隧道衬砌综合接地..

隧道衬砌综合接地..
隧道衬砌综合接地..

中交第三航务工程局技术质量环境安全交底书(SH-R(深茂)-7.5-005)

二次防闪络接地正面示意图

综合洞室接地

每个专用洞室、变压器洞室两侧壁下部设置接地端子,供洞室内设备、设施接地。

2、必须写明“标准”中实测项目的具体内容。

高速铁路隧道综合接地技术材料

尖山隧道防综合接地及过轨管道技术交底 1、隧道综合接地方案及原理 2、初期支护综合接地(含明洞仰拱) 3、隧道二次衬砌的接地 4、综合洞室接地(变压器洞室和其他洞室) 5、斜切式明洞综合接地 6、隧道电缆槽处接地端子设置要求 7、过轨管线 一、隧道综合接地方案及原理 1、隧道地段贯通地线(截面积70mm2)敷设在两侧通信信号电缆槽内,采取砂防护,其利用二次衬砌环向钢筋实现横向连接。 2、利用隧道初期支护锚杆或底板基础结构钢筋做接地极,接地极以台车位的长度为单元施做,可有效控制工程质量; 3、利用隧道二次衬砌及电缆槽侧壁的结构钢筋做接触网闪落保护接地装置; 4、在电缆槽底部、侧壁及洞室内预置接地端子,并与接地钢筋可

靠焊接; 5、通过L型连接器将贯通地线与电缆槽底部接地端子连接,从而实现隧道接地装置与综合接地系统间的等电位连接; 6、通过接地装置内的环向接地钢筋实现两侧贯通地线的横向连接。 7、隧道内有接地需求的设备设施均通过预置的接地端子实现接地连接。 8、过轨管线在隧道洞口、综合洞室、变压器洞室均有预埋,预埋种类有三种:信号过轨、无线通信过轨、电力过轨,管质采用普通镀锌钢管。 二、初期支护综合接地(含明洞仰拱) 1、初支有钢架地段Ⅳ、Ⅴ级以上围岩隧道,利用锚杆、钢架做为接地极,接地极以一个台车长度为间隔设置,用作接地极的锚杆环向间距要求为2倍锚杆长度(8米),接地锚杆与钢筋网片、钢拱架可靠焊接,每个台车位的接地极均通过连接钢筋(φ16 L形钢筋焊接),与两侧电缆槽外缘的纵向接地钢筋连接。

注意事项: 在有钢架的初期支护一个台车间距内就需要施工一个环向接地钢筋,做好钢架、锚杆、钢筋网片的焊接,同时必须注意用连接钢筋与工字钢焊接后引至二衬外,引出的钢筋最后与两侧通信信号电缆槽侧壁顶的纵向φ16接地钢筋连接。 用于连接钢筋采用焊接工艺,焊接要求如下双面焊接不小于55mm,单边焊不小于100mm,焊缝厚度不小于4mm。 2、初支无钢架 Ⅲ级围岩隧道,以一个台车的长度为间距设置1个综合接地极;综合接地极用1根φ16环向接地钢筋与8根接地锚杆(初支系统锚杆)焊接而成,锚杆根数必须根据锚杆长度的2倍距离来定,同样锚杆和环向接地钢筋通过φ16 L形钢筋引出二衬外,最后与两侧通信信号电缆槽侧壁顶的纵向φ16接地钢筋连接。 3、初期支护接地投影图

第三章 区间隧道衬砌结构设计分析

第3章区间隧道衬砌结构设计 3.1地下铁道线路上部建筑 钢轨、联接零件、道床、轨枕、防爬设备及道岔共同组成地下铁道线路上部建筑。地铁的特点有运量较大、快速迅捷、安全、准时、不污染环境,同时地铁可以修建在建筑物较多而且不便于发展地面交通的地方。 3.1.1 钢轨 选定钢轨类型的主要因素是年通过量、速度、选定的轴负载、延长检修周期、检修工作量和振动噪声。 (1)钢轨类型 综合国内外地铁钢轨类型和南昌轨道交通的实际情况,宜选用60kg/m的钢轨。 (2)钢轨铺设 中山西路站至子固路站区间为直线段,在地下铁道内由于阳光不受影响,温度变化相对较小,铺设无缝线路。对于无缝线路,采用换铺法进行施工,对于长轨条的焊接,采用基地焊接与工地焊接相结合的施工方式。基地焊选用接触焊,工地焊可以选用铝热焊或移动式气压焊。 3.1.2扣件 地下铁道的钢轨扣件有刚性扣件及弹性扣件两种,考虑到中子区间地段线路采用整体式道床,因此扣件采用全弹性分开式扣件。因为全弹性分开式扣件在垂直和横向均具有良好地弹性,相比而言更加适合整体式道床。 3.1.3道床 一般情况下有碎石道床和整体道床两种道床。整体道床的类型较多,随着轨枕方式的不同,有短轨枕式整体道床、长枕式整体道床、纵向浮置板式整体道床等。结合南昌铁路交通的实际情况,利用短轨枕整体道床设计区间,道床稳定、耐久性强、结构简单、造价低、施工简单。钢筋混凝土短轨枕的预制混凝土采用C50,嵌入在混凝土道床,采用C30混凝土道床,布设中心沟,在单层钢筋网的内,钢筋网作为一个杂散电流排水加固。 3.1.4道岔 道岔有单开道岔和双开道岔等形式。中山西路站至子固路站区间采用9号单开道岔。

隧道综合洞室施工技术交底书

技 术 交 底 书 工程名称 新建沪昆铁路客运专线长沙至昆明段 (贵州)站前工程 交底编号 部位名称 高家屯隧道 工序名称 综合洞室 施工单位 中铁二十二局集团有限公司沪昆客专贵州段工程指挥部第二项目部 日 期 综合接地 一、施工图纸 1、高速铁路隧道工程施工技术指南(铁建设[2010]241) 2、高速铁路隧道工程施工质量验收标准(TB10753-2010) 3、高家屯隧道设计施工图 4、时速350公里隧道接口工程(沪昆贰隧参07) 5、类似工程施工经验 二、设计参数 1、Ⅲ级围岩洞室参数 拱墙采用C25喷射砼,厚8cm ,;拱部设¢6钢筋网,网眼间距25cm*25cm;拱部设Φ22砂浆锚杆,L=,环纵间距*;拱墙厚度30cm ,底板厚度30cm ;采用C35纤维砼施工; 2、Ⅳ级围岩洞室参数 拱墙采用C30喷射砼,厚10cm;拱部设¢6钢筋网,网眼间距20cm*20cm;拱部设Φ22砂浆锚杆,L=,环纵间距*;拱墙厚度35cm ,底板厚度35cm ;采用C35纤维砼施工; 三、隧道综合洞室技术要求 1、抗水压段综合洞室和主洞的相对位置图 2、为保证正洞钢架在洞室位置处截断后基础稳定,洞室同正洞交叉口位置设置两环 中铁二十二局集团有限公司沪昆客专贵州段工程指挥部第二项目部 III-III III-III II-II II-II 综合洞室 余长腔处 R 6.70 5.350.45 6.3000 12.10 2.8

四、综合洞室综合接地 在每个专用洞室两侧壁下部设置接地端子,供洞室内设备、设施接地。所有的接地端子均通过连接钢筋与电缆槽外缘的纵向接地钢筋连接,所有接地钢筋均应保证焊接质量,应根据具体钢筋配筋,采用搭接焊或L型焊接。

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。 5.2隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的力,并进行结构截面设计。 5.3隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。取单位长度(1m )的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3 ),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14 ),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14 单元,只保留受压的COMBIN14 单元。

图5-1受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4结构检算及配筋 本隧道主要验算明洞段、V级围岩段和W级围岩段衬砌结构。根据隧道规深、浅埋判定方法可知,V级围岩段分为超浅埋段、浅埋段和深埋段。W级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力 图、建立图和弯矩图。从得出的结果可知,V级围岩深埋段,所受力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)V级围岩 围岩重度 1 8.5kN /m3,弹性抗力系数 k 300MPa /m ,计算摩擦角 o,泊松比u=0.4 。 0 45 (2)C25 钢筋混凝土 容重25kN / m3,截面尺寸 b h 1.0m 0.6m ,弹性模量E 29.5G Pa 。 轴心抗压强度:f ed 12.5MP a ;弯曲抗压强度:f cmd 13.5MP a ;轴心抗拉强度:f cd 1. 33 M P a ;泊松比u=0.2 ; (3)HPB235钢筋物理力学参数 密度:s 7800kg / m3;抗拉抗压强度: f std f sed 188MP a;弹性模量: E s 210GP a; 5.4.2结构力图和变形图(V级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算,而根据对称性可知只需要对截面8、11、47进行检算

某隧道综合接地施工技术交底

新建铁路xx至xx客运专线 站前工程xxxxx标 xxx隧道技术交底 编号:(xxxxxxxxxxx隧- ) 单位工程名称: xxxxxx隧道 分部工程名称:洞内附属工程 分项工程名称:综合接地施工 编制:日期: 复核:日期: xxxx工程有限责任公司 xxxx土建3标项目经理部一分部 2013年3月20日 xxx隧道综合接地施工技术交底

一、工程概况 xxx隧道起讫里程为:D1K66+390—D1K66+640,洞身V级围岩,台阶法加临时仰拱开挖工艺。 二、施工工艺流程 隧道综合接地施工工艺流程图如下: . 三、施工工艺 1、施工准备 根据xxx隧道综合接地安装及布置要求,隧道须在初期支护、二次衬砌、仰拱衬砌均要布置综合接地,且连接成整体,因而需要提前计划布置。 2、隧道综合接地技术要求 隧道地段贯通地线铺设在两侧的通信信号电缆槽内,并采取砂防护措施; 在两侧通信信号电缆槽的线路侧外缘设一根纵向接地钢筋,每100m断开一次。用于隧道内接地极、接触网断线保护接地极接地钢筋的等电位连接。 隧道二次衬砌中的接地钢筋设置:

⑴.二次衬砌中有结构钢筋的隧道衬砌段: a.利用二次衬砌的内层纵、环向结构钢筋作为接触网断线保护接地钢筋。 b.接触网垂直向上在拱顶的投影两侧,以为间隔,各选3根纵向结构钢筋作为接地钢筋。 c.上述投影线两侧各外的其他位置,以1m为间隔,各选3根纵向接地钢筋可靠焊接;纵向接地钢筋在作业段间可不连接。 d.在每个台车位(作业段)中部选一根环向结构钢筋作为环向接地钢筋,环、纵向接地钢筋间可靠焊接;纵向接地钢筋在作业段间可不连接。 e.每个作业段内的环向接地钢筋与两侧通信信号电缆槽靠线路侧外缘的纵向接地钢筋连接。 ⑵.线路两侧的贯通地线通过隧道内环向接地钢筋实现横向连接。 3.隧道综合接地设置 隧道接地极设置 对于一般拱墙设防水板的衬砌隧道应充分利用隧道的初期支护、钢架、钢筋网或底板钢筋。 ⑴.Ⅴ级围岩隧道利用锚杆、钢拱架(或钢筋网片)做为接地极。 ⑷.隧道底板接地极按照1米间隔选用底板结构钢筋,即在隧道底板的底层形成一个1m×1m的单层钢筋网,中部“十字”交叉的两根钢筋上的网格节点要求施以“L”形焊接,其它节点绑扎;底板接地极钢筋网按照一个台车位的长度考虑,间隔一个台车位设置一处。

隧道综合接地技术交底

技术交底书 工程名称:新建郑州至万州铁路湖北段站前工程ZWZQ-3标编号:JD-XMB-20170312-01 单位工程名称李家大山隧道 分部工程名称衬砌交底部位综合接地 交底单位中铁十九局集团有限公司郑万高铁湖 北段ZWZQ-3标项目经理部 接受单位3分部 交底日期2017年3月12日交底地点项目部 交底内容: 一、适用范围 本交底适用于郑州至万州铁路客运专线ZWZQ-3标李家大山隧道工程综合接地施工。二、编制依据: (1)《高速铁路隧道工程施工技术规程》Q/CR9604-2015; (2)《高速铁路隧道工程施工质量验收标准》TB10753-2010; (3)隧道综合接地系统通用参考图(图号:通号(2016)9301)。 三、设计概况: 李家大山隧道为Ⅴ级围岩隧道,初支:锚杆直径22mm,长4m,纵、环向间距1m;钢架为工字钢22a,每榀间距0.6m,钢筋网片钢筋直径8mm,网格间距20x20cm。二衬:环向钢筋直径25mm,纵向钢筋直径14mm。 四、李家大山隧道综合接地施工要求: (一)初支 1、李家大山隧道为Ⅴ级围岩隧道,利用锚杆、钢拱架做接地极。 2、锚杆接地极以一个台车长度为间隔设置,用作接地极的锚杆环向间距要求为2倍锚杆长度,间距为8m;接地锚杆与钢拱架通过L型直径16mm圆钢进行可靠焊接。通过直径16mm 圆钢与钢拱架进行焊接连接,自拱脚引出初支接地钢筋。 初支锚杆与钢拱架连接示意图 3、按照通号(2016)9301-22页Ⅴ级围岩隧道接地体接地图进行施工。 4、为确保接地连接质量钢拱架法兰盘连接位置,采用直径16圆钢进行焊接连接。 交底人交底接受人 注:本交底一式3份, 3分部1份,工程部存档2份。第1页,共5页

隧道设计衬砌计算实例讲解(结构力学方法)

隧道设计衬砌计算范例(结构力学方法) 1.1工程概况 川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。 二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。 1.2工程地质条件 1.2.1 地形地貌 二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。 1.2.2 水文气象 二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

隧道衬砌计算

隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k M P a m =,计算摩擦角 045?= ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5P a E G =。轴心抗压强度:12.5cd a f M P =;弯曲抗压强度:13.5cm d a f M P =;轴心抗拉强度: 1.33cd a f M P =;泊松比 u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f M P ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算: a K N R bh ?α≤ (式5-1)

隧道综合接地技术交底

正洞隧道综合接地技术交底 1、初支接地极 ①Ⅱ级以下围岩、明洞及全包防水隧道:在隧道底板的底层施作1m×1m的接地钢筋网作为接地体;接地钢筋网中部“十字”交叉点施以“L”形焊接,其它节点绑扎;接地钢筋网按照一个台车位的长度考虑,间隔一台车位设置一处接地钢筋网。 ②Ⅲ级围岩:利用初支锚杆和Φ16专用环向接地钢筋做接地体;锚杆选取间距为两倍锚杆长度,数量不少于3根;按每一台车位设置一处接地极。 ③Ⅳ、Ⅴ级围岩:利用初支锚杆与一榀钢架连接做接地体;锚杆选取间距为两倍锚杆长度,数量不少于5根;按每一台车位设置一处接地极。 ④接地锚杆与专用接地钢筋、接地钢架应焊为一体,钢架与钢架间应采用弓形钢筋焊连,施工中应对接地锚杆、钢架作出标识,方便施工与检查,防止焊连出错(特别是引出接地连接钢筋时出错),造成接地电阻超标。 ⑤在每个台车位中部拱墙下部处采用Φ16钢筋从接地极引出,作为初支接地连接钢筋,用于连接综合接地系统。 ⑥全面检查接地钢筋焊连情况并测试接地电阻(单点阻值一般地段小于4Ω,困难地段不大于10Ω),全部达标后方可浇筑隐蔽。 ⑦二衬拆模后,在初支接地连接钢筋的对应拱墙处标注综合接地标识符,便于后续施工及质量检查。

2、拱墙二衬中接地钢筋设置 ①二衬衬砌有结构钢筋的隧道,在二衬内层钢筋上,于接触网线垂直向上在拱顶的投影线两侧,以0.5m为间距各选3根纵向结构钢筋作为接地钢筋,在上述投影线两侧各1.5m以外的位置,以1m为间距选择纵向结构钢筋(至隧道底板以上1.5m处为止)作为纵向接地钢筋。纵向接地钢筋在作业段间可不连续。 ②施工中应对环向、纵向接地钢筋作出标识,方便施工与检查与检查,防止焊连出错(特别是引出接地连接钢筋时出错),造成贯通电阻超标。 ③在拱墙下部对应接触网吊柱基础处(无接触网槽道时在台车距施工缝1米处),采用Φ16钢筋从环向接地钢筋引出,作为二衬接地连接钢筋,用于连接综合接地系统。 ④环向接地钢筋与仰拱钢筋只可绑扎不得焊接,纵向接地钢筋与其它未用于接地的结构钢筋只可绑扎不得焊接 ⑤全面检查接地钢筋焊连情况并测试二衬连接接地钢筋与基地端子本体、二衬顶部环向接地钢筋(无接触网吊柱基础时)间的贯通电阻(阻值应小于50mΩ),全部达标后方浇筑隐蔽。 ⑥二衬拆模后,在二衬接地连接钢筋对应拱墙处标注综合接地标识符,便于后续施工及质量检查。 ⑦素混凝土二衬且无接触网吊柱基础的无需施作接地钢筋网,不在单独考虑接地钢筋设置。 3、接地端子设置

隧道衬砌计算

第五章隧道衬砌结构检算 5、1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。 5、2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要就是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5、3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10、0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。 图5-1 受拉弹簧单元的迭代处理过程

③衬砌结构上的荷载通过等效换算,以竖直与水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0、5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5、4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段与Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段与深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数与修改后的程序,得出各工况下的结构变形图、轴力图、建立图与弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5、4、1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角045?=o ,泊松比u=0、4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0、2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量:210s a E GP =; 5、4、2 结构内力图与变形图(Ⅴ级围岩深埋段) 5、4、3 结构安全系数 从上面的轴力图与弯矩图可知,需要对截面8、11、21、47、73进行检算,而 根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土与砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算: a KN R bh ?α≤ (式5-1)

铁路综合接地系统施工方法

综合接地及管线过轨专项施工方案 1、编制依据 (1)铁路综合接地系统(通号[2009]9301); (2)《关于铁路综合接地系统通用参考图号[2009]9301局部修改的通知》(经规标准[2009]62号); (3)过轨及综合接地(赣龙隧参08); (4)铁路防雷、电磁兼容及接地工程技术暂行规定(铁建设[2007]39号); (5)其他相关设计图纸。 2、编制目的 过轨及综合接地是一个特殊的施工过程,过轨及综合接地技术是铁路隧道施工技术的重要组成部分,其技术性能直接影响隧道电子、电气设备安全可靠运行和人身安全防护要求。为规范综合接地系统和隧道管线过轨的设计和工程实施,确保综合接地系统的技术性能,以满足电子、电气设备安全可靠运行和人身安全防护要求,特编制此施工方案指导施工。 3、适用范围 本方案适用于赣龙铁路GL-5标隧道五项目部桥梁、隧道、路基、轨道、结构、环境工程等综合接地施工。 4、综合接地系统设计及施工原则 4.1 设计及施工原则 (1)综合接地系统根据铁路等级、不同地区、不同设备,因地制宜地采取防护措施,大道保护人身安全和设备安全的要求,遵循以人为本,系统优化、综合防护的原则,加强总体协调、全面规划、统筹考虑。 (2)综合接地系统以沿线两侧敷设的贯通地线为主干,充分利用沿线桥梁、隧道、路基地段构筑物设施内的装置作为接地体,形成低阻等电位综合接地平台。 (3)综合接地系统有贯通地线、接地装置及引接线等构成。距接触网

电体5m 范围以内的金属构件和需要接地的设施、设备应接入综合接地系统。 (4)距线路两侧20m 范围以内的铁路设备房屋的接地装置应接入综合接地系统。 (5)不便与铁路综合接地系统等电位连接的第三方设施(路外公共建筑物、公共电力系统、金属管线等设施)必须采取可靠的隔离或绝缘等措施。 (6)在综合接地系统中,建筑物、构造物及设备在贯通地线接入处的接地电阻不应大于1Ω。 4.2 综合接地总体技术要求 (1)接地端子的设置应便于设备、设施就近接入综合接地系统和工程实施。在工程允许的情况下,接地端子应根据设备、设施的接地需要来确定设置里程,以达到最佳接地性能并方便工程实施和管理。 (2)桥梁、隧道、无砟轨道、接触网支柱基础等结构物内的接地装置应优先利用结构物中的非预应力结构钢筋作为自然接地体;当没有结构钢筋可以利用时,可增加专用的接地钢筋;当自然接地体的接地电阻达不到要求时应增加人工接地体。 (3)为防止对预应力钢筋的影响,预应力钢筋不应接入综合接地系统。 (4)接地装置应通过结构物内预埋的接地端子与贯通地线可靠连接。接地端子应直接浇筑在混凝土结构内,表面与结构面齐平。 4.3综合接地系统施工工艺及材料要求 (1)接地端子应直接灌注在电缆槽或其他混凝土制品中。接地端子采用不锈钢制造,不锈钢材料的成分应满足:Cr ≥16%、Ni ≥5%、Mo ≥2% 、 C ≤0.08%,如GBOOCr17Ni14Mo2。接地端子的端子孔规格为M16,并应配置防异物堵塞的端子孔塞,方便开启。接地端子的不锈钢头部分长度不小于45 mm ,外径不小于30 mm ,其中端子头前段加工M16内螺纹,螺纹深度不小于25 mm ,M16螺孔加装塑料封头;不锈钢端子头后端连接一段长度不小于150 mm 的Φ16钢筋,连接钢筋分为直杆和直角杆两种,连接钢筋必须与部分螺纹腔隔离,隔离长度不小于5 mm 。连接钢筋的长度可以根据施工的实际情况确定,每两个接地端子采用2m 不锈钢连接线。其形式见下图: φ16的内螺纹 单孔不锈钢套筒材质: φ16的内螺纹

隧道衬砌台车结构计算书

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。侧模支撑系统的螺旋丝杆,每断面设置4个。下部螺旋丝杆水平支承于台车的I20a纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。模板系统及台车构件均采用Q235普通型刚。

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

高速铁路隧道四电接口技术交底1.07

隧道四电接口技术交底 请各工区认真学习以下图纸及技术资料并将技术交底做到工班层面: 1、设计图纸级文件: 《铁路综合接地系统》通号(2009)9301、《隧道附属洞室、综合接地、过轨设计参考图》兰乌二线施隧参207、《隧道内接触网轨槽预埋安装参考图》兰乌二线施隧参200、《隧道接触网基础预留接口》兰乌二线施网(预留)01-39-47、《隧道、路基以及桥梁墩台电力接口预留表》、《通信、信号区间电缆槽、电缆井、过轨管及桥梁预留孔、预埋件工点资料》、《桥梁区段接触网基础预留表》、《关于对甘青段站后专业相关问题的回复》铁一院甘青指【2010】46号、铁一院甘青指施电技[2010]3号; 2、甘青公司及西宁指挥部文件: 《四电接口工程管理办法》—附件1《四电接口工程技术要求和施工方法》、附件2《四电接口工程现场检查大纲》 3、项目部工程部文件及交底: 《关于加强综合接地施工控制的通知》工程部【2010】68号、《综合接地测试检查结果通知》工程部【2010】69

号、《桥梁墩台预埋和四电预埋技术交底》、《隧道四电技术交底》; 一、道内综合接地及防闪络接地 1、接地极设置 隧道接地极利用初期支护锚杆、钢架、二村钢筋或底板钢筋。隧道底板接地极按照1m间隔选用底板结构钢筋,即在隧道底板的底层形成一个1m×1m的单层钢筋网,中部“十字”交叉的两根钢筋上的网格节点要求施以“L”形焊接。底板接地钢筋网按照一个台车位的长度考虑,间隔一个台车位设置一处。底板接地极通过连接钢筋与两侧电缆槽的纵向接地钢筋连接。

2、隧道二次衬砌中的接地钢筋设置 二次衬砌中有结构钢筋的隧道 1)利用二次衬砌的内层纵、环向结构钢筋作为接触网断线保护接地钢筋; 2)接触网线垂直向上在拱顶的投影线两侧,以0.5m为间隔,各选3根纵向结构钢筋为接地钢筋; 3)上述投影线两侧各1.5m外的其他位置,以1m为间隔,选择纵向结构钢筋作为接地钢筋; 4)在每个台车位(作业段)中部选一根环向结构钢筋作为环向接地钢筋,环、纵向接地钢筋间可靠焊接,纵向接地钢筋在作业段间可不连接。 5)每个作业段内的环向接地钢筋与两侧通信信号电缆槽靠线路侧外缘的纵向接地钢筋连接; 二次衬砌中无结构钢筋的隧道 接触网轨槽所在二衬无结构钢筋的,应增加环向接地钢筋与综合接地母线连接,轨槽使用φ16的钢筋焊接在接地钢

隧道综合接地控制要点

隧道综合接地施工控制要点 1隧道综合接 隧道地段贯通地线敷设在两侧通信信号电缆槽内,并采取防护措施。在两侧通信信号电缆槽的线路侧外缘各设一根纵向接地钢筋,每100m断开一次。用于隧道内接地极、接触网断线保护接地及接地钢筋间的等电位连接。其接地分为以下几种: (1)利用二次衬砌环向钢筋实现横向连接,见图1-1。 衬砌钢筋接地 (2)利用隧道初期支护锚杆或底板基础结构钢筋做接地极,接地极以台车位的长度为单元施做,可有效控制工程质量; (3)利用隧道二次衬砌及电缆槽侧壁的结构钢筋做接触网闪落保护接地装置; (4)在电缆槽底部、侧壁及洞室内预置接地端子,并与接地钢筋可靠焊接; (5)通过L型连接器将贯通地线与电缆槽底部接地端子连接,从而实现隧道接地装置与综合接地系统间的等电位连接; (6)通过接地装置内的环向接地钢筋实现两侧贯通地线的横向连接。 (7)隧道内有接地需求的设备设施均通过预置的接地端子实现接地连接。

1.1初期支护接地(接地故名思意就是要和大地连接,而初支就是接触大地的部分,因此初支接地是整个接地系统能否起到作用的最关键因素,其他接地系统是通过与纵向接地筋连接和初支的接地连成一个整体,从而达到接地的目的) 1.1.1初支有钢架地段 Ⅳ、Ⅴ级以上围岩隧道,利用锚杆、钢架做为接地极,接地极以一个台车长度为间隔设置,用作接地极的锚杆环向间距要求为2倍锚杆长度(8米),接地锚杆与钢筋网片、钢拱架可靠焊接,每个台车位的接地极均通过连接钢筋(φ16 L形钢筋焊接),与两侧电缆槽外缘的纵向接地钢筋连接。(由于蒙华铁路取消了系统锚杆,因此接地极是钢架、钢筋网以及钢架的定位筋形成的综合系统) 有钢架地段初支接地示意图

隧道设计衬砌计算范例

工程概况 川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。 二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。 工程地质条件 1.2.1 地形地貌 二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“ v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。 1.2.2 水文气象 二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。 据沪定、天全两县21年(1960-1980年)气候资料,多年平均气温分别为16.6℃和15.1℃,沪定略高于天全,多年平均降雨量分别为636.8 mm和

高铁客专综合接地实施方案(总体)

目录 一、编制依据 (2) 二、实施范围 (2) 三、施工时机 (2) 四、总体实施方案 (3) (一)、综合接地总体原则 (3) (二)、主要材料选取及说明 (4) (三)、施工工艺流程及操作要点 (6) (四)、桥梁综合接地技术要求 (17) (五)、路基综合接地技术要求 (19) (六)、车站范围综合接地技术要求 (22) (七)、贯通地线的主要埋设工序和工艺 (24) (八)、相关专业接入综合接地系统的主要地线种类 (25) (九)、施工注意事项 (26) 五、对不同地段的施工界面的描述(暂行) (29) (一)路基 (29) (二)桥梁 (30) 六、质量、安全及环保措施 (32)

xx客专综合接地 实施方案 一、编制依据及原则 1.1 铁路工程建设通用参考图(铁路综合接地系统)(通号【2009】9301)。 1.2 客运专线综合接地技术实施办法(暂行)(铁集成【2006】220号)。 1.3xx客运专线接触网基础、综合接地预埋技术交底会议纪要。 1.4 铁路信号设备雷电及电磁兼容综合防护实施指导意见(铁运【2006】26号)。 1.5铁路防雷、接地设计专业分工及文件编制研讨会议纪要(鉴信【2007】96号)。 1.6 xx客运专线站前接口工程施工图技术交底。 1.7 GB/T19001--2000质量标准体系、GB/T24001-1996环境管理体系和GB/T28001-2001职业健康安全标准。 二、实施范围 DKxx+xxx~DKxx+xx段综合接地工程,其中包括线路、轨道、站场、桥梁、房建、通信、信号、电力、电气化、车辆、给排水、电磁兼容等专业的综合接地。 三、施工时机 与站前工程同步实施。

隧道综合接地技术交底

单位:编号: 主送单位页数第 1 页共 2 页 工程名称隧道工程工程部位隧道综合接地 交底内容:隧道综合接地施工 一、适用范围 本交底适用于XX项目XX隧道综合接地施工。 二、隧道综合接地技术要求 1.隧道地段贯通地线铺设在两侧的通信信号电缆槽内,并采取砂防护措施。 2.在两侧通信信号电缆槽的线路侧外缘各设一根纵向接地钢筋,每100m断开 一次。用于隧道内接地极、接触网断线保护接地及接地钢筋问的等电位连接。 3.隧道二次衬砌中的接地钢筋设置 (1)二次衬砌中有结构钢筋的隧道 a.利用二次村砌的内层纵、环向结构钢筋作为接触网断线保护接地钢筋。 b.在每个台车位(作业段)中部选一根环向结构钢筋作为环向接地钢筋,环、纵向 接地钢筋间可靠焊接;纵向接地钢筋在作业段间可不连接。 c.每个作业段内的环向接地钢筋与两侧通信信号电缆槽靠线路侧外缘的纵向接 地钢筋连接: (2)二次衬砌中无结构钢筋的隧道,除接触网吊柱基础接地外,不再单独考虑接地 钢筋设置。环向接地钢筋设置位置根据接触网专业提供的里程位置埋设。 (3)线路两侧的贯通地线通过隧道内环向接地钢筋实现横向连接。 4.隧道接地极设置 (1)III级围岩隧道,利用锚杆和专用环向接地钢筋做为接地极; (2)IV、V级以上围岩隧道,利用锚杆、钢拱架(或钢网片)做为接地极; (3)隧道底板接地极按照1米间隔选用仰拱结构钢筋,即在隧道仰拱的底层形成 一个1m×1m的单层钢筋网,中部”十字”交叉的两根钢筋上的网格节点要求施以”L” 形焊接,其他节点绑扎;底板接地钢筋网按照一个台车位的长度考虑,间隔一个台车 位设置一处。 (4)锚杆接地极以约一个台车长度为间隔设置,用作接地极的锚杆环向间距要 编制:复核:签收:年月日 注:“技术交底书”一式两份,一份交工点负责人作为施工的依据,一份留存备查,并办理交接手续。

隧道设计衬砌计算范例(结构力学方法)

1.1工程概况 川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。 二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。 1.2工程地质条件 1.2.1 地形地貌 二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。 1.2.2 水文气象 二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。 据沪定、天全两县21年(1960-1980年)气候资料,多年平均气温分别为16.6℃和15.1℃,沪定略高于天全,多年平均降雨量分别为636.8 mm和1730.0mm,多

相关文档
最新文档