旋转几何综合专题练习(解析版)

旋转几何综合专题练习(解析版)
旋转几何综合专题练习(解析版)

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

最新初中数学几何专题讲解训练----几何旋转题型(解析版)(20200708192546)

最新初中数学几何专题讲解训练----几何旋转题型 一.半角模型 “半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在一般的等腰三角形中也会有涉 及. 二.等腰三角形旋转模型 等腰三角形的旋转模型比较多,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化,证明的基本思想“SAS”. 1.一般等腰三角形的旋转 共顶点等腰三角形的旋转 2.等边三角形的旋转

共顶点等边三角形的旋转3.等腰直角三角形的旋转 共顶点等腰直角三角形的旋转 三.对角互补模型 四边形对角互补模型 多数题目给出的条件会以四边形或三角形等旋转为载体. 四.旋转相似模型 共顶点相似的一般三角形模型:

如图,图中ABD ACE ∽,得到AB AD BD AC AE CE ,ABD ACE ,ADB AEC ,BAD CAE ,则有ABC ADE ∽. 一.考点: 1.旋转全等模型; 2.旋转相似模型; 3.旋转中的轨迹与最值问题; 二.重难点: 1.这类题的关键是找到题目中所给的特殊条件,结合问题所要证明或者求解的边长角度问题,再 去选择是要构造旋转全等还是通过已经得到的旋转全等的性质进一步证明. 2.观察图形发现旋转得到的相似; 3.通过添加辅助线构造旋转相似或者去挖掘隐含的相似图形. 三.易错点: 1.在利用旋转构造全等的时候注意辅助线的做法问题; 2.构造旋转全等时候一定要有相等边长的条件. 3.全等是相似的一个特例,旋转有时候也会出现全等,注意和旋转全等的区别和联系. 题模一:旋转与全等 例1.1.1已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

几何变换的三种模型手拉手、半角、对角互补 ?? ? ? ? ? ? ? ? ? ?? ? ?? ? ? ? ? ?? ?? ? ?? 等腰三角形 手拉手模型等腰直角三角形(包含正方形) 等边三角形(包含费马点) 特殊角 旋转变换对角互补模型 一般角 特殊角 角含半角模型 一般角 等线段变换(与圆相关) 【练1】(2013北京中考)在ABC △中,AB AC =,BACα ∠=(060 α ?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜 想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

考点1:手拉手模型:全等和相似 包含: 等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种 位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似) 例题精讲

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

解析几何中的定值定点问题

解析几何中的定值定点问题 一、定点问题 【例1】.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线0x y -+=相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴由题意知c e a ==2222 2234c a b e a a -=== ,即224a b = ,又因为1b ==,所以22 4,1a b ==,故椭圆C 的方程为C :2214 x y +=. ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22 (4)14 y k x x y =-???+=??消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ?=-+->得21210k -<, 又0k =不合题意, 所以直线PN 的斜率的取值范围是0k << 或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为21 2221 ()y y y y x x x x +-=--, 令0y =,得221221 () y x x x x y y -=- +,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ② 由得①2212122232644 ,4141k k x x x x k k -+== ++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). 【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到(),0 ,) ,0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x 轴上焦中为的椭圆,其方程为2 214 x y +=.

九年级数学旋转几何综合专题练习(解析版)

九年级数学旋转几何综合专题练习(解析版) 一、初三数学旋转易错题压轴题(难) 1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°. (1)如图①,若∠B、∠ADC都是直角,把ABE △绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程; (2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有 EF=BE+DF; (3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长. 【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3 【解析】 【分析】 (1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案; (2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即 180 ADG ADF ∠+∠=?,即180 B D ∠+∠=?; (3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长. 【详解】 (1)解:如图, ∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合, ∴AE=AG,∠BAE=∠DAG,BE=DG, ∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°, ∴∠DAG+∠DAF=45°, 即∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; (2)解:∠B+∠D=180°, 理由是: 如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG, ∵∠B+∠ADC=180°, ∴∠ADC+∠ADG=180°, ∴F、D、G在一条直线上, 和(1)类似,∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; 故答案为:∠B+∠D=180°; (3)解:∵△ABC中,2BAC=90°, ∴∠ABC=∠C=45°,由勾股定理得:22 AB AC +,

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)

一.方法综述 解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下; (1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性; 一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果; 另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。 (2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 二.解题策略 类型一定值问题 【例1】(2020?青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为() A.B.C.2p D. 【答案】D 【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果. 解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),

2018中考数学专题复习几何旋转综合题练习

几何旋转综合题练习 1、如图,已知 ABC 是等边三角形. (1)如图(1),点E 在线段 A B 上,点 D 在射线 C B 上,且 ED=EC.将 BCE 绕点 C 顺时针旋转60° 至 ACF , 连接 E F.猜想线段 A B,DB,AF 之间的数量关系; (2)点 E 在线段 BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整, 并猜想线段 AB,DB,AF 之间的数量关系; (3)请选择(1)或(2)中的一个猜想进行证明. 第 1 题图(1) 第 1 题图(2) 2、如图 1 △,△ ACB △、△ AED 都为等腰直角三角形,∠ AED =∠ ACB =90°,点 D 在 AB 上,连CE ,M 、N 分 别为

BD、CE 的中点 (1)求证:MN⊥CE (2)如图2将△AED 绕A点逆时针旋转30°,求证:CE=2MN

3、在等腰R t△ABC和等腰R△t△A1B 1 C1中,斜边B1C1中点O也是BC的中点。 (1)如图1,则AA1与C C1的数量关系是;位置关系是。 (2)如图2,△将△ A1B1C1 绕点O顺时针旋转一定角度,上述结论是否仍然成立,请证明你的结论。 (3)如图3,在(2)的基础上,直线AA1、CC1交于点P,设AB=4,则PB长的最小值是。 A A A P B B A O 图1 1 C C B B 1 O 图2C A 1C B A 图3 1 C 1 O C 1 B 4、已知,正方形A BCD的边长为4,点E是对角线B D延长线上一点,AE=BD.△将△ABE绕点A顺时针旋转α度 (0°<α<360°)得△到△AB′E′,点B、E的对应点分别为B′、E′ (1) (1) (2)如图1,当α=30°时,求证:B′C=DE 连接B′E、DE′,当B′E=DE′时,请用图2求α的值 如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的1 1 1

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

解析几何的范围问题

A .() 1,2 B . ( ) 2,2 C .()1,2 D . ( ) 2,+∞ 2.(2020·湖北高考模拟(理))设椭圆222 14 x y m +=与双曲线22 214x y a -=在第一象限的交点为12,,T F F 为其共同的左右的焦点,且14TF <,若椭圆和双曲线的离心率分别为12,e e ,则22 12e e +的取值范围为 A .262, 9? ? ??? B .527, 9?? ??? C .261, 9?? ??? D .50,9?? +∞ ??? 3.(2020六安市第一中学模拟)点在椭圆上, 的右焦点为,点在圆 上,则 的最小值为( ) A . B . C . D . 类型二 通过建立目标问题的表达式,结合参数或几何性质求范围 【例2】(2020·玉林高级中学高考模拟(理))已知椭圆22 :143 x y C +=的左、右顶点分别为,A B ,F 为椭圆 C 的右焦点,圆22 4x y +=上有一动点P ,P 不同于,A B 两点,直线PA 与椭圆C 交于点Q ,则PB QF k k 的取 值范围是( ) A .33,0,44????-∞- ? ? ????? B .()3,00,4??-∞? ??? C .()(),10,1-∞-? D .()(),00,1-∞ 【举一反三】 1.抛物线上一点 到抛物线准线的距离为 ,点关于轴的对称点为,为坐标原点, 的内切圆与 切于点,点为内切圆上任意一点,则 的取值范围为__________. 2.(2020哈尔滨师大附中模拟)已知直线 与椭圆: 相交于,两点,为坐标原点. 当的面积取得最大值时,( )A . B . C . D . 类型三 利用根的判别式或韦达定理建立不等关系求范围

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》 题型特点: 定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。这类试题考查的是在运动变化过程中寻找不变量的方法。 典例 1 如图,已知双曲线)0(1:222 >=-a y a x C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。 (1)求双曲线C 的方程; (2)过C 上一点),(00y x P 的直线1: 020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF 恒为定值,并求此定值。 典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。 (1)求动圆圆心的轨迹C 的方程; (2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:2 2=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。 (1)求椭圆E 的方程; (2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。 典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(- 。 (1)求椭圆方程; (2)过点)0,5 6(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

初中数学几何专题旋转

初中数学几何专题——旋转 一.选择题(共5小题) 1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于() A.B.2 C.D. 2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形 3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为() A.4 B.8 C.16 D.8 4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=() A.1: B.1:2 C.:2 D.1: 5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于() A.1﹣ B.1﹣ C.D. 二.填空题(共5小题) 6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. 7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.

8.如图,将等边△ABC沿BC方向平移得到△A 1B 1 C 1 .若BC=3,,则BB 1 = . 9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为. 10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是. 三.解答题(共6小题) 14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形; (2)将点B绕点E逆时针旋转. ①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形; ②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积. 15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系 拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明. 问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC 所在的直线垂直时BD的长. 16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A 1B 1 C 1 O的

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

解析几何中的范围问题

解析几何中的范围问题 一般解题思路是,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。 一、“题设条件中的不等式关系” 题设条件中明朗或隐蔽的不等关系,可作为探索或寻觅范围的切入点而提供方便。 例1、(2004全国卷 I )椭圆 的两个焦点是 ,且 椭圆上存在点P 使得直线 垂直.求实数m 的取值范围; 分析:对于(1),要求m 的取值范围,首先需要导出相关的不等式,由题设知,椭圆方程为标准方程,应有 , 便是特设条件 中隐蔽的不等关系. 解:(1)由题设知 设点P 坐标为 ,则有 得① 将①与 联立,解得 ∵m>0,且 ∴m≥1 即所求m 的取值范围为 . 二、“圆锥曲线的有关范围” 椭圆、双曲线和抛物线的“范围”,是它们的第一几何性质。 例2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162 =的焦点P 为其一个焦点,以双曲线19 162 2=-y x 的焦点Q 为顶点。 (1)求椭圆的标准方程; (2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ?的取值范围。 解:(1)抛物线x y 162 =焦点P 为(4,0),双曲线19 162 2=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为122 22=+b y a x (a>b>0),且a=5,c=4

916252 =-=∴b ,∴椭圆的标准方程为 19 252 2=+y x (2)设),(00y x M ,线段CD 方程为135=+y x ,即353+-=x y )50(≤≤x 点M 是线段CD 上,∴35 3 00+-=x y )50(0≤≤x ),1(00y x AM +=,),1(00y x BM -=,12 020-+=?∴y x AM , 将35300+- =x y )50(0≤≤x 代入得BM ?1)35 3(202 0-+-+=x x BM AM ??85 182534020+-= x x 34191 )3445(253420+-=x 500≤≤x , BM AM ?∴的最大值为24,BM AM ?的最小值为34 191 。 BM AM ?∴的范围是]24,34 191 [。 三、“一元二次方程有二不等实根的充要条件” 在直线与曲线相交问题中,直线与某圆锥曲线相交的大前提,往往由“相关一元二次方程有二不等实根”来体现。因此,对于有关一元二次方程的判别式△>0,求某量的值时,它是去伪存真的鉴别依据,求某量的取值范围时,它是导出该量的不等式的原始不等关系。 例3、如图,直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =2 1 .椭圆C 以A 、B 为焦点且经过点D . (1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 2 1 = AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求 出直线l 与AB 夹角的范围,若不存在,说明理由. 解:(1)以AB 所在直线为x 轴,AB 中垂线为y 轴建立直角坐标系,则 A (-1,0),B (1,0) 设椭圆方程为:12222=+b y a x 令c b y C x 2 0=?= ∴?? ?==??????= =322 31 2 b a a b C ∴ 椭圆C 的方程是:13 42 2=+y x 。 (2)1(02EC AB E =?,)2 1 ,l ⊥AB 时不符,设l : y =kx +m (显然k ≠0)

解析几何中的定点、定值问题

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线 AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出.

令440 x y -=?? =? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的 任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 22 0001222 000y y y y y y k k x x x x x x -+-?=?= -+-, 又由A 、P 均在椭圆上,故有:22 002221 21x y x y ?+=??+=?? , 两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122202y y k k x x -?==-- 3、 过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-,

相关文档
最新文档