)∨(P∧Q∧R) . 4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为?x ( P ( x) ∧Q ( x)). 5.设个体域D={a, b},那么谓词公式) xA? ∨ x ?消去量词后的等值式为 yB ( ) (y (A(a)∨A(b))∨(B(a) ∧B(b)). 6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(?x)A(x) 的真值为0 . 7.谓词命题公式(?x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(?x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 解:

相关文档
最新文档