一种模型预测控制器仿真系统的实现

一种模型预测控制器仿真系统的实现
一种模型预测控制器仿真系统的实现

MATLAB模型预测控制工具箱函数

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

实时控制系统一种基于模型预测控制的反馈调度

第40卷第5期 2006年5月 上海交通大学学报 J OU RNAL OF SHAN GHA I J IAO TON G UNIV ERSIT Y Vol.40No.5  May 2006  收稿日期:2005206208 作者简介:周平方(19762),男,湖南常宁人,博士生,主要从事实时系统、计算机控制系统等研究,E 2mail :zhoupf @https://www.360docs.net/doc/cb4347158.html,. 谢剑英(联系人),男,教授,博士生导师,电话(Tel.):021*********. 文章编号:100622467(2006)0520838205 实时控制系统一种基于模型预测控制的反馈调度 周平方, 谢剑英 (上海交通大学自动化系,上海200030) 摘 要:提出一种基于模型预测控制(M PC )的反馈调度算法(FS 2M PC ),可以在有限计算资源的 情况下改进实时控制系统的性能.将被控的实时调度过程模型化为受约束的任务集密度控制问题.在FS 2MPC 算法中,约束条件保证任务集在最早截止时限优先(EDF )算法下是可调度的;同时,M PC 的优化目标通过减小控制任务的截止时限使整个任务集的密度尽可能接近100%,从而提高控制任务的优先级,降低输出抖动.仿真结果表明,在有限计算资源的情况下,FS 2M PC 显著地降低了由调度过程引起的控制性能损失. 关键词:实时控制系统;反馈调度;模型预测控制;最早截止时限优先中图分类号:TP 273 文献标识码:A A Model Predictive Control 2Based Feedback Scheduling for Real 2T ime Control Systems Z HOU Pi ng 2f ang , X I E J i an 2y i ng (Dept.of Automation ,Shanghai Jiaotong Univ.,Shanghai 200030,China ) Abstract :A feedback scheduling based on model p redictive control (FS 2M PC )was presented to improve t he cont rol performance of real 2time control system subject to limited comp utational resource.The controlled real 2time scheduling is modelled as a const rained density cont rol p roblem of t he total task set.In t he FS 2M PC ,t he const raint s guarantee t hat t he task set is schedulable by EDF (earliest deadline first )algorit hm.At t he same time ,t he optimization goal of M PC (model p redictive cont rol )makes t he density of t he total task set as clo se to 1as po ssible t hrough shortening cont rol tasks ’deadlines.As a result ,t he cont rol tasks obtain higher p riorities and t he outp ut jitter is reduced.The simulation result s illust rate t hat t he schedu 2ling induced control performance lo ss is reduced greatly by t he FS 2M PC subject to limited comp utational resource. Key words :real 2time cont rol system ;feedback scheduling (FS );model p redictive control (M PC );earliest deadline first (EDF ) 现代实时控制系统(R TCS )通常是基于一个实时内核,多个闭环控制任务在内核的基础上竞争性地使用共享的处理器时间.因此,处理器的时间被当作是一种最重要的资源,需要一定的调度算法来将其分配给各个任务.这样就可能引起控制任务的抖动,尤其是当周期很短、处理器利用率很高的时候.

MATLAB工具箱介绍.

MATLAB工具箱介绍 软件Matlab由美国MathWorks, Inc.公司出品,它的前身是C1eveMoler教授(现为美国工程院院士,Mathworks公司首席科学家)为著名的数学软件包LINPACK和EISPACK所写的一个接口程序。经过近20年的发展,目前Matlab已经发展成一个系列产品,包括它的内核及多个可供选择的工具箱。Matlab的工具箱数目不断增加,功能不断改善,这里简要介绍其中的几个。MATLAB 的M文件、工具箱索引和网上资源,可以从https://www.360docs.net/doc/cb4347158.html,处查找。 (1)通讯工具箱 (Communication ToolboX) ★提供100多个函数及150多个SIMULINK模块,用于系统的仿真和分析 ★可由结构图直接生成可应用的C语言源代码 (2)控制系统工具箱 (Control System Too1box) ★连续系统设计和离散系统设计 ★状态空间和传递函数 ★模型转换 ★频域响应:Bode图、Nyquist图、Nichols图 ★时域响应:冲击响应、阶跃响应、斜波响应等 ★根轨迹、极点配置、LQG (3)金融工具箱 (Financial Loo1boX) ★成本、利润分析,市场灵敏度分析 ★业务量分析及优化 ★偏差分析 ★资金流量估算 ★财务报表

(4)频率域系统辨识工具箱 (Frequency Domain System Identification Toolbox) ★辨识具有未知延迟的连续和离散系统 ★计算幅值/相位、零点/极点的置信区间 ★设计周期激励信号、最小峰值、最优能量谱等 (5)模糊逻辑工具箱 (Fuzzy Logic Too1box) ★友好的交互设计界面 ★自适应神经—模糊学习、聚类以及Sugeno推理 ★支持SIMULINK动态仿真 ★可生成C语言源代码用于实时应用 (6)高阶谱分析工具箱 (Higher—Order Spectral Analysis Toolbox) ★高阶谱估计 ★信号中非线性特征的检测和刻划 ★延时估计 ★幅值和相位重构 ★阵列信号处理 ★谐波重构 (7)图像处理工具箱 (Image Processing Toolbox) ★二维滤波器设计和滤波 ★图像恢复增强 ★色彩、集合及形态操作

MA AB模型预测控制工具箱函数

M A T L A B模型预测控制工具箱函数 8.2系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2模型建立与转换函数 8.2.1模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤MPC传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动 和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod=ss2mod(A,B,C,D) pmod=ss2mod(A,B,C,D,minfo) pmod=ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A,B,C,D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0,u0,y0,f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

三电平三相逆变器快速有限控制集模型预测控制方法

第20卷 第8期 2016年8月  电 机 与 控 制 学 报Electric Machines and Control Vol畅20No畅8Aug.2016 三电平三相逆变器快速有限控制集模型预测控制方法 杨勇1, 樊明迪1, 谢门喜1, 汪义旺2 (1.苏州大学城市轨道交通学院,江苏苏州215137;2.上海交通大学电子与电气工程学院,上海200240) 摘 要:针对有限控制集模型预测控制方法在多电平多相逆变器中预测模型和目标函数在线计算量大的不足,提出一种快速有限控制集模型预测控制方法。该方法根据参考矢量的空间位置,让远离参考矢量的电压矢量不参与预测模型在线计算和目标函数在线评估。对于三电平三相逆变器,快速有限控制集模型预测控制方法使参与计算的电压矢量由27个减少到12个,大大提高计算效率。最后,建立起5kW二极管钳位型三电平三相逆变器实验平台。对于传统有限控制集模型预测控制和快速有限控制集模型预测控制进行对比稳态和动态实验。实验结果表明:所提出快速有限控制集模型预测控制方法使系统具有良好的静、动态性能。 关键词:预测模型;目标函数;快速有限控制集模型预测控制;二极管钳位型三电平三相逆变器DOI:10.15938/j.emc.2016.08.011 中图分类号:TM721文献标志码:A文章编号:1007-449X(2016)08-0083-09 收稿日期:2015-10-12 基金项目:国家自然科学青年基金(51407124);中国博士后科学基金(2015M581857);江苏省高校自然科学基金(15KJD470005)作者简介:杨 勇(1981—)男,博士,讲师,研究方向为光伏发电与电力电子变换器; 樊明迪(1987—),男,博士,讲师,研究方向为电机及其控制; 谢门喜(1983—),男,博士研究生,研究方向为锁相环技术; 汪义旺(1981—),男,博士研究生,讲师,研究方向为电力电子变换器。 通信作者:樊明迪Fastfinitecontrolsetmodelpredictivecontrolmethodforthree-levelthree-phaseinverters YANGYong1, FANMing-di1, XIEMen-xi1, WANGYi-wang2 (1.SchoolofUrbanRailTransportation,SoochowUniversity,Suzhou215137,China; 2.SchoolofElectronicInformationandElectricalEngineering,ShanghaiJiaoTongUniversity,Shanghai200240,China)Abstract:Duetolargeonlinecalculationofpredictivemodelandcostfunctionwhenusingfinitecontrolsetmodelpredictivecontrol(FCS-MPC)inamulti-levelmulti-phaseinverter,afastFCS-MPCmethodisproposedinthispaper.ThevoltagevectorsfarawayfromthereferencevectordidnotparticipateinonlinecalculationofpredictivemodelandcostfunctionfortheFCS-MPCmethod,whichmadethecalculatedvoltagesdecreasefrom27to12andimprovethecalculationefficiency.Atlast,adiode-clampedthree-levelthree-phaseinverterexperimentalplatformratedat5kWwasestablished.Thecomparativesteady-stateanddynamicexperimentalwaveformsfortheconventionalFCS-MPCmethodandthefastFCS-MPCmethodwerestudied.TheexperimentalresultsshowthattheproposedfastFCS-MPCalgorithmhasgoodsteady-stateanddynamicperformance.Keywords:predictivemodel;costfunction;fastfinitecontrolsetmodelpredictivecontrol;diode-clampedthree-levelthree-phaseinverter

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制 工具箱函数 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

基于混合逻辑动态模型的三相逆变电路有限控制集模型预测控制策略

第38卷第2期电网技术V ol. 38 No. 2 2014年2月Power System Technology Feb. 2014 文章编号:1000-3673(2014)02-0375-06 中图分类号:TM 721 文献标志码:A 学科代码:470·4051 基于混合逻辑动态模型的三相逆变电路 有限控制集模型预测控制策略 李宁,李颖晖,韩建定,朱喜华 (空军工程大学航空航天工程学院,陕西省西安市710038) FCS-MPC Strategy for Inverters Based on MLD Model LI Ning, LI Yinghui, HAN Jianding, ZHU Xihua (Aeronautics and Astronautics Engineering Institute, Air Force Engineering University, Xi’an 710038, Shaanxi Province, China) ABSTRACT: Since the conventional switch function model of inverters can only describe the controlled transition, while ignore the conditional transition of inverters, this study builds a mixed logical dynamical (MLD) model for inverters and treats it as a predictive model to work out a finite control set model predictive control (FCS-MPC) strategy for inverters. The FCS-MPC strategy takes full account of the discreteness of inverters, and selects the switch state that minimizes the objective function as the control signal for inverters to control the output voltage, which simplifies the optimization of MPC without any modulators. In addition, a load current observer is designed based on the full state observer, which enhances the robust of the controller. The simulation and test results validate the proposed method. KEY WORDS:inverter; mixed logical dynamical model; model predictive control; observer; finite control set model predictive control 摘要:逆变电路传统开关函数模型只能描述电路的控制变迁而忽略了电路的条件变迁,为此,建立了三相逆变电路混合逻辑动态(mixed logical dynamical,MLD)模型。在此基础上,将其作为预测模型,提出了电路的有限控制集模型预测控制(finite control set model predictive control,FCS-MPC)策略。FCS-MPC充分考虑了电路的离散特性,选择有限控制集中使目标函数值最小的开关状态作为电路开关管的控制信号,从而控制电路的输出电压,无需任何调制器,可简化MPC 的优化问题。此外,基于全维状态观测器设计了电路负载电流观测器,增强了控制器的鲁棒性。仿真和实验结果验证了所提方法的有效性。 关键词:逆变电路;混合逻辑动态模型;模型预测控制;状态观测器;有限控制集模型预测控制 DOI:10.13335/j.1000-3673.pst.2014.02.016 基金项目:国家自然科学基金项目(61074007);陕西省自然科学基金资助项目(2012JM8016)。 Project Supported by National Natural Science Foundation of China (61074007). 0 引言 带输出LC滤波器的逆变电路被广泛应用于分布式发电、储能系统及不间断电源,这些系统对电路输出电压及总谐波含量具有较高要求[1-3],电路准确的数学模型是实现精确控制的关键。由于逆变电路是一种典型的混杂系统[4-5],而混合逻辑动态(mixed logical dynamical,MLD)建模作为混杂系统建模方法中的一种,是将系统整个当作一个微分方程组来处理,离散事件以条件的方式嵌入微分方程组中,兼顾了电路的控制变迁和条件变迁,因而可以用MLD建模来建立逆变电路精确的数学模型,并将其用于电路的控制。 近年来,MPC由于具有快速的动态响应特性而被大量用于电力电子电路的控制。文献[6]建立了单相逆变电路的一种混杂模型,并基于此模型研究了电路的MPC,有效降低了输出电压的总谐波含量。文献[7-8]研究了DC-DC变换器基于MLD模型的MPC,降低了混合整数二次规划(mixed integer quadratic programming,MIQP)问题的求解难度。文献[9-10]在建立对象混杂模型的基础上研究了三相电机驱动系统MPC,提出了一种求解MIQP问题的改进方法。MPC能够充分考虑系统的约束条件和非线性因素,并且可以通过改变目标函数的形式、范数、权数和变量个数来达到控制要求[11]。但为了提高控制精度,将MLD模型作为MPC的预测模型将面临MIQP的求解问题,目前已有大量文献[12-14]对MIQP 的求解算法进行了研究。而对于电力电子电路,由于开关频率较大,要求系统具有很小的采样周期,要在极短的采样周期内求解MIQP问题具有很大的困难,这是电力电子电路基于MLD模型设计在线MPC所面临的最大障碍。

Matlab各工具箱功能简介(部分)

Toolbox工具箱 序号工具箱备注 一、数学、统计与优化 1 Symbolic Math Toolbox 符号数学工具箱 Symbolic Math Toolbox?提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB?、Simulink?和Simscape?生成代码。 Symbolic Math Toolbox 包含MuPAD?语言,并已针对符号运算表达式的处理和执行进行优化。该工具箱备有MuPAD 函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD 语言编写自定义的符号函数和符号库。MuPAD 记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML 或PDF 的格式分享带注释的推导。 2 Partial Differential Euqation Toolbox 偏微分方程工具箱 偏微分方程工具箱?提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。 你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。 3 Statistics Toolbox 统计学工具箱

4 Curve Fitting Toolbox 曲线拟合工具箱 Curve Fitting Toolbox?提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。 5 Optimization Toolbox 优化工具箱 Optimization Toolbox?提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、以及将优化的方法结合到其算法和应用程序中。 6 Global Optimization Toolbox 全局优化工具箱 Global Optimization Toolbox 所提供的方法可为包含多个极大值或极小值的问题搜索全局解。它包含全局搜索、多初始点、模式搜索、遗传算法和模拟退火求解器。对于目标

模型预测控制快速求解算法

模型预测控制快速求解算法 模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。 虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下: ①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。 ②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。 ③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。 模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的能力,但随着被控对象的输入输出个数的增多,预测控制方法为保证控制输出的精确性,往往会选取较大的预测步长和控制步长,但这样会大大增加在线优化过程的计算量,从而需要更多的计算时间。因此,预测控制方法只能适用于采样周

Model Predictive Control Toolbox——设计和仿真模型预测控制器

——设计和仿真模型预测控制器 Model Predictive Control Toolbox提供了MATLAB函数、图形用户界面和Simulink模块用于设计和仿真模型预测控制器。模型预估计控制器(Model predictive controller)可以帮助工程师优化服从输入输出约束的多输入、多输出控制系统的性能。 为了预测输入量变化对输出的影响,工具箱使用一个内置的对象模型求解控制行为。工程师可以使用System Identification Toolbox从实验数据估算模型,从线性化的Simulink模型获取模型,或是直接指定一个线性时不变对象,比如传递函数或状态空间形式的。对象模型可以包含延迟环节。 使用Model Predictive Control Toolbox提供的 两个模块之一直接在Simulink中设计和仿真控制器 特点 使用图形用户界面和MATLAB命令进行模型预估计控制器的设计和仿真

?能够从实验数据或线性的Simulink模型定义一个内置的线性对象模型 ?在Simulink中直接提供Simulink模块用于设计和仿真模型预测控制器 ?利用无扰动控制切换使用多个模型预测控制器控制非线性对象 ?能够处理时变约束和权重、非对角权重及自定义不可测量的干扰模型 ?通过RTW能够生成C代码的应用发布 强大功能 使用Model Predictive Control Toolbox Model Predictive Control Toolbox 使用图形用户界面来组织管理工程师开发的控制器,并把它加入到工程项目中,使工程师可以对项目进行 管理并尝试多种控制器。 使用Control and Estimation Tools Manager 简化了这些工作,导入模型和以 前设计的控制器,定义被控对象的输入输出, 它们的单位及其名义值。该管理器能在界面 中显示控制器的结构,标示设置点的个数、 操作变量、干扰及可测量和不可测量的输出。 使用Control and Estimation Tools Manager 工程师可以: ?定义计算后续控制行为中所用的内置对象模型 ?设计模型预估计控制器 ?仿真线性模型控制器的闭环行为 定义内置对象模型 模型预测控制器的控制行为建立在其内置的过程对象模型之上。这个内置的模型让控制器得以预见将要发生的过程行为并遵从输出约束。具有自我更新能力的内置模型使得模型预估计控制比庞杂的耦合PID

Matlab+Toolbox+工具箱1

Matlab Toolbox 工具箱 Matlab工具箱已经成为一个系列产品,Matlab主工具箱和各种工具箱(toolbox )。

工具箱介绍 Matlab包含两部分内容:基本部分和根据专门领域中的特殊需要而设计的各种可选工具箱。 Symbolic Math PDE Optimization Signal process Image Process Statistics Control System System Identification ……

一、工具箱简介 ?功能型工具箱——通用型 功能型工具箱主要用来扩充Matlab的数值计算、符号运算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能够用于多种学科。

?领域型工具箱——专用型 领域型工具箱是学科专用工具箱,其专业性很强,比如控制系统工具箱(Control System Toolbox);信号处理工具箱(Signal Processing Toolbox);财政金融工具箱(Financial Toolbox)等等。只适用于本专业。

控制系统工具箱 Control System Toolbox ?连续系统设计和离散系统设计 ?状态空间和传递函数以及模型转换?时域响应(脉冲响应、阶跃响应、斜坡响应) ?频域响应(Bode图、Nyquist图) ?根轨迹、极点配置

Matlab常用工具箱 ?Matlab Main Toolbox——matlab主工具箱?Control System Toolbox——控制系统工具箱?Communication Toolbox——通讯工具箱?Financial Toolbox——财政金融工具箱?System Identification Toolbox——系统辨识工具箱 ?Fuzzy Logic Toolbox——模糊逻辑工具箱?Bioinformatics Toolbox——生物分析工具箱

相关文档
最新文档