盾构始发专项施工方案Word版[优秀工程方案]

盾构始发专项施工方案Word版[优秀工程方案]
盾构始发专项施工方案Word版[优秀工程方案]

盾构始发专项施工方案

四、盾构始发方案

4.1 盾构施工总体安排

4.1.1 盾构施工工期安排

见附图1 盾构施工工期安排。

4.1.2 盾构总体施工方案

盾构采用整机始发。在盾构完成试掘进后,进入正常掘进阶段。拆除盾构井内的负环管片、反力架等。在盾构始发时,管片、管线、砂浆等材料从预留出土口吊入隧道内,然后由电瓶车牵引编组列车将管片、管线、砂浆运抵工作面。泥浆管路及电缆线路均从预留口接入隧道内盾构工作面。在拆除负环管片后,盾构隧道进排泥管线均移至盾构工作井,轨线管片等材料从盾构工作井吊入,砂浆从盾构工作井放入编组列车的砂浆车内。

盾构在切入土体时,为确保利用上部千斤顶,整体向前推进,负环管片设置为全环闭口环,错缝拼装。拼装负环管片前先安装反力架和负环钢环。盾构整机始发方案示意图4-1。

4.1.3 盾构始发场地平面布置

见附图2 镇龙站盾构始发场地平面布置图。

渣土坑:设置两个渣土坑,存土高度4m,总存土量2789m3。

出土龙门吊:两台45t龙门吊,布置位置如图,跨度26m。

出渣道路:宽度为5m,行车道为车站底板覆土回填后,采用2021m厚素C2021土铺设。

料库:采用10m*5m活动板房,并设专人管理。

水泥库:采用10m*5m彩钢板房。

砂石料场:采用15.27m*7.2m混凝土硬化场地堆放。

搅拌站场地:采用15m*9m硬化场地。

充电房:采用12m*3m,布置于盾构吊装孔两侧,采用24砖墙砌,内部做防水处理,中部采用12砖墙进行分割成4个3m*3m的水池,可存水冷却。

安全通道:采用标准梯笼,高度应根据现场实际进行设计。

4.1.4 盾构人员准备情况

主要管理人员:项目经理1名,项目总工1名,工区副经理1名,工区土建负责人1名,工区机电负责人1名,技术人员4名,施工队长2名,班长4名,材料员2名,安全员4名,质检人员2名。

主要作业人员:盾构机主司机4名,盾构机副司机4名,管片拼装手4名,电瓶车司机4名,电工4名,电气焊工4名,机械维修保养工12名,线路维护工4名,地下隧道配合工2021龙门吊司机4名,挖掘机司机4名,盾构砂浆搅拌站8名,地面配合工24名。

4.1.5 盾构设备准备

1、出土用2台45t龙门吊,等待场地具备条件进场安装。

2、出土用电瓶车4列、渣车底盘8节、浆车4节、管片8节车以及渣土斗已整修完成,存放于盾构机整修基地,等待进场;

3、砂浆拌和站,搅拌罐已整修完成,存放于盾构机整修基地,等待进场;

4.1.6 水、电接口

盾构施工用水采用镇龙站自来水接口直接接入使用。

盾构机用电采用10KV高压,由变压器房引至盾构机上接入使用。

4.2 盾构始发流程

见图4-2盾构始发流程图。

图4-2 盾构始发流程图

4.3 端头地层加固

4.3.1 端头地层加固

考虑镇龙站东侧采用放坡+搅拌桩止水并采用直径500@400搅拌桩基底加固的基坑开挖方案,盾构始发前在主体结构端墙外侧施做1.2m厚模筑C2021后,再回填、反压覆土始发。

4.4 洞门凿除

4.4.1 洞门凿除流程

钻检测孔→洞门第一次凿除→围护桩背水侧钢筋割除→第二次凿除→围护桩迎水侧钢筋割除

4.4.2 洞门凿除时间

1)盾构始发前一个月,用风钻在洞门范围内钻1.5m深的检测孔,观测端头土体加固效果,确保凿除洞门安全;

2)确认端头土体加固达到效果后,进行第一次凿除洞门及背水侧钢筋割除;

3)10kv高压电安装后,盾构始发的前4天,进行第二次凿除洞门;

4)盾构始发的前2小时,割除洞门剩余的钢筋。

4.4.3 洞门凿除

为保证围护结构的稳定,凿洞分两阶段进行。第一阶段在端头井土体加固检验合格后

凿除;第二阶段在盾构机到达前和始发准备完成后快速进行。

开凿前,搭设双排脚手架,由上往下分层凿除,洞门凿除的顺序见图4-3。首先将开挖面墙钢筋凿出裸露并用氧焊切割掉,然后继续凿至迎土面钢筋外露为止。当盾构机刀盘抵达混凝土桩前约0.5~1m 时停止掘进,然后再将余下的钢筋割掉,并检查确定无钢筋。 2200

6620说明: 洞门凿除顺序严格按照图

示分块进行。220087549

6213

说明:1、阴影部分为第一次凿除部位,保留外排钢

筋和保护层。 2、剩余部分为第二次凿除部位。A A

A

A

图4-3 洞门凿除的顺序

洞门凿除过程的应急措施:

洞门破除过程中发现有异常情况后,迅速用木板和型管进行临时支撑,防水洞门掌子面土体发生坍塌,支撑完后确保安全的情况下对洞门掌子面土体进行注浆加固。

若土体压力较大时,采用临时支撑完成后迅速用预先制作好的钢筋网片与钻孔桩的钢筋焊接一起后用木板和钢管支撑稳定。然后在围护结构外围进行注浆加固,同时在洞门里面进行注浆加固。

4.4.4 洞门凿除过程的应急措施

发现有异常情况后,迅速用木板和钢管撑住,防止土体坍塌然后尽快从围护桩外进行注浆加固。

若土体压力较大时,迅速用预先制作好的钢筋网片与围护结构的钢筋焊接一起,用木板和钢管支撑,然后在始发端头、洞门里进行注浆加固。

4.5 始发设施安装及调试

4.5.1 始发架安装

在后配套吊入始发位置后,依据隧道设计轴线定出盾构始发姿态的空间位置,然后推算出始发架的空间位置,利用垫薄钢板调节始发架的标高,达到要求的位置。

盾构始发前对始发架两侧进行必要的加固。利用预埋在车站端头混凝土平台的钢板

与始发架进行焊接,并利用H型钢两边支撑保证左右稳定。

4.5.2 反力架安装

在盾构主机与后配套连接之前,开始进行反力架安装。在安装反力架时,反力架端面与始发架水平轴垂直,以便盾构轴线与隧道设计轴线保持平行。

1、安装反力架前,先将反力架位置定位,然后分节安装反力架部件并调节好位置。

2、定位反力架,利用垂线和经纬仪测量调整基准环的平整度,使其与始发架水平轴垂直。调整好后将反力架与底板混凝土平台的预埋件焊接固定。

图4-4 始发架及反力架安装示意图

4.5.3 盾构机调试

1、空载调试

盾构机组装和连接完毕后,即可进行空载调试。调试内容为:液压系统,润滑系统,冷却系统,配电系统,注浆系统,及各种仪表的校正。着重观测刀盘转动和端面跳动是否符合要求。

2、负荷调试

空载调试证明盾构机具有工作能力后即可进行负荷调试。负荷调试的主要目的是检查各种管线及密封的负载能力。使盾构机的各个工作系统和辅助系统达到满足正常生产要求的工作状态。通常试掘进时间即为对设备负载调试时间。负荷调试时将采取严格的技术和管理措施保证工程安全、工程质量和隧道线型。

4.5.4 洞门的密封

洞门密封采用橡胶帘布和折叶式扇形压板进行密封,始发洞门密封见下图4-5,到达洞门密封见下图4-6。

4.5.4.1 安装步骤

1)洞门防水密封施工前,先检查材料的完好性,尤其是橡胶帘布是否完好,径向尼龙线密集排列和螺栓孔是否完好。

2)安装前清理完洞口的渣土和疏通A板预留孔并涂上黄油。

3)将螺栓旋入预先埋设在井圈周边的螺母内。

4)安装橡胶帘布及圆环B板,并用薄螺母固定在井壁上。

4.5.4.2 洞门处防水装置安装注意事项

1)由于橡胶帘布和扇形压板通过它与管片的密贴防止管片背注浆时的浆液外流,所以安装时螺栓必须进行二次旋紧。

2)防止安装扇形压板时损坏橡胶帘布。

3)检查盾构机盾壳表面是否有凸起物,若有凸起物需清理干净,以免撕裂橡胶帘布。

4.5.5 负环管片的拼装

盾构机始发时在反力架和车站内正式管片之间安装6环负环管片(全部为闭口环),每环临时管片分块数与标准管片相同,依次安放在托架上。负环管片拼装时用整圆器和控制盾尾间隙来控制管片拼装的真圆度。在内、外侧采取钢丝拉结和三脚架支撑等加固措施,

以保证在传递推力过程中管片不会旋转浮动。

4.5.6 洞口始发导轨的安装

在围护结构破除后,盾构始发架端部距离洞口围岩必然会产生一定的空隙,为保证盾构在始发时不致于因刀盘悬空而产生盾构“叩头”现象,需要在始发洞内安设洞口始发导轨。安设始发导轨时应在导轨的末端预留足够的空间,以保证盾构在始发时,不致因安设始发导轨而影响刀盘旋转。

4.6 始发施工测量监测

4.6.1 始发施工测量

4.6.1.1 地面导线、高程测量

为确保本工程施工精度,进场后会同设计和业主,进行现场交接桩,办理相关的交桩手续。及时组织测量人员对有关的导线网、水准基点进行测量复核,检查导线点的坐标和水准点高程的准确性,对测得的结果平差后报监理工程师,并将所计算的结果与原始资料进行分析对比,如果误差在规范允许的范围内,则所移交的控制点作为施工放样的基准点,如果超出误差范围,报送设计单位进行修正,直到接受的控制点准确无误后方用于施工中,作为施工测量的依据。

(1)地面平面控制测量采用精密导线网,布设附合导线、闭合导线或结点网,测角中误差≤±2.5″,最弱点的点位中误差≤±15mm,相邻点的相对点位中误差≤±8mm,导线全长闭合误差≤1/40000。

仪器采用莱卡102021站仪进行测角、测边,该仪器的主要技术指标为测角精度土1",测边精度2mm+2ppm。

(2)地面高程控制测量采用加密网布成环线网,等级为Ⅱ等或Ⅲ等水准路线,水平误差≤±8L1/2mm。仪器采用索佳B2021安平水准仪配测微器,精密铟瓦尺,该仪器主要技术指标为S1级,读数至0.01mm,精度为0.5mm,能满足高程贯通测量精度<土25mm。

4.6.1.2 联系测量

(1)车站定向

车站定向分车站盾构井投点和井上井下定向。

①车站投点采用NL垂准仪进行,该仪器标称精度为1:202100,投点时独立进行,每次共投三次,或按0°、90°、180°、270°四个方向投四点,边长≤2.5mm,取其重心为最后位置,投点误差≤±0.5mm。

②隧道开挖到2/3时采用陀螺经纬仪定向,井上陀螺定向边为精密导线边,井下定向边为在车站内设的导线边。仪器采用GAK1+T2陀螺经纬仪,标称精度2021每条定向边两端点上独立定向各一次为一测回,半测回连续跟踪5个逆转点读数。先在井上定向边测

(2)

S1级水准仪。经竖井向下传递高程采用悬吊钢尺(检定过),井上下两台水准仪同时观测读数,读数时为避免读数误差,进行读数三次,每次错动3-5cm以便检核;高程传递独立进行三次(三次置镜),当三次所测高差较差≤3mm时取其均值作为该次高程传递的成果。整个掘进过程中

图4-8

4.6.1.3

复核线路设计三维坐标: 复核区间施工设计图上的所有三维坐标,项目总工、测量技术负责人签名,若有问题及时上报待审批后方可施工;

隧道内主控测量:按贯通测量预计方案的隧道控制测量的要求实行;

隧道内施工控制测量:以主控点为依据,用2级全站仪测量,测角2测回(左右角各1测回,均值之和与360o的较差小于6″),测边往返各测2测回;

控制点的延伸原则:先施工控制后主控控制,先检测后延伸;

盾构机及反力架的安装测量,方法:矩形控制法。精度:轴线方位角误差≤1′30″,机头平面、高程的偏离值≤±5mm;

掘进过程中盾构机姿态测量。提供瞬时盾构机与线路中线的平面、高程的偏离值,与自动导向系统所测值相比较更有利指导掘进。测量方法:拟合法,用全站仪测量“间接点”三维坐标,用小钢卷尺和水平尺测量盾构机的旋转、打折、俯仰角的计算参数,可求得盾构机的旋转角、打折角、俯仰角,用拟合法的计算程序将“间接点”三维坐标转换为盾构机机头中心的三维坐标及其与线路中心的设计坐标在线路法线面上的水平偏差和竖直偏差。精度:偏离值中误差≤±15 mm。掘进前50米每天测量一次,以后每隔40环测量一次,贯通前50米每天测量一次。其结果及时与ELS的测量结果进行比较,检查ELS是否正常;

掘进过程中环片姿态测量:按周期对环片进行检测,提供环片姿态信息有利于盾构机操作手操作,保证环片成型后的质量。方法:极坐标法:用全站仪直接测量环片的中心坐标和高程,同隧道中心设计三维坐标值比较,其差即为该环管片的平面和高程偏差值。精度:偏离值中误差≤±15 mm。掘进前50米和贯通前50米每天测量一次,中间每20210环测量一次,两次测量将重复5环。及时提供信息以便指导掘进和注浆,确保隧道施工质量;

ELS的检核测量:施工中对自动导向系统的检核测量是保证环片和盾构机姿态的质量可靠手段;

修改ELS的测站(station)测量参数,定向(oritation)完成后,再进行掘进测量(advance)和方向检测(direction);

掘进过程中随时进行方向检测,若发现问题及时校正。

自动导向系统(SLS-T)的测量(基本原理): 通过人工测量的方法将TCA(智能型全站仪)中心位置的三维坐标以及与后视棱镜的坐标方位角输入控制电脑“station”窗口文件保存。TCA定向完成后,再在电脑上启动“advance”,TCA将照准激光标靶,并被其接受。根据激光束的照电位置可以确定激光标靶水平位置和竖直位置,根据激光标靶的双轴测斜传感器可以确定激光标靶的俯仰角和滚动角,TCA可以测得其与激光靶的距离,以上数据随推进千斤顶和中折千斤顶的伸长值及盾尾与管片的净空值(盾尾间隙值)一起经由专用掘进软件的计算和整理,盾构机的位置就以数据和图表的形式显示在控制室的屏幕上。

通过对盾构机当前位置与设计位置的综合比较,盾构机操作手就可以采取相应的操作方法尽快且平缓地逼近设计线路。使之与设计线路偏差保持在工程质量容许值之内,保证隧道按设计施工。理论与实践证明SLS-T的测量精度≤±15mm。

4.6.1.4 地下控制测量

地下控制测量包括地下导线控制测量和地下高程控制测量。

(1)地下导线控制测量

地下施工控制导线是隧道掘进的依据,直线隧道掘进大于2021时,曲线隧道掘进到直缓点时,应埋设洞内导线控制点,直线隧道施工控制点平均边长150m,特殊情况下,不短于100m。曲线隧道施工控制导线点宜埋设在曲线五大桩(或三大桩) 点上,一般边长不应小于60m,导线测量采用全站仪施测,左、右角各测二测回,往返观测平均值较差应小于7mm,每次延伸施工控制导线测量前,应对已有的施工控制导线前三个点进行检测。检测点如有变动,应选择另外稳定的施工控制导线点进行施工控制导线延伸测量。施工控制导线在隧道贯通前应测量三次,其测量时间与竖井定向同步。重合点重复测量的坐标值与原测量的坐标值较差小于10mm时,应采用逐次的加权平均值作为施工控制导线延伸测量的起算值。根据本标段的特点,拟在洞内布设三条地下控制导线。三条导线点间进行附合或闭合导线检测。

(2)地下高程控制测量

地下高程控制测量起算于地下近井水准点,每2021设置一个,也可以利用地下导线点作水准点,水准测量采用往返观测,其闭合差在±20L mm(L以千米计) 之内,水准测量在隧道贯通前独立进行三次,并与地面向地下传递高程同步,精度同地面精密水准测量,重复测量的高程点与原测点的高程较差应小于5mm,并应采用逐次水准测量的加权平均值作为下次控制水准测量的起算值。

4.6.2 始发施工监测

4.6.2.1 主要监测项目

监控量测的项目主要根据工程的重要性及难易程度、监测目的、工程地质和水文地质、结构形式、施工方法、经济情况、工程周边环境等综合而定,力求技术可行,经济合理。综合本标段支护结构形式、施工方法、工程地质和水文地质及工程周边环境,确定其监测项目有。

监测项目包含:地表沉降和管线监测,地面建筑物下沉及倾斜监测,拱顶下沉监测,净

空收敛监测,衬砌环内力及应变,隧道底部隆起,土体水平位移,地下水位监测、墙体裂缝、墙体倾斜等。

4.6.2.2 监测布置

1、地表沉降和管线监测

沿两个盾构隧道轴线按5m间距布设地表沉降测点。同时,按30m间距布设地表横向沉陷槽测点,每个断面约9~12个测点。每个联络通道在中间各布置一个断面,每个断面约9个测点,横向间距1~7m。在隧道开挖影响范围内(2倍洞径)的主要地下管线上方地表沿管线轴线按5~10m间距布设地下管线沉降测点。地表及地下管线沉降监测布点应使测点桩顶部突出地面5mm以内采用NA2021全自动电子水准仪和铟钢尺等高精度仪器进行地表和地下管线沉降监测。测试频率:一般情况下掘进面前后<20211~2次/天;掘进面前后<50米时1次/2天;掘进面前后>50米时1次/1周;当盾构穿越重要建筑物、地段需要加强的地方可以适当加强测试次数及频率,并根据实际变形情况进行适当的调整。可根据施工条件和沉降情况增加或减少观测次数,随时将地表观测通息报告给施工人员。

2、地面建筑物下沉及倾斜监测

在区间盾构隧道施工影响范围内的房屋承重构件或基础角点、中部及其它构筑物特征部位布设测点。其观测频率与地表沉降观测频率相同。采用NA2021自动电子水准仪和铟钢尺进行量测。

3、拱顶下沉监测

沿隧道方向在左右隧道拱顶按5m间距布设拱顶下沉测点。采用苏光DSZ-2型精密水准仪监测,测试频率:开挖距量测断面前后0~2B时1~2次/天,2~3B时1次/天,3~5B 时1次/周,>5B时1次/月(B为洞径)。

4、净空收敛监测

在左、右隧道内拱按4~7m间距布设水平收敛测点,与拱顶下沉测点在同一断面内。采用坑道式收敛仪进行量测。测试频率同拱顶下沉。

5、衬砌环内力及应变

在靠近构筑物或典型断面的左、右隧道内布设管片表面应力测点,每个断面沿管片圆环径向均匀布设4个测点。采用钢筋应力计、围岩土压力盒和钢弦式频率仪进行量测。测试频率同拱顶下沉。

6、隧道底部隆起

在靠近构筑物或典型断面的左、右隧道内布设隧道底部隆起测点,每5米布设1个测点。采用NA2021全自动电子水准仪、铟钢尺进行量测。测试频率同拱顶下沉。

7、土体水平位移

在靠近构筑物或典型断面处布设土体水平位移测点,土体水平位移测点距隧道边线2m左右。土体水平位移采用SINCO倾斜测试仪和PVC测斜管进行监测,土体的水平位移孔布设于盾构隧道的两侧,土体水平位移测点埋设用钻机在预定孔位上钻孔,将测斜管放入孔中,对好导槽方向,盖好顶盖,然后回填密实。

8、基坑内外情况观察

对开挖后工程地质与水文地质的观察,支护裂隙和拱架支护状态的观察描述、对建筑物的裂缝、墙壁的剥落等的描述。观察应在开挖及支护后立即进行。

9、地下水位监测

采用水位计及PVC水位管进行监测。安装和埋设时用钻机钻孔,在钻孔过程中避免出现塌孔。成孔后洗孔,将PVC水位管放入孔中,用砂土回填管与孔壁之间的空隙。当地下水位稳定后,就可以进行测试。

4.6.2.3 监测量测的实施阶段

第一阶段:施工前调查。各监测项目在盾构区间施工前应测得稳定的初始值,且不应少于两次。

第二阶段:施工开始至工程交验。

4.6.2.4 监测周期和注意事项

施工期间要对全过程进行观测。

各项监测工作的监测周期根据施工进程确定,在开挖卸载急剧阶段,间隔时间不应超过3天,其余情况下可延至5~10天。当变形超过有关标准或场地条件变化较大时,应加密监测。

当有危险事故征兆时,则需进行连续监测。

当周边建筑物出现裂缝时,除了要增加沉降观测的次数外,应立即进行对裂缝变化加以观测,观测裂缝首先要设置观测标志。设置标志的要求:当裂缝扩大时,标志就能相应地开列或变化,正确地反映建筑物裂缝发展情况,观测方法可用千分尺量测裂缝标志的变化。

各监测项目遇有突发性事件则加强量测,一般每1~2小时监测一次。个别监测项目原则上应根据其变化的大小来确定观测的频率。如收敛位移和拱顶下沉的监测频率可根

据位移速度及离开挖掌子面距离而定。

根据施工现场情况,若需特殊监测措施,施工单位应提出补充修改意见,并报监理、设计等单位共同研究确定。

4.7 始发的其他工作

1、盾构机在始发前对始发端头土体加固的效果进行检验,合格后开始掘进。

2、洞门水平运输,采用一列运输列车,铺设临时轨道来完成,运输列车由1节电瓶车、2节管片车、4节碴土车、1节浆车组成。

3、碴土运输用运输列车运至出土口,龙门吊吊装,临时储碴坑存放,自卸汽车外运出土;

4、盾构机已准确定位;

5、地面监测点已布设完毕并获得初始成果;

6、确保始发端头没有降水井;

7、当盾构机盾体脱离洞门密封圈后,开始进行同步注浆。

8、盾构机全部进入洞门后,立即封堵洞门,紧密扇形压板,防止洞门漏浆。当盾尾离开洞门约3米时,对洞口压注聚氨脂或双液浆封堵,同时启动盾尾油脂系统及同步注浆系统。

4.8 初期掘进

4.8.1 初期掘进长度的确定

1、本工程初期掘进长度设定为100米。100米的长度考虑了下几个因素:

1)盾构机和后方台车的长度。

2)管片与土体之间的摩擦力足以支持盾构机的正常掘进。

2、同时将盾构区间的前100米作为掘进试验段,通过设立试验段,以达到以下的目的:

1)掌握在不同地质地层中盾构推进的各项参数的调节控制方法。测定和统计不同地层条件下推力、扭矩的大小;盾构机姿态的控制特点;注浆参数的选择和浆液配比的优化;同步注浆中出现的问题和解决方法;各种刀具的适应性等。熟练掌握管片拼装工艺及注浆工艺。掌握施工监测与盾构机推进施工的协调方法等。

2)及时分析在不同地层中各种推进参数条件下,地层的位移规律和结构受力情况,以及施工对地面环境的影响,并及时反馈调整施工参数,为全标段顺利施工做好参照。

4.8.2 初期掘进模式的选择

始发井口处隧道主要通过第四系黏性土、砂层及全风化岩层,选择土压平衡模式推进。

4.8.3 初期掘进的参数控制管理

初期掘进为盾构施工中技术难度最大的环节之一,不可操之过急,要稳扎稳打。在初始掘进段内,对盾构的推进速度、土仓压力、注浆压力作了相应的调整。

通过初始推进,选定了六个施工管理的指标:①土仓压力;②推进速度;③总推力;

④排土量;⑤刀盘转速和扭矩;⑥注浆压力和注浆量。其中土仓压力是主要的管理指标。

4.8.4 负环管片、始发托架和反力架的拆除

盾构完成100m初期掘进以后开始对负环管片、始发托架和反力架进行拆除,准备正常掘进。拆除负环管片之前,将洞门附近的管片用6根[18槽钢沿隧道纵向拉紧,并拧紧螺栓,防止管片松弛。

1、将反力架后座与车站结构分离,采用切割反力架后撑的型钢,并用千斤顶顶开后,将反力架和车站结构分离100mm左右;

2、将反力架与负环分离约100mm左右;

3、用两条钢丝绳各绕首负环一圈,在横向另加一条钢丝绳作保险绳,整环吊出井口;

4、拆除其它负环各连接螺栓,分别吊出井口;

5、分块拆除始发托架和反力架并调出井口。

4.8.5 同步注浆与二次注浆

采用盾构施工法,在管片和地层之间将产生空隙,该空隙必须充填,否则,隧道周围的地基会有较大变位(主要由盾尾空隙引起)。因此,及时进行背后注浆是盾构工法中必不可少的环节。同时,背后注浆具有提高隧道的止水性能和确保管片衬砌的早期稳定性。背后注浆采用盾尾同步注浆和二次补注浆两种方式。

4.8.

5.1 盾尾同步注浆

壁后注浆装置由注浆泵、清洗泵、储浆槽、管路、阀件等组成,安装在第一节台车上。当盾构掘进时,注浆泵将储浆槽中的浆液泵出,通过四条独立的输浆管道,通到盾尾壳体内的4根同步注浆管,对管片外表面的环行空隙中进行同步注浆,在每条输浆管道上都有一个压力传感器,在每个注浆点都有监控设备监视每环的注浆量和注浆压力;而且每条注浆

管道上设有两个调整阀,当压力达到最大时,其中一个阀就会使注浆泵关闭,而当压力达到最小时,另外一个阀就会使注浆泵打开,继续注浆。

盾尾密封采用三道钢丝刷加注盾尾油脂密封,确保周边土层的土和地下水、衬背注浆材料、开挖面的水和泥土从外壳内表面和管片外周部之间缝隙不会流入盾构里,确保壁后注浆的顺利进行。注浆量和注浆压力的大小可以实现自动控制和手动控制,手动控制可对每一条管道进行单个控制,自动控制可实现对所有管道的同时控制。

1、注浆方式

由安装在盾构机外壳上的注入管直接向尾隙注入浆液。该种方式在盾构推进过程中,紧紧跟踪在盾尾区域注浆,及时填充由于多种原因所造成的土体损失,减少地面沉降。

2、注浆设备

背后注浆设备基本上由材料贮藏设备、计量设备、拌浆机、贮液槽(料斗、搅拌器)、注浆泵、注入管、注入控制装置、记录装置等构成。

(1)注入设备

表4-1 注入设备表

本盾构工程中,制浆采用自动混合拌浆系统。该系统不仅仅是背后注浆材料的混拌,同时还将进行泥浆(泥土)材料的混制。

(3)控制系统

背后注浆控制系统由①千斤顶速度测定装置;②注入量调节装置;③自动注入率的设定装置;④变速电动机;⑤压力调节装置;⑥记录装置;⑦报警显示装置;⑧A液、B液注入比例的设定装置;⑨雷达监测装置构成。

3、注浆材料

(1)注浆材料

采用水泥粉煤灰砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用P.O42.5,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。

(2)浆液配比及主要物理力学指标

根据盾构施工经验,同步注浆拟采用表4-2所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。同步注浆浆液的主要物理力学性能应满足下列指标:

表4-2 同步注浆材料配比和性能指标表

胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比,进一步缩短胶凝时间。

固结体强度:一天不小于0.2MPa,28天不小于2.5MPa。

浆液结石率:>95%,即固结收缩率<5%。

浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。

4、注浆控制参数

(1)注浆压力

注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。

最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止

水土压力,最大不超过3.0~4.0bar。

由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。

(2)注浆量

根据刀盘开挖直径和管片外径,可以按下式计算出一环管片的注浆量。

V=π/4×K×L×(D12-D22)式中:

V ——一环注浆量(m3)

L ——环宽(m)

D1——开挖直径(m)

D2——管片外径(m)

K——扩大系数取1.5~2

代入相关数据,可得:

V=π/4×(1.5~2)×1.5×(6.282-62)=6.07~8.10m3/环

根据上面经验公式计算,注浆量取环形间隙理论体积的1.5~2倍,则每环(1.5m)注浆量Q=6.07~8.10m3。

(3)注浆流量

同步注浆非常重要的参数就是要建立注浆流量与盾构推进的关系。如果注浆流量大于盾构推进的速度,则浆液会发生跑浆现象,甚至会穿过盾尾进入盾构机内,污染拼装的工作面;如果注浆流量小于盾构前进的速度,则会在盾尾脱出的部位造成一定的沉降。按盾构推进速度2021/min计算注浆流量值为35L/min。

(4)注浆时间和速度

在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。

注浆量和注浆压力达到设定值后才停止注浆,否则仍需补浆。

同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内完成当环注浆量来确定其平均注浆速度。

5、注浆注意事项

(1) 制浆时的注意事项

①材料投入顺序要正确,计量要准确;拌和时间要连续,不能间断;严格控制搅拌的时间、速度。

②使用材料应经试验检测合格,杜绝使用过期、不合格的材料;

(2)运输、注入时的注意事项

①使用搅拌装置,保证浆液在运输过程中不出现分离;

②经常检查从注入孔到泵的输浆管路的畅通状况;

③掌握注入孔位置的阀门和泵的工作状况;严密观察注入压力、注入量的波动状况;

④注意注入结束时从注入孔阀门的关闭到移动输浆管的工作顺序;取下注入孔的阀门时,应装上柱塞;

⑤管片出现破损、上浮等现象时先采取封堵措施后再注浆;

⑥当浆液从管片外漏时,应暂停注浆,待采取措施后再行注入;

⑦废浆液及时用排污泵通过排污管线排到地面;

⑧作业结束后,作业员必须对制浆设备、泵等进行彻底的清洗。

6、注浆标准及效果检查

采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。

注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合管片、地表及周围建筑物量测结果进行综合评价。

4.8.

5.2 二次补注浆

盾构机穿越后考虑到环境保护和隧道稳定因素,如发现同步注浆有不足的地方,通过管片中部的注浆孔进行二次补注浆,补充一次注浆未填充部分和体积减少部分,从而减少盾构机通过后土体的后期沉降,减轻隧道的防水压力,提高止水效果。

二次注浆使用专用的泥浆泵,注浆前凿穿管片吊装孔外侧保护层,安装专用的注浆接头。

二次注浆一般采用水泥砂浆,二次注浆在推出5-6环后进行,注浆压力一般为0.2~0.4MPa。

4.8.6 洞内运输

(1)洞内水平运输

①隧道内轨线布置

左右线隧道洞内均采用43kg钢轨铺设单线,轨距为900mm,钢轨枕采用I2021,间距为1.2米,用压板螺栓固定钢轨,轨枕间用钢筋拉牢。在始发井铺设双线。便于列车编组会车,出碴、下料等(隧道内铺单线)。

施工中每环开挖量为V=π/4×1.5×6.282=46.4m3,按1.3的虚方系数计算, 虚方量约为60.32m3。列车编组为45T变频电机车牵引4节17m3碴车、1节6m3砂浆车和2节管片车,列车编组见图4-9。盾构掘进每循环的出碴进料运输任务可由一列编组列车完成。

23

1

4

(1)45T电机车(2)17立方碴车(3)6立方砂浆车(4)管片车

图4-9 重载列车编组示意图

②出渣、进料运输

区间左线、右线出渣、进料均在镇龙站盾构出土口进行。

③出碴、进料方法及工效分析

当盾构机掘进时,螺旋输送机把碴土卸到碴车内,同时电瓶车牵引碴车缓慢前移,将碴车装满。在碴车装碴的前期,前面的材料车与碴车脱钩卸管片和材料,当碴车装满后再与材料车相接,电瓶车拉至工作井内,由45t龙门吊吊出卸碴,完毕后再将空车放回井内,再由进料口吊装洞内所需材料。一环管片开挖土方一次运走。为加快掘进进度,配备2列编组列车,按最大运距考虑,当一列车装满碴体准备运出时,另一列车已装好材料停放在盾构调头井会让线上,在管片安装完成前此列车可到达工作面,可以继续掘进下一环。这样在盾构掘进过程中始终保持有列车保证出碴,从而确保施工进度。

(2)垂直运输

本标段工程的垂直运输由2台45T完成,45T门吊负责盾构机的进料、出碴及管片装卸。

(3)碴土外运

碴土外运集中在夜间进行,利用挖掘机将碴坑中的碴土装入封闭式运输汽车,然后按照业主拟定路线运输至业主指定的弃碴点,在场地出碴门口设置洗车槽,运输车辆出施工场地前进行清洗,计划安排10方带盖、密封性良好、成色较新自卸汽车外运碴土,避免碴

土在运输中洒、漏,以免影XX市环境。

五、施工质量控制措施

5.1 质量方针

以人为本,遵法守规,科学管理,精心组织,确保产品让业主及政府满意、环境让社会满意、职业健康安全让员工满意。并通过不断创新与追求,持续改进质量、环境、职业健康和安全“三位一体”管理体系的有效性。

5.2 质量目标

分项、分部工程合格率100%。

5.3 质量管理体系

5.3.1 建立项目质量管理体系

本工程中,为确保质量体系持续有效运行,实现工程质量创优目标,项目经理部成立质量领导小组,项目经理及总工程师任正、副组长,成员由质量、施工技术、物资、计划、财务等部门负责人及各作业班长组成,组织创优管理工作。其中:项目经理对本段工程质量承担主要责任,严格实行工程质量终身负责制。定期质量检查、召开质量分析会议,分析质量保证计划的执行情况,及时发现问题,研究改进措施,积极推动项目经理部全面质量管理工作的深入开展。

5.3.2 质量职责分配

建立从项目经理、作业班长到操作工人的岗位质量责任制,明确各级管理职责,建立严格的考核制度,实行优质优价政策,将质量与经济效益挂钩。质量管理组织机构见图5-1质量管理组织机构。

项目经理部设安全质量部,配2名专职安全质量检查工程师,在施工过程中按照“跟踪检查、复检、抽检”三个检测等级实施检测任务。在严格内部“自检、互检、交接检”的“三检”制度的基础上,认真接受建设单位和监理单位的质量监督,接受社会质量监

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

盾构区间开仓换刀安全专项施工方案

Xx盾构区间 开仓换刀安全专项施工方案 编制:职务: 审核:职务: 审批:职务: 项目经理部 二零一八年六月八日

目录 一、工程概况 (1) 1.1工程概括 (1) 1.2施工平面布置图 (1) 1.3工程数量表 (2) 1.4水文地质、气象 (2) 1.4.1水文情况 (2) 1.4.2工程地质 (2) 1.4.3气候条件 (4) 1.5技术难点、特点分析 (4) 二、编制依据 (5) 三、施工计划 (6) 3.1 施工进度计划 (6) 3.2 作业人员计划 (6) 3.2.1 施工管理人员 (6) 3.2.2 专职安全管理人员 (7) 3.2.3 现场作业人员 (7) 3.3 机械与设备计划 (7) 3.4 主要材料计划 (8) 四、施工工艺技术 (10) 4.1 施工工艺流程 (10) 4.2 开仓准备 (10) 4.2.1开仓点加固 (10) 4.2.2降水施工 (12) 4.3 开仓施工工艺 (15) 4.3.1 准备工作 (15) 4.3.2 出渣降压 (15) 4.3.3 管片背后注浆 (15) 4.3.4 开仓前压风排气 (16)

4.3.5 打开仓门 (17) 4.3.6 通风和气体检测 (17) 4.3.7 清仓处理 (18) 4.3.9 填仓处理 (25) 4.3.10 复推参数控制 (25) 4.3.11注意事项 (25) 五、验收要求、标准 (26) 六、监控量测 (27) 6.1 监测目的 (27) 6.2监测内容及频率 (27) 6.3监测等级管理 (28) 6.5 信息化监测及成果反馈 (28) 七、危险源辨识 (29) 7.1危险源评估方法 (29) 7.2危险源辨识与评估 (29) 八、施工安全保障措施 (30) 8.1组织保障措施 (30) 8.1.1安全生产保证体系 (30) 8.1.2安全生产组织机构及职责分工 (30) 8.2安全生产保障措施 (30) 8.2.1开仓换刀安全保障措施 (30) 8.2.2填仓安全保障措施 (31) 8.2.3恢复推进安全保障措施 (31) 8.3安全管理制度 (32) 8.3.1安全纪律 (32) 8.3.2组织保证措施 (32) 8.3.3安全教育 (33) 8.4施工现场安全检查 (34) 九、质量保障措施 (35) 十、环境保障措施 (36)

地铁工程盾构始发、掘进、接收专项施工方案

北京地铁6号线二期十三标项目经理部新华大街站~玉带河大街站区间 盾构始发、掘进、接收专项施工方案 编制: 复核: 审批:

目录 1 编制依据 (1) 2 工程简介 (2) 2.1 工程概况 (2) 2.2 工程环境调查情况 (3) 3 施工进度计划 (8) 3.1 编制原则 (8) 3.2 主要工序进度指标 (8) 3.3 施工进度计划 (8) 4 人员、机械设备、材料计划 (9) 4.1 人员组织计划 (9) 4.2 设备计划 (10) 4.3 材料计划 (11) 5 本工程施工重难点 (13) 5.1 洞门破除风险预防及处理是本工程的重点 (13) 5.2 避免洞门密封失效是本工程的重点 (14) 5.3 端头加固是本工程的重点 (14) 5.4 盾尾刷更换是本工程的难点 (15) 5.5 管线沉降的控制是本工程的重点 (15) 5.6 盾构小曲线半径始发是本工程的难点 (16) 5.7 穿越风险源施工设备保障是本工程的重点 (16) 6 盾构始发 (19) 6.1 始发流程图 (19) 6.2 场地总体平面布置及说明 (20) 6.3 始发形式 (22) 6.4 盾构端头地层加固 (23)

6.6 始发托架 (27) 6.7 反力架及支撑系统 (29) 6.8 洞门破除 (32) 6.9 洞门临时防水 (35) 6.10 盾尾刷手抹油脂 (36) 6.11 负环管片拼装 (36) 6.12 导向轨道安装 (38) 6.13 调整洞口止水装置 (38) 6.14 始发段试掘进 (38) 6.15 渣土改良 (42) 6.16 盾构始发掘进注浆方案及主要技术参数 (43) 6.17 出土方式 (45) 7 盾构正常段掘进施工 (46) 7.1 掘进流程及操作控制 (46) 7.2 掘进模式的选择及操作控制 (48) 8 盾构到达接收 (60) 8.1 盾构到达施工流程图 (60) 8.2 盾构到达前的准备工作 (60) 8.3 盾构到达段的掘进 (61) 8.4 盾构到达施工注意事项 (63) 8.5 盾构的拆解及吊出 (64) 9 风险因素分析、对策及组段划分 (66) 9.1 穿越地下管线安全保证措施 (66) 9.2 洞门涌水涌砂 (67) 9.3 始发托架及反力架变形 (67) 9.4 地面沉降安全保证措施 (68)

盾构到达施工方案

第三章盾构到达施工 1、盾构到达工艺流程 盾构到达工艺流程(见图 图盾构到达工艺流程图 2、到达端头井地层加固 根据设计要求,盾构到达端头加固采用两排三重管旋喷桩Φ800@600+袖阀管注浆加固。先注外围,后注中部,以达到一序外围成墙、二序内部压密的目的。采用跳孔注浆的原则,以达到释放压力,防止地面隆起。加固范围:水平盾构区间左右各3m;竖向盾构隧道上部6m处,下部深入中风化岩层1m。加固后的土体应有良好的均匀性和自立性,无侧限单轴抗压强度≥,地层渗透系数不大于10-5cm/sec。 3、盾构接收托架安装 托架安装前,通过车站临时预留口将地面控制点坐标引入车站底板,根据设计中心线计算出线路中心线坐标,进行中心线放样,托架高程放样时,高程一般比设计高程低2cm左右,测量点位放样精度控制在3mm以内。 接收托架主要采用型钢(工字钢、H型钢、钢板)焊接组成。 将预制好的盾构托架(见盾构机接收架构造图-1a、)吊入工作井内,按照测量放样的基线进行接收托架定位,托架定位采用吊车进行初步定位,再通过千斤顶和手拉倒链进行精确定位,定位精度在±5mm之内。(见盾构机接收托架定位

图考虑接收架在盾构到达时要承受纵向、横向的推力以及抵抗盾构旋转的扭矩,所以在盾构到达之前,对接收架两侧用H型钢进行加固(见盾构机接收架加固图)。 图-1a 盾构机接收架构造平面图 mm。 图盾构机接收架构造立体图

图 盾构机接收架安装定位 图 到达托架的加固 4、洞门混凝土的凿除 洞门混凝土凿除分两次进行,第一次洞门凿除在盾构掘进到到达端前进行,切除外排钢筋,并凿除外排钢筋和内排钢筋间混凝土;第二次洞门凿除在盾构机掘进到到达端后,切除内排钢筋。 1)脚手架的搭设 盾构到达前需凿除洞圈范围内的围护结构。施工前,在洞圈内搭设钢管脚手架(钢材规格:Q235,外径42.7mm ,壁厚2.3mm ),搭设高度6~7m,洞门凿除时间为7天左右。(详见洞口内脚手架布置图)。 @1000 7700 @1000观测孔 脚手架 1200 300 1500盾构 脚手架 图 洞口内脚手架布置图 凿除洞门混凝土之前,对洞门加固土体进行钻芯取样,检测土体的加固强度是否达到设计要求(加固体抗压强度不小于1Mpa ,渗透系数1×10-5cm/min ),

盾构分体始发掘进专项施工方案1

盾构分体始发专项施工方案 第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,

流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。 <6H>花岗岩全风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已基本风化破坏,但尚可辨认,岩芯呈坚硬土柱状,遇水易软化崩解。局部夹强风化花岗岩碎块。 <7H>花岗岩强风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已大部分风化破坏,矿物成分已显著变化,风化裂隙很发育,岩石极破碎,岩块可用手折断。钾长石用手捏成砂状,斜长石、云母多已风化成高岭土或粘土。局部夹全风化花岗岩。岩芯呈半岩半土状,岩芯遇水易软化崩解。 <8H>花岗岩中等风化带(γ53-2) 呈浅褐色、灰褐色等,中、细粒结构,块状构造,岩石组织结构部分破坏,矿物成分基本未变化,风化裂隙被铁染,并充填少量风化物。斜长石矿物风化较深,钾长石、云母矿物风化轻微。岩质硬,锤击声稍脆,不易击碎。局部夹强风化岩。岩芯较破碎,呈短柱状、碎块状。 <9H>花岗岩微风化带(γ53-2) 岩石组织结构基本未变化,断口处新鲜,岩质坚硬,锤击声脆。岩芯呈长柱状、短柱状。 ㈡工程水文 地下水按赋存方式分为第四系松散土层孔隙水,块状基岩裂隙水。第四系冲积—洪积砂层为主要潜水含水层,冲积—洪积砂层含粘粒较多,富水程度较差,渗透系数仅为0.5~2.0m/d。块状基岩裂隙水主要赋存在燕山期花岗岩强风化带及中等风化带,水力特点为承压水,地下水的赋存不均一。在裂隙发育地段,水量较丰富,属承压水,渗透系数为1.09m/d。 区间场地环境类别为Ⅱ类。地下水对混凝土结构无腐蚀性,对钢筋混凝土结构中的钢筋无腐蚀性,对钢结构具弱腐蚀性。

区间盾构临建专项施工方案

目录 1.工程概况 (1) 2.临建的施工组织 (1) 施工准备工作 (1) 施工内容 (1) 总体部署 (1) 施工进度计划安排 (2) 施工组织机构 (2) 施工平面布置 (2) 3.临建施工方法 (2) 用电线路 (3) 场地平整 (3) 泥浆处理场施工 (3) 浆池施工 (3) 弃渣场施工 (5) 搅拌站的施工 (5) 充电池 (5) 充电房、小仓库和值班室的施工 (5) 仓库的施工 (6) 4.冬季施工保证措施 (6) 5.质量保证措施 (7) 6.工期保证措施 (9) 7.安全文明施工保证措施 (10)

临建专项施工方案 1.工程概况 汪河路站-曹仲站区间,自浑河北岸汪河路站起,向南下穿大堤路、浑河以及浑河南岸规划地块至浑南西路后东转,沿浑南西路道路下方走行,至曹仲站,本工程起点里程CK12+,终点里程CK14+,区间全长双线米,区间中段下穿浑河,采用2台泥水平衡盾构机施工。区间共设置4个联络通道,一处风井,其中,1号、2号、4号联络通道采用冷冻法施工,3号联络通道结合区间风井设置,采用明挖施工。施工顺序安排:盾构从汪河路站始发,曹仲站吊出。 2.临建的施工组织 施工准备工作 (1)施工现场情况调查 现场情况调查的目的是为了解决下述问题:施工场地的布置;施工机械进入现场和进行组装的可能性;给排水和供电条件;噪声、振动与污染等公害引起的有关问题等。 (2)施工前应准备的资料有:施工区域内的工程地质、水文地质资料、管线、施工图及测量交桩记录等资料。 (3)平整场地,测量放线。 施工内容 盾构始发井南端头段及东侧区域,约3192m2的施工场地,为汪河路站~曹仲站区间始发场地。结合目前现场情况及泥水盾构施工工艺特点,本方案阐述的施工内容包括泥浆处理场地、地面控制室、仓库、搅拌站等进行临时设施布置施工。 办公室、宿舍、食堂、厨房、卫生间、洗浴室用房,16T龙门吊均延用车站现有的临建。 总体部署

盾构带压开仓工程施工设计方案

. 地铁2号线东延线工程土建2222标段【侨香站~香蜜站(原香蜜站)】区间 侨香站~香蜜站(原香蜜站)带压进仓换刀施工方案 编制 审核 审批 中铁隧道-市政联合体地铁2222标项目经理部 二○一○年三月

目录 1 带压进仓施工依据..................................................... - 1 - 2 刀盘附近地质状况..................................................... - 1 - 3 带压进仓工艺流程..................................................... - 2 - 3.1 土仓密封措施................................................. - 2 - 3.2 带压进仓准备工作............................................. - 2 - 3.3 气压的确定................................................... - 6 - 4 压气作业............................................................. - 6 - 4.1 土仓加压..................................................... - 6 - 4.2 作业过程..................................................... - 6 - 4.3 作业注意事项................................................. - 8 - 5 安全体系及安全体系................................................... - 9 - 5.1 安全体系..................................................... - 9 - 5.2 安全措施.................................................... - 10 - 6 隧道变形监测........................................................ - 11 - 6.1 测点布置.................................................... - 11 - 6.2 测量方法.................................................... - 11 - 6.3 监测频率.................................................... - 11 - 7 应急预案............................................................ - 11 - 7.1 应急反映机制................................................ - 11 - 7.2 应急措施.................................................... - 13 - 附件一、带压换刀工具清单................................................ - 16 - 附件二、压气作业管理及工作人员职责...................................... - 17 - 附件三、压气作业时间记录表.............................................. - 21 - 附件四、刀具检查表...................................................... - 22 - 附件五、项目组织及急救部门联络清单...................................... - 23 - 附件六、侨~香区间左线开仓位置及香莲立交沉降点监测图..................... - 24 -

盾构隧道专项施工技术方案

盾构隧道专项施工技术方案 1 施工准备 1组织结构 本工程按项目法组织施工,成立“中铁四局集团有限公司xx市轨道1号线土建施工13标项目经理部”,项目部下设盾构施工架子队,项目部组织机构见图5-1。 图5-1组织机构图 2技术准备 项目部提前完成图纸会审以及设计交底工作,编制施工方案并按程序报审;提前组织对作业人员的交底和培训;完成盾构始发前导线点布设和测量工作。 3现场准备 (1)完成场地临时建设,满足正常生产生活要求,施工用水由业主提供1个DN100给水管接口,施工用电由业主提供2台630KV

变压器和2台高压柜。 (2)根据三局移交场地,对施工场地进行平整、硬化,完成盾构进场的便道施工。 (3)组织人员、材料、设备按期进场。 4盾构始发场地平面布置 盾构始发场地布置在结构顶板施工完成回填后,渣土坑、充电池设置在顶板上,车站顶板主要用于存放管片、泡沫、油脂等其他材料,钢轨、轨枕放入车站底板,场地北侧用作存放管片及临建。 井口设置2台45吨龙门吊,每台龙门吊各自负责一台盾构机的管片、渣土、钢轨、轨枕及其他器材的垂直运输。 场地设置砂浆拌合站负责管片背后同步注浆砂浆,详见见附图2。 2 工艺流程 本区间隧道工程主要分项工程为:端头井加固、盾构进场、下井及组装,盾构始发、到达土体加固、盾构掘进、隧道防水等。本标段区间隧道采用2台中铁装备CTE6250土压平衡式盾构机进行隧道掘进,左右线均是从C站始发,B过站,A接受,之后解体吊装出场。 管片采用钢筋混凝土管片,由业主指定的第三方制作,项目部做好管片质量的过程监督及进场验收,盾构施工流程见下图5-2所示。

图5-2 盾构施工流程图 3 盾构机始发及试掘进 盾构始发流程见下图5-3所示。 始发端地层加固 洞门混凝土凿除 安装始发基座 盾构机组装、空载调试 安装反力架、洞口密封装置 安装负环管片与盾构机负载调试 盾尾通过洞口密封后进行注浆回填 盾构掘进与管片安装 图5-3 盾构始发流程图 3.1 端头井外土体加固

隧道盾构掘进施工主要工艺

隧道盾构掘进施工主要工艺 1、盾构始发与到达掘进技术 1.1 始发掘进 所谓始发掘进是指利用临时拼装起来的管片来承受反作用力,将盾构机推上始发台,由始发口贯入地层,开始沿所定线路掘进的一系列作业。本工程中每台盾构机都要经过两次始发掘进,第一次是盾构机组装、调试完后从三元里站始发,第二次是盾构机通过广州火车站后二次始发。 1.1.1 始发前的准备工作 (1)始发预埋件的设计、制作与安装 盾构机始发时巨大的推力通过反力架传递给车站结构,为保证盾构机顺利始发及车站结构的安全,需要在车站的某些位置预埋一些构件。同时盾构机盾尾进入区间后为减小地层变形需要立即进行回填注浆,为了防止跑浆也需要在车站侧墙上预埋构件以实现临时封堵。 三元里车站始发预埋件大样及预埋位置如图:隧盾-施组-SD01、02所示。 (2)洞门端头土体加固 三元里车站隧道端头上覆2米厚〈8〉类土(岩石中等风化带),开挖后侧壁基本稳定。始发前不对端头进行加固。 (3)端头围护桩的破除 始发前需要对洞门端头围护桩予 以拆除,确保盾构机顺利出站。三元里 站端头围护桩厚1.1米,洞门预留孔直 径6.62米。计划对围护桩进行分块拆除 如图7-1-1。 环形及横向拉槽宽度50cm,竖向 拉槽宽度20cm,竖向槽沿围护桩接缝凿 除。 盾构机推进前割断连接钢筋,拉开 钢筋砼网片,清理石碴并处理外露钢筋 头,避免阻挂盾壳。围护桩拆除后,快 速拼装负环管片,盾构机抵拢工作面,避免工作面暴露太久失稳坍塌。拉槽 图7-7-1 凿除分块示意图

1.2 盾构机始发流程 盾构机始发前首先将反力架连接在预埋件的位置,吊装盾构机组件在始发台上组装、调试;然后安装400宽的负环钢管片,盾构机试运转;最后拆除洞门端墙盾构机贯入开挖面加压掘进。 盾构机始发流程见下图: 盾构机始发时临时封堵操作工艺流程如下: 安装反力架、始发台 盾构机组件的吊装 组装临时钢管片、 盾构机试运转 拆除端头维护桩 盾构机贯入开挖面加压掘进(拼装临时管片) 盾尾通过入,压板加 固、壁后回填注浆 端头地层加固 检查开挖面地层 始发准备工作 拆除端头围护桩 掘 进 安装螺栓、橡胶帘布板及钢压板 上拉压板,置于盾构机通过位置 盾尾通过始发口 下拉压板 盾尾同步注浆

盾构始发施工方案

盾构始发施工方案 1始发顺序 本区间先利用一台盾构机进行下行线(左线)掘进,然后进场第二台盾构机进行上行线(右线)掘进。 2盾构始发工艺流程 图6-1 始发流程示意图 3盾构始发施工参数取值 盾构始发施工前首先须对盾构机掘进过程中的各项参数进行设定,施工中再根据各种参数的使用效果及地质条件变化在适当的范围内进行调整、优化。须设定的参数主要有土压力、推力、刀盘扭矩、推进速度及刀盘转速、出土量、同步注浆压力、添加剂使用量等。 3.1土压力设定 1)始发段(始发100环内)盾构机中部水静止水土压力计算 pe1——盾构中部的垂直土压。 pe1=γ×h1 γ为土的平均容重,γ=1.88t/m3;h1为盾构机中部到地面距离:12.77~14.90m

pe1=2.4~2.8bar pe2——盾构中部水压。 pe2=γ1×h2 γ1为水的容重,γ1=1t/m3;h2为始发段盾构机中部到地面距离:9.87~12.00m pe2=1.0~1.2bar 2)土仓压力值计算 土仓压力P=(pe1+pe2)*λ+pe3 λ——侧压系数,取0.33 pe3——经验值,取0.1bar 则,土仓压力P=1.2~1.4bar。 3.2始发掘进推力的计算 地层参数按《岩土勘察报告》选取,于勘探期间测得的水位一般为2.9m-3.5m,水土压力需分别考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据洞门的纵剖面图,及埋深不大,在确定盾构机拱顶处的竖向压力Pe时,可直接取全部上覆土体自重作为上覆土地层压力。 土压平衡式盾构机的掘进总推力F,由盾构与地层之间的摩擦阻力F1、刀盘正面推进阻力F2、盾尾内部与管片之间的摩擦阻力F3组成 即按公式 F=F1+F2+F3 (1)盾构地层之间的摩擦阻力F1 计算可按公式 F1=π*D*L*C C—凝聚力,单位t/m2 取C= 4.5t/m2 L—盾壳长度,9.2m D—盾体外径,D=4m 得:F1=π*D*L*?C=3.14?4?9.2?4.5=831.97t (2) 盾构机前方的推进阻力F2 水土压力计算 D——盾构壳体计算外径,取4m;

盾构到达接收方案

盾构到达接收方案 1 盾构到达接收 根据区间隧道施工总体安排,盾构机首先从文化宫站西端始发井组装、始发,向西施工,至省博物馆站东端解体、调头。中间穿过联络通道,联络通道在盾构区间完成后采用矿山法施工。盾构到达段掘进参数见下表。 盾构到达段施工技术参数表1-1 1.1 盾构到达接收流程 盾构到达施工流程见下图。

1.2 洞门破除 由于隧道洞门为地下连续墙,盾构到达前要将盾构通过范围内的钢筋全部取出。凿除洞门采用人工手持风镐的方法。为了保护盾构刀盘初装刀具、保证洞门土体的稳定,采取以下措施: (1)洞门一次凿除到位。在到达井土体加固检验合格、盾构刀盘贴上连续墙迎土面、帘布橡胶安装完毕并且在地下水位降到底板以下1m 的前提下,组织人员进场开始破除施工,使用风镐进行破除。破除洞门范围内所有的连续墙;洞门范围内的钢筋必须清楚干净保证预留洞门的直径。破除完毕后,盾构机立即前推进洞。 (2)开凿前,搭设双排脚手架,由上往下分层凿除,洞门凿除的顺序见下图。首先将连续墙背土面钢筋凿出裸露并用氧焊切割掉,然后继续凿至迎土面钢筋外露为止。当盾构刀盘抵达连续墙迎土面停止前推,然后再将余下的钢筋割掉。 6620说明: 洞门凿除顺序严格按照图 示分块进行。 875496213

图1.2-1 洞门凿除顺序图 洞门的内径为6.80米,凿除洞门上部时须搭设脚手架,脚手架的搭设需遵循以下几点: (1)搭设脚手架的钢管需要经过挑选,弯曲或破损严重不可使用; (2)搭设脚手架的架子工须持证上岗; (3)脚手架采用Φ48的钢管扣件式脚手架施工荷载不得大于200KN/㎡,脚手架的步距为180cm,排距为150cm,行距为150cm; (4)脚手架上搭设平台,按照40cm间距布设方木,方木上铺设竹胶板并用铁丝固定。 洞门凿除过程中需要注意的事项: (1)由于洞门直径过大,因此在洞门凿除时需要进行高空作业,进行高空作业时必须佩带安全带; (2)如果在洞门破除的过程中出现砂石塌落的现象应及时远离洞门并用喷射混凝土进行喷射对土体进行加固; (3)洞门凿除后要对洞门的净空进行测量保证盾构机能够顺利通行; (4)洞门凿除要将连续墙的钢筋清理干净以免对盾构机的运行产生影响。 1.3 接收托架的安装与固定 在盾构到达前,先在省博物馆站盾构井浇筑混凝土垫层,沿隧道线路中线安放并焊接固定托架(固定与预埋钢板上)。接收托架的构

盾构开仓管理细则

xx地铁建设发展有限公司 盾构开仓管理细则(试行) (DTJS/ZY-AZ-21) 1 总则 1.1 为加强盾构开仓(常压或带压)过程中施工安全管理,确保盾构开仓(常压或带压)过程中不出现安全事故,特制定本管理细则。 1.2 本细则仅适用于xx地铁建设发展有限公司所建设管理的地铁工程和枢纽工程。 2 审批程序 2.1 在盾构开仓前,施工单位项目经理(或总工程师)应组织对安全条件进行自检,检查内容详见《关键工序和重要部位施工前条件验收管理办法》,自检合格后,需填报《施工前条件验收申请表》,经施工单位项目经理(或总工程师)签字后,向监理单位提出盾构开仓申请。 2.2 监理单位接到施工单位提交盾构开仓申请,按照《关键工序和重要部位施工前条件验收管理办法》规定,由总监理工程师(或总监代表)组织施工单位(必要时请设计单位参加)对盾构开仓安全条件进行核实验收,必要时应组织施工、设计及专家对盾构开仓施工方案进行论证。 2.3 监理单位验收合格后,填写《施工前条件验收记录表》,经总监监理工程师(或总监 代表)签字后,施工单位方可盾构开仓作业。 3 开仓的要求 3.1 进入开挖面内时请确认开挖面内的气体浓度,然后再进去。否则会发生缺氧、气体 中毒,这时要注意充分换气。 3.2 进入开挖面内时,如忘记切断电源,会因误动作等伤及开挖面内的作业人员,造成 人身事故,因此一定切断电源。 3.3 进入开挖面时,有因塌陷造成伤害的危险,所以,作业负责人应监视开挖面的状态,含水以及有无涌水,明确作出指示。 3.4 进入开挖面时,必须用安全帽,长靴或安全鞋,高处作业请用安全带。 3.5 在机内,有被凸出物挂住而负伤、疼痛、跌倒、坠落的可能,所以必须用不易挂的工作服。

盾构施工渣土改良专项方案

编制依据 (1)隧道施工图 (2)铁路隧道工程施工技术指南(TZ204-2008) (3)公司《质量管理体系-要求》(GB/T19001-2000) 一、工程概况 本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。 二、工程地质条件和水文地质条件 2.1地形地貌 本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。 2.2工程地质条件 (1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程 DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。 (2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示: 表隧道地层统计

最新四盾构始发方案

四盾构始发方案

3.4.盾构始发 3.4.1.始发掘进施工工艺及流程 盾构始发掘进施工工艺流程见图3.3.4-1。 图3.3.4-1 盾构始发掘进施工工艺流程 3.4.2.始发施工准备 为保证进洞施工的安全和质量,准备工作必须细致,施工方案必须周密到位。 ⑴生产设施准备工作 ①地面生产设施准备工作 在盾构推进施工前,按常规进行施工用电、用水、通风、排水、照明等的安装工作,及地面行车的安装工作并通过验收。 ②施工必要的材料、设备、机具准备,并准备好相应的办公、库房等生活用房。以满足本阶段施工要求:管片、螺栓等有足够的备货。管片必须按技术要求生产,经监理验收确认方可进入工地使用。如在运输中管片有碰撞破碎,

由厂方专人按规定尺寸修复后,经现场监理认可,方可使用,否则一律退回厂方不得使用。 ③井上、井下测量控制网的建立,并经复核、认可。 ④洞门土体加固 ⑤盾构机托架下井组装、调试 ⑥安装盾构机始发反力架(见图3.3.4-3)。 ⑦洞门混凝土凿除 凿除洞环内混凝土保护层暴露出内排钢筋,并割去内排钢筋。在洞门围护结构中心、左右、上下各开凿一个小孔,用来观察外部土体情况。最后将洞门混凝土分块破除,外排钢筋等刀盘靠近时再进行割除。

图3.3.4-2 盾构反力架示意图 ⑧洞门的密封装置安装 由于洞圈与盾构外径有一定的间隙,为了防止盾构进洞时及施工期间土体从该间隙中流失,在洞圈周围安装由橡胶、帘布、圆形板等组成的密封装置、并增设注浆孔,作为洞口的防水措施(见图3.3.4-4)。 图3.3.4-3 盾构进洞防水装置安装示意图 ⑵具体各岗位做好以下准备工作 ①施工技术人员:熟悉工程地质,对隧道所处地层土质应加强认识,并到现场对各地层、岩层的样本实体作逐一的认识。对工程作详细的了解、分析,认真熟悉施工图纸。

盾构下穿建筑物专项施工方案word参考模板

盾构隧道下穿建筑物专项方案 一、编制依据 1、珠江三角洲城际快速轨道交通广州至佛山段工程18标南洲站~沥滘站区间平纵断面及洞门设计布置图; 2、珠江三角洲城际快速轨道交通广州至佛山段18标工程南洲站~中间风井建筑物调查报告; 3、珠江三角洲城际快速轨道交通广州至佛山段18标工程南洲站~中间风井区间盾构推进监测方案; 4、《地下铁道工程施工及验收规范》(GB 50299-1999)(2003年版); 5、《盾构法隧道施工与验收规范》(GB 50446-2008) 6、《建筑地基基础设计规范》(GB 50007-2011) 二、工程概况 2.1 工程简介 珠江三角洲城际快速轨道交通广州至佛山段南洲站~沥滘站区间(简称“南沥区间”)位于广州市海珠区。本次设计起点为南洲站,终点为沥滘站。 根据广东广佛轨道交通有限公司穗铁广佛建会【2012】68号会议纪要,盾构从南洲站始发,中间风井吊出;再根据拆迁情况而实施从沥滘站始发,中间风井吊出。起点为南洲客运站、向东南方延伸,途经南环立交、沥滘水道,进入沥滘村。区间沿线地形平坦,地面高程为7.87~10.32m,沥滘村沿线密布建筑物群。 盾构区间上方主要有南环高速公路等构筑物;沿线两边主要有南洲大酒店(A7)、大量居民房等建筑物。 工程由两台Φ6250海瑞克复合式土压平衡盾构机进行施工。先后施工上行线和下行线隧道,盾构从南洲站东端头下井始发,掘进至中间风井吊出。 本区间隧道由上、下行线两条隧道构成,区间最大覆土厚约32.2米,最小覆土9.5米。区间最小曲线半径为350米,线间距约12.5米。线路纵坡设计为双向坡,最大坡度为29‰。 本区间穿越海珠区南洲街三滘经济社、南洲二手车市场,穿越土层主要为<3-1>冲洪积层—砂层、<3-2>冲洪积层—砂层、<4-1>冲洪积层—粉质粘土、<4-2

盾构机开仓方案

盾构机常压开仓及应急预案 1、开仓准备 (2) 1.1人员准备 (2) 1.2开仓设备及材料准备 (2) 1.3进入加固区的盾构操作 (5) 1.4、其他准备 (5) 2、工艺流程 (6) 3、人员进仓 (8) 4、进仓维修 (8) 5、大齿轮箱清洗 (9) 6、试运转调试 (10) 7、盾构机开仓作业安全事故应急救援预案 (10) 7.1事故类型和危害程度分析 (10) 7.2应急处置基本原则 (11) 7.3应急指挥机构及职责 (11) 7.4应急处置 (11) 8、盾构机开仓作业安全预防措施 (12) 8.1事故预防措施 (12) 8.2提升运输作业安全措施 (13) 8.3预防空气中毒措施 (13) 8.4机械安全保证措施 (13) 8.5用电安全保证措施 (13)

某地铁一期某区间左线工程于2010年12月7日在掘进199环时发生喷涌并停机,经厂家确认是刀盘驱动主轴承外圈密封损坏导导致土仓内的泥砂涌入齿轮箱最后从观察孔喷涌。后经专家会诊确定先采用应急措施让盾构机掘进至26 3环到加固区,在常压的环境下进入土仓内把渣土清干净,同时在土仓壁刀盘扭腿的位置内外2圈各增加2道V形轴承密封。同时另一部分人拆除驱动电机、减速箱后清理大齿轮箱,并对减速机更换密封的工作。 预计2011年1月14日开仓,需用20天时间进行开仓维修工作。 1、开仓准备 1.1人员准备 (1)开仓施工准备:成立指挥组1个、协调组1个、仓内作业小组2个、地面监控测量组1个及应急组1个。 指挥组:xx、xx 协调组:。。。。。。。。。。 仓内作业一组:。。。。。。。。 仓内作业二组:。。。。。。。。 地面监控测量组:。。。。。。。 应急组:。。。。。。。 1.2开仓设备及材料准备 本工程开挖断面由于土层稳定,且在加固区进行了素桩及注浆止水处理,可采用常压开仓。 (1)在开仓位置前5环即开始向地层注入膨润土浆液。 (2)采用台车架上2台6立方空压机提供空气供给,确保开仓成功。 (3)其他材料及机具见下表:

盾构井马头门破除施工方案

目录 目录...................................................... - 1 - 一、编制依据.................................................. - 1 - 二、工程概况.................................................. - 1 - 2.1工程概况 ...................................................................................................................................... - 1 - 2.2工程简介 ...................................................................................................................................... - 2 - 2.3相关施工参数 .............................................................................................................................. - 3 - 三、施工方案.................................................. - 4 - 3.1施工组织安排 .............................................................................................................................. - 4 - 3.2施工步骤 ...................................................................................................................................... - 5 - 3.2.1初始条件 ............................................................................................................................ - 5 - 3.2.2测绘轮廓 ............................................................................................................................ - 6 - 3.2.3洞门破除 ............................................................................................................................ - 6 -φ15mm注浆孔.................................................. - 6 - 30cm .......................................................... - 6 - φ108管棚..................................................... - 7 - 内衬管........................................................ - 7 - φ108管棚开口................................................. - 7 - 与内衬管焊接.................................................. - 7 - 管棚施工工序系统 .............................................. - 8 - 管棚钢管加工.................................................. - 8 - 注浆材料备料.................................................. - 8 - 运钻机及料具.................................................. - 8 - 搭钻机平台.................................................... - 8 - 安装钻机、定孔位 .............................................. - 8 - 钻孔........................................................ - 8 -

盾构分体始发掘进专项施工方案设计

第一章编制依据 1、市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规、规则、质量技术标准,以及地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。 <6H>花岗岩全风化带(γ53-2)

相关文档
最新文档