模电公式集合

模电公式集合
模电公式集合

模拟电子技术基础中的常用公式必备

模拟电子技术基础中的常用公式 第7章半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。难点:放大电路的工作原理。 教学目标:掌握放大电路的工作原理、共射放大电路。理解放大电路的静态分析。了解共集放大电路。 第9章集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。

第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=×10-19 C ;k 为玻耳兹曼常数,k = ×10 -23 J /K 。室温下,可求得V T = 26mV 。I R(sat) 是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

模拟电子技术(模电)部分概念和公式总结【考试专用】

1、半导体:导电性能介于导体和绝缘体之间的物质。特性:热敏性、 光敏性、掺杂性。 2、本征半导体:完全纯净的具有晶体结构完整的半导体。 3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子, 电子为少子。 4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、 空穴为少子。 5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流 则是由少子的漂移运动形成的。 6、硅管和:0.5V和0.7V ;锗管约为0.1V和0.3V。 7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导 通的二极管。(压降为0.7V,) ②加反向电压时截止,相当断开。③加反向电压并击穿(即满足U ﹥)时便稳压为。 8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门 电路)等。 9、三极管的三个区:放大区、截止区、饱和区。三种状态:工作状态、 截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。 三个极:基极B、发射极E和集电极C。二个结:即发射结和集电结。 饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。三极管具有电流电压放大作用.其电流放大倍数β/ (或β )和开关作用.

10、当输入信号很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。 11、失真有三种情况: ⑴截止失真原因、太小,Q点过低,使输出波形正半周失真。调小,以增大、,使Q点上移。 ⑵饱和失真原因、太大,Q点过高,使输出波形负半周失真。调大,以减小、,使Q点下移。 ⑶信号源过大而引起输出的正负波形都失真,消除办法是调小信号源。 1、放大电路有共射、共集、共基三种基本组态。(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。 共射电路的输出电压U0与输入电压反相,所以又称反相器。 共集电路的输出电压U0与输入电压同相,所以又称同相器。 2、差模输入电压12指两个大小相等,相位相反的输入电压。(是待放 大的信号) 共模输入电压12指两个大小相等,相位相同的输入电压。(是干扰信号) 差模输出电压U0d 是指在作用下的输出电压。 共模输出电压U0C是指在作用下的输出电压。 差模电压放大倍数 U0d /是指差模输出与输入电压的比值。 共模放大倍数0C 是指共模输出与输入电压的比值。(电路完全对称时=0) 共模抑制比是指差模共模放大倍数的比,电路越对称越大,电路的抑制

模拟电子技术基础中的常用公式

7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: 式中,iD为流过二极管的电流,uD。为加在二极管两端的电压,VT称为温度的电压当量,与热力学温度成正比,表示为VT = kT/q其中T为热力学温度,单位是K;q是电子的电荷量,q=1.602×10-19C;k为玻耳兹曼常数,k = 1.381×10-23 J/K。室温下,可求得VT = 26mV。IR(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻RD 直流电阻定义为加在二极管两端的直流电压UD与流过二极管的直流电流ID 之比,即 RD的大小与二极管的工作点有关。通常用万用表测出来的二极管电阻即直流电阻。不过应注意的是,使用不同的欧姆档测出来的直流等效电阻不同。其原因是二极管工作点的位置不同。一般二极管的正向直流电阻在几十欧姆到几千欧姆之间,反向直流电阻在几十千欧姆到几百千欧姆之间。正反向直流电阻差距越大,二极管的单向导电性能越好。 GS0103 交流等效电阻rd

rd亦随工作点而变化,是非线性电阻。通常,二极管的交流正向电阻在几~几十欧姆之间。需要指出的是,由于制造工艺的限制,即使是同类型号的二极管,其参数的分散性很大。通常半导体手册上给出的参数都是在一定测试条件下测出的,使用时应注意条件。 GS0104 IZmin<Iz<IZmax 其中稳定电流IZ是指稳压管正常工作时的参考电流。IZ 通常在最小稳定电流IZmin与最大稳定电流IZmax之间。其中IZmin 是指稳压管开始起稳压作用时的最小电流,电流低于此值时,稳压效果差;IZmax是指稳压管稳定工作时的最大允许电流,超过此电流时,只要超过额定功耗,稳压管将发生永久性击穿。故一般要求IZmin<Iz<IZmax 。 IC = INC + ICBO ≈ INC IB = IPB + IPE - ICBO ≈IPB - ICBO IE=INE+IPE ≈INE INE = INC +IPB IE =IC + IB

模拟电子技术基础中的常用公式必备

- 70 - 模拟电子技术基础中的常用公式 第7章 半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。 难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章 基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。 难点:放大电路的工作原理。 教学目标:掌握 放大电路的工作原理、共射放大电路。理解 放大电路的静态分析。了解共集放大电路。 第9章 集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。 - 71 -

- 72 - 第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19 C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

模电简答题

模电简答题 1、半导体材料制作电子器件与传统的真空电子器件相比有什么特点? 答:频率特性好、体积小、功耗小,便于电路的集成化产品的袖珍化,此外在坚固抗震可靠等方面也特别突出;但是在失真度和稳定性等方面不及真空器件。 2、什么是本征半导体和杂质半导体? 答:纯净的半导体就是本征半导体,在元素周期表中它们一般都是中价元素。在本征半导体中按极小的比例掺入高一价或低一价的杂质元素之后便获得杂质半导体。 3、空穴是一种载流子吗?空穴导电时电子运动吗? 答:不是,但是在它的运动中可以将其等效为载流子。空穴导电时等电量的电子会沿其反方向运动。 4、制备杂质半导体时一般按什么比例在本征半导体中掺杂? 答:按百万分之一数量级的比例掺入。 5、什么是N型半导体?什么是P型半导体?当两种半导体制作在一起时会产生 什么现象? 答:多数载子为自由电子的半导体叫N型半导体。反之,多数载子为空穴的半导体叫P型半导体。P型半导体与N型半导体接合后便会形成P-N结。 6、PN结最主要的物理特性是什么? 答:单向导电能力和较为敏感的温度特性。 7、PN结还有那些名称? 答:空间电荷区、阻挡层、耗尽层等。 8、PN结上所加端电压与电流是线性的吗?它为什么具有单向导电性? 答:不是线性的,加上正向电压时,P区的空穴与N区的电子在正向电压所建立的电场下相互吸引产生复合现象,导致阻挡层变薄,正向电流随电压的增长按指数规律增长,宏观上呈现导通状态,而加上反向电压时,情况与前述正好相反,阻挡层变厚,电流几乎完全为零,宏观上呈现截止状态。这就是PN结的单向导电特性。 9、在PN结加反向电压时果真没有电流吗? 答:并不是完全没有电流,少数载流子在反向电压的作用下产生极小的反向漏电流。 10、二极管最基本的技术参数是什么? I 答:最大整流电流 z 11、二极管主要用途有哪些? 答:整流、检波、稳压等。 12、晶体管是通过什么方式来控制集电极电流的? 答:通过电流分配关系。 13、能否用两只二极管相互反接来组成三极管?为什么?

模拟电子技术基础中的常用公式必备

word 资料 模拟电子技术基础中的常用公式 第7章 半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。 难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章 基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。 难点:放大电路的工作原理。 教学目标:掌握 放大电路的工作原理、共射放大电路。理解 放大电路的静态分析。了解共集放大电路。 第9章 集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。 - 71 -

word 资料 第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19 C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

电磁学主要公式和模型

电磁学主要公式和模型 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

电磁学主要公式和模型: 静电学部分 第一节库仑定律电场强度 基本知识点: 1.库伦定律 点电荷之间的作用力: ,方向:两点连线,同性 相斥,异性相吸。 2. 点电荷电场强度 方向:负电荷,正电荷如图 , 3.无限大带电平面的电场特点:两边都是匀强电场注意大小:方向 4.电场叠加原理 5.利用电场叠加原理求两个无限大带电平板空间的电场分布,比如下图 第二节高斯定理 基本知识点: 1.电通量 2.高斯定理:真空中闭合曲面的电通量等于曲面内包含的电荷的代数和除 以, 注意对高斯定理的理解,电通量只与高斯面内的电荷有关,与外面的电荷 无关,但是高斯面上各点的电场强度与空间所有的电荷都有关。 3.高斯定理的应用:(1)求电通量,典型例题:半球壳的电通量 (2)求对称带电体的电场分布 典型模型 均匀带电球面 时, 时, (注意:该模型可以演变为两个同心均 匀带电球面问题) 无限长均匀带电直线 (注意:该模型可以 演变为无限长均匀带电圆柱面以及两个同轴无限长均匀带电圆柱面) 第三节 电势电势能 基本知识点: 1.电势: 两点间的电势差与电势零点选择无关 2.点电荷电势(无穷远为电势零点) 3.电势叠加原理:空间某点的电势是所有带电体单独在该点产生的电势的叠加 4.均匀带电球壳电势分布 2 02 14r q q F πε= r e r q E 2 04πε= r i i e r q E E 204πε∑ ∑==??=S d E Φ0ε0ε∑?= ?i q S d E R r >r e r q E 2 04πε= R r <0=E r e r E 02πελ=??= 电势点 0A A r d E V r q V 04πε= i i i r q V V 04πε∑∑ ==

数电模电超有用知识点,值得拥有剖析

《数字电子技术》重要知识点汇总 一、主要知识点总结和要求 1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。 举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路: (1)基本概念 1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。 2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。 3)OC 门和OD 门具有线与功能。 4)三态门电路的特点、逻辑功能和应用。高阻态、高电平、低电平。 5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。 要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。 举例2:画出下列电路的输出波形。 解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。 3.基本逻辑运算的特点: 与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零; 与非运算:见零为1,全1为零;或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非 运 算:零 变 1, 1 变 零; 要求:熟练应用上述逻辑运算。 4. 数字电路逻辑功能的几种表示方法及相互转换。 ①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。 ②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。 ③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

电路原理 -公式概要

电路原理-知识简要 第一章基本元件和定律 1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。 电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。 2.功率平衡 一个实际的电路中,电源发出的功率总是等于负载消耗的功率。 3.全电路欧姆定律:U=E-RI 4.负载大小的意义: 电路的电流越大,负载越大。 电路的电阻越大,负载越小。 5.电路的断路与短路 电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 二.基尔霍夫定律 1.几个概念: 支路:是电路的一个分支。 结点:三条(或三条以上)支路的联接点称为结点。 回路:由支路构成的闭合路径称为回路。 网孔:电路中无其他支路穿过的回路称为网孔。 2.基尔霍夫电流定律: (1)定义:任一时刻,流入一个结点的电流的代数和为零。 或者说:流入的电流等于流出的电流。 (2)表达式:i进总和=0 或: i进=i出 (3)可以推广到一个闭合面。 3.基尔霍夫电压定律 (1)定义:经过任何一个闭合的路径,电压的升等于电压的降。 或者说:在一个闭合的回路中,电压的代数和为零。 或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。(2)表达式:1 或: 2 或: 3 (3)基尔霍夫电压定律可以推广到一个非闭合回路 三.电位的概念 (1)定义:某点的电位等于该点到电路参考点的电压。 (2)规定参考点的电位为零。称为接地。 (3)电压用符号U表示,电位用符号V表示 (4)两点间的电压等于两点的电位的差。

(5)注意电源的简化画法。 四.理想电压源与理想电流源 1.理想电压源 (1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。理想电压源的输出功率可达无穷大。 (2)理想电压源不允许短路。 2.理想电流源 (1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。理想电流源的输出功率可达无穷大。 (2)理想电流源不允许开路。 3.理想电压源与理想电流源的串并联 (1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。 (2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。 4.理想电源与电阻的串并联 (1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。 (2)理想电流源与电阻串联,可将电阻去掉(短路),不影响对其它电路的分析。 5.实际的电压源可由一个理想电压源和一个内电阻的串联来表示。 实际的电流源可由一个理想电流源和一个内电阻的并联来表示。 五.支路电流法 1.意义:用支路电流作为未知量,列方程求解的方法。 2.列方程的方法: (1)电路中有b条支路,共需列出b个方程。 (2)若电路中有n个结点,首先用基尔霍夫电流定律列出n-1个电流方程。(3)然后选b-(n-1)个独立的回路,用基尔霍夫电压定律列回路的电压方程。3.注意问题: 若电路中某条支路包含电流源,则该支路的电流为已知,可少列一个方程(少列一个回路的电压方程)。 六.叠加原理 1.意义:在线性电路中,各处的电压和电流是由多个电源单独作用相叠加的结果。 2.求解方法:考虑某一电源单独作用时,应将其它电源去掉,把其它电压源短路、电流源断开。 3.注意问题:最后叠加时,应考虑各电源单独作用产生的电流与总电流的方向问题。 叠加原理只适合于线性电路,不适合于非线性电路;只适合于电压与电流的计算,不适合于功率的计算。 七.戴维宁定理 1.意义:把一个复杂的含源二端网络,用一个电阻和电压源来等效。

模电公式集合_期末考试

模拟电子技术公式集合 积分dt v RC V o ?-=11 微分dt dv RC V 10-= 安全工作 cm c I I ≤ c e o ce V V 集电极耗散功率cm P 基本共射级 静态b BEQ CC BQ R V V I -= C CQ CC CEQ R I V V -= BQ EQ CQ I I I β== 动态be L C V r R R A ) //(β-= be b i r R R //= c o R R ≈ 基极分压式 静态CC b b b BQ V R R R V 122+≈βCQ BQ I I = e BEQ BQ EQ CQ R V V I I -=≈ )(e c CQ CC CEQ R R I V V +-= 动态e be L c i v R r R R V V A )1()//(0ββ++-== ])1(//[//21e be b b i R r R R R β++= c o R R = s i i o vs V V V V A = 共集电极 静态 e b BEQ cc BQ R R V V I )1(β++-= BQ CQ EQ I I I β=≈ e EQ cc CEQ R I V V -= 动态 ) )(1()//)(1(L e be c e v R R r R R A ++++=ββ)]//)(1(//[L e be b i R R r R R β++=e be b s o R r R R R //1//β++= 差分 静态 o c c I i i 5.021== 7.01121+-==c c cc CE CE R I V V V 双端 单端 差模 be c id o vd r R V V A β-== be c vd vd r R A A 221β-=-= 接RL be L c id o vd r R R V V A )2//(β-== be L c vd vd r R R A A 2)//(21β-=-= 共模 0== Vic V A oc vc o c o be c vc r R r r R A 22)1(1-≈++-=ββ 共模抑制比 ∞=C M R K be o CMR r r K β= 1 2 2vc vd A A 差模输入电阻 ])1([22e be id R r R β++= 共模输入电阻 )]2)(1([5.02e o be ic R r r R +++=β 输出电阻 c o R R 2= c o R R =

模拟电子技术基础中的常用公式

模拟电子技术基础中的常用公式 7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即 D D D I U R = R D 的大小与二极管的工作点有关。通常用万用表测出来的二极管电阻即直流电阻。不过应注意的是,使用不同的欧姆档测出来的直流等效电阻不同。其原因是二极管工作点的位置不同。一般二极管的正向直流电阻在几十欧姆到几千欧姆之间,反向直流电阻在几十千欧姆到几百千欧姆之间。正反向直流电阻差距越大,二极管的单向导电性能越好。 GS0103 交流等效电阻r d Q D D d di du r )( = r d 亦随工作点而变化,是非线性电阻。通常,二极管的交流正向电阻在几~几十欧姆之间。 需要指出的是,由于制造工艺的限制,即使是同类型号的二极管,其参数的分散性很大。通常半导体手册上给出的参数都是在一定测试条件下测出的,使用时应注意条件。 GS0104 I Zmin <Iz <I Zmax 其中稳定电流I Z 是指稳压管正常工作时的参考电流。I Z 通常在最小稳定电流I Zmin 与最大稳定电流I Zmax 之间。其中I Zmin 是指稳压管开始起稳压作用时的最小电流,电流低于此值时,稳压效果差;I Zmax 是指稳压管稳定工作时的最大允许电流,超过此电流时,只要超过额定功耗,稳压管将发生永久性击穿。故一般要求I Zmin <Iz <I Zmax 。

模拟电子技术基础中的常用公式

7.1 半导体器件基础 GS0101,二极管的伏安特性可近似用下面的数学表达式来表示:)1()(-=T D V u sat R D e I i i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19 C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比。 R D 的大小与二极管的工作点有关。通常用万用表测出来的二极管电阻即直流电阻。一般二极管的正向直流电阻在几十欧姆到几千欧姆之间,反向直流电阻在几十千欧姆到几百千欧姆之间。正反向直流电阻差距越大,二极管的单向导电性能越好。 GS0103 交流等效电阻r d Q D D d di du r )( = r d 亦随工作点而变化,是非线性电阻。 2 基本放大电路 b C b BE C B R E R U E I ≈-= B C E O B C I I I I ββ≈+= C C C CE R I E U -= 静态工作点求解公式。 i O u U U A = i o i I I A = i u i i o o i o p A A I U I U P P A == = )(lg 20lg 20)(dB A U U dB A u i O u == )(lg 20lg 20)(dB A I I dB A i i o i == )(lg 10lg 10)(dB A P P dB A p i o p == i i i I U r = o o o I U r = L c ce R i u '-= (L c L R R R =' ) 为了避免瞬时工作点进入截止区而引起截止失真,则应使:CEO CM c I I I +≥ 为了避免瞬时工作点进入饱和区而引起饱和失真,则应使:CES OM CE U U U +≥ ) ()(26) 1('mA I mV r r E bb be β++= 式中 ' bb r 表示晶体管基区的体电阻,对于一般的小功率管约为300Ω左右(计算时, 若未给出,可取为300Ω),I E 为通过管于发射极的静态电流,单位是mA 。在I E ≤5mA 范围内,式GS0220计算结果与实际测量值基本一致。C b b b B E R R R U 2 12+≈ 分压式直流电流负反馈放大电路,分压点电压U B 计算公式。 R B b I U R /2= R B C b I U E R )(1-= E B E E e I U I U R ≈= 偏置电路元件参数的计算。 S D S G GS R I U U U -=-= )(D S D D S D DS R R I E U U U +-=-= 估算结型场效应管自给偏压电路的静态工作点计算公式2 )1(P GS DSS D V U I I - =,()0(≤≤GS P U V 结型场效应管的 转移特性。式中I DSS 为饱和漏电流,V P 为夹断电压。联立求解GS0231~GS0233各式,便可求得静态工作点Q(I D ,U GS ,U DS )。s D DD GS R I V R R R U -+=2 12结型场效应管分压式偏置电路,栅源回路直流负载线方程。 un u u n o o o o i o i o u A A A U U U U U U U U A ???=????= = -21) 1(121式中A u1、A u2 、…、A un 为各级的电压放大倍数。 )()()()(21dB A dB A dB A dB A un u u u +++= 多级放大电路电压放大倍数的分贝等于各级之和

学习模电心得 希望对大家有用

学习模电心得希望对大家有用 模拟电路,现在文老师已经带领我们攻克第二章,但所谓“师傅领进门,修行在个人”,对这一章掌握的如何,具体还在于我们自己的努力。 先总体上来更正一下同学们对模电的认识吧。模电在我们大多数人看来是个很难啃的骨头,各种电子电气元件、伏安特性曲线经常弄的大家头晕脑胀,但其实静下心来仔细把知识琢磨几遍,你可能就会发现其实模电并不是魔电。事实上,模电偏重于PN结内部参量的计算,放大电路结构及相应特点、应用,而且也要求设计满足一定放大功能的电路。我们学习模电的难点在于电路的分析,但只要我们复习一下上学期的电路学习,把戴维宁等定理适当应用到模电电路的分析计算中,肯定会起到事半功倍的效果。因为模电的电路图看似繁琐,但其实中心都在半导体电气元件上,以三极管为例,只要我们沿电流走向分别分析B、C、E端口,最后汇总,那头脑中自然会出现清晰的电路走向而不至于一团乱麻。现在模电学习刚刚进入比较难懂的阶段,大家需要做的是把书中的各个典型电路图分析透彻,而输入、输出特性这种对后面学习有很大帮助的曲线图更要烂熟于心。这样在进行下一步学习时会比较顺利,不至于对模电产生抵触情绪。 说说我们现在这一章的学习,在我看来,第二章基本放大电路根本就是对第一章中三四小节的全面扩展延伸,把我们学习到的晶体管场效应管的理论知识上升到了实际应用的高度,这可能是大家普遍反映难学的原因。对此,我觉得主要还是要靠老师的帮助,上课一定要认真听讲,认真做笔记。一方面听讲可以知道内容的重点,这样下课自己看书的时候就比较有针对性,效率很高,知识点齐全,考试自然轻松;另一方面老师在课上会讲到课本上没有但又十分重要的知识和思路,而这些事自己看书根本不能得到的。模电是一门逻辑性极强的课程,而且有些电路图相当复杂,离开老师的讲解,学习难度不言而喻。举个例子,刚开始的时候,我在分析共极输入时总是不太明白怎么样迅速找出公共极性,周一模电课上文老师总结“Ui连接一个电极,Uo引出一个电极,那么剩下的电极则为公共极,即为共某极电路”,这样一来,头脑中立刻清晰了很多,相信很多同学也有与我相同的感受吧。 分析模电重在按部就班思考,这不是说墨守成规,而是在头脑中形成比较成熟的思路,看到题目可以明白的知道我该做什么,会用到什么公式。毕竟我们现在的模电公式繁多,如果能有比较清晰的思路,不仅节约时间而且正确率也会很高。就以放大电路稳定性来看,比如需要我们求得Q、Au、Ri ,如果我们头脑中一直有“求解静态工作点Q首先给出直流通

相关主题
相关文档
最新文档