黄河三角洲土壤有机质含量的高光谱反演

黄河三角洲土壤有机质含量的高光谱反演
黄河三角洲土壤有机质含量的高光谱反演

土壤有机质测定方法

土壤有机质的测定(重铬酸钾容量法) 土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。因为土壤有机质直接影响着土壤的理化性状。 测定原理 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。其反应式为: 重铬酸钾—硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O 硫酸亚铁滴定剩余重铬酸钾的反应: K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O 测定步骤: 1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。 2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。 3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。 4.在测定样品的同时必须做两个空白试验,取其平均值。可用石英砂代替样品,其他过程同上。 结果计算 在本反应中,有机质氧化率平均为90%,所以氧化校正常数为100/90,即为1.1。有机质中碳的含量为58%,故58g碳约等于100g有机质,1g碳约等于1.724g有机质。由前面的两个反应式可知:1mol的K2Cr2O7可氧化3/2mol的C,滴定1molK2Cr2O7,可消耗6mol FeSO4,则消耗1molFeSO4即氧化了3/2×1/6C=1/4C=3 计算公式为:

土壤有机质含量测定

土壤有机质的测定 一重铬酸钾容量法——外热法 1原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易 变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g,溶于600~800ml 蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免急剧升温,每加约100ml硫酸后稍停片刻,并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.5 0.1 mol·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶 解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~800ml水中,加浓硫 酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍把土块压细,使之通过 1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到0.0001g。置入150ml三角 瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬酸钾-硫酸溶液10ml混匀。

土壤有机质测定实验报告

土壤实验报告 土壤有机质的测定 姓名:学号:实验日期: 一、方法原理: 土壤有机质是土壤的重要组成物质之一,是作为衡量土壤肥力高低的一个重要指标,土壤有机质含量也反映一定的成土过程。 测定土壤有机质方法很多,一般采用重铬酸钾硫酸法。此法操作简便,设备简单,速度快,再现性较好,适合大批样品分析和实验室用。 所谓重铬酸钾硫酸法就是在加热条件下,用一定量的标准重铬酸钾溶液,氧化土壤有机碳,多余的重铬酸钾则用硫酸亚铁溶液滴定,以实际消耗的重铬酸钾量计算出有机碳的含量,再乘以常数1.724,即为土壤有机质含量,其反应方程式如下: 2K2Cr2O7+3C+6H2SO4=2K2SO4+Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 二、操作步骤: (1)准确称取通过60号筛风干土样0.1~0.5克(精确到0.0001克),放入干的硬质试管中,用移液管加入5毫升重铬酸钾标准溶液,再用移液管(或加液器)加入5毫升浓硫酸,小心摇匀,在试管口上加一弯颈小漏斗。 (2)预先将植物油浴锅温度升到185~190度,将试管插入铁丝笼中,并将铁丝笼放入上述油锅中加热,此时温度控制在170~180度,使管内溶液保持沸腾5分钟,然后取出铁丝笼,待试管稍冷后,擦净外部油液。 (3)冷却后将试管内溶液洗入250毫升三角瓶中,使瓶内总体积在60~80毫升,此时酸度约为1.5mol/L,然后加邻啡罗啉指示剂3-5滴,用0.2mol/L硫酸亚铁溶液滴定,溶液颜色由黄色经过绿色突变到棕红色即为终点。 (4)在测定样品时必须做空白实验,可以用纯砂或灼烧土代替样品,以免溅出溶液。其他手续同上。 实验操作时注意事项: (1)此法要求有机质含量在2%以上者,相对误差不超过5%,有机质含量低于2%,绝对误差不超过0.05,因此,必须根据有机质含量多少决定称量,一是有机质在7~15%的土样可称0.1~0.5克。2~4%者可称0.5~0.2克少于2%可0.5克以上,以减少误差。 (2)消化煮沸的时间必须尽量准确一致,否则,对分析结果有较大影响,必须从

土壤有机质含量

监测表明:甘肃土壤有机质低有害重金属含量低 2010-06-28 03:51:00 来源: 甘肃日报(兰州) 跟贴 0 条手机看新闻 我省耕地质量监测结果表明 土壤有机质低有害重金属含量低 本报兰州讯(记者王朝霞实习生刘婉琼)省农业节水与土壤肥料站连续13年对我省耕地质量监测表明,我省耕地土壤有机质远低于全国平均水平,土壤培肥任务艰巨;耕地土壤有害重金属汞、砷、铅、铬等含量远低于指标范围,对耕地危害程度较低。 我省于1997年开始进行耕地土壤监测,根据区域、气候、土壤特点和农业生产实际,在具有代表性、面积较大的黑垆土、黄绵土、灌漠土、灰钙土等四大类型土壤上布设监测点,并建立了9个国家级监测站。根据监测结果,我省耕地养分含量指标低于华北、东北、华南、华东地区,基本接近西北地区的平均水平。其中,土壤有机质2009年的全国平均水平为22.97克/千克,而我省平均水平仅为1.21-1.33克/千克;全氮、有效磷含量基本接近全国平均水平,速效钾含量高于全国平均水平。13年间,黄绵土、灌漠土的有机质略有积累,黑垆土则有所下降。 同时,我省主要耕地土壤有害重金属含量较低。汞平均值0.02毫克/千克,变化幅度0.008-0.039毫克/千克,远低于指标≤0.5毫克/千克的范围;砷平均值11.85毫克/千克,变化幅度10.19-13.59毫克/千克,远低于指标≤25毫克/千克范围;铅平均值28.48毫克/千克,变化幅度18.27-38.84毫克/千克,远低于指标≤150毫克/千克范围。这表明我省主要耕地土壤有害重金属含量对耕地危害程度还不是很高。 根据监测,我省耕层养分盈亏情况为氮盈余,磷富积,钾亏缺,我省需要合理调整农田肥料结构,需要加强测土配方施肥,提高有机肥量,减少氮肥使用量,增加磷、钾肥。并对渍涝排水型、坡地梯改型、沙化型、盐碱耕地型、障碍层次型、瘠薄培肥型、高寒阴湿型等全省七种类型的中低产田进行改造。

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

土壤有机质含量的测定

土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K 2Cr 2 O 7 +3C+8H 2 SO 4 →K 2 SO 4 +2Cr 2 (SO 4 ) 3 +3CO 2 +8H 2 O K 2Cr 2 O 7 +6FeSO 4 +7H 2 SO 4 →K 2 SO 4 + Cr 2 (SO 4 ) 3 +3Fe 2 (SO 4 ) 3 +8H 2 O 用Fe2+滴定剩余的K 2Cr 2 O 7 2-时,以邻啡罗啉(C 2 H 8 N 2 )为氧化还原指示剂,在 滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO 4.7H 2 O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁 55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H 2SO 4 1.5ml,再加蒸馏 水定容到1000ml备用。

土壤有机质含量的测定-重铬酸钾发

测定所需试剂 1 土壤有机质的测定一重铬酸钾容量法——外热法 1 原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机 质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g ,溶于600~800ml蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免 急剧升温,每加约100ml硫酸后稍停片刻, 并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.50.1m o l·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~ 800ml水中,加浓硫酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍压细,使之通过1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm 筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到 0.0001g。置入150ml三角瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬 酸钾-硫酸溶液10ml混匀。 表1 不同土壤有机质含量的称样量 有机质含量,% 试样质量,g

FTIR光谱拟合方法在反演气体浓度中的应用

第25卷,第10期 光谱学与光谱分析Vol 125,No 110,pp157321576 2005年10月 Spectroscopy and Spectral Analysis October ,2005  FTIR 光谱拟合方法在反演气体浓度中的应用 朱 军1,2,刘文清1,刘建国1,高闽光1,赵雪松1,张天舒1,徐 亮1 11中国科学院安徽光学精密机械研究所,安徽合肥 23003121安徽大学电子科学与技术学院,安徽合肥 230039 摘 要 研究用FTIR 光谱测量系统反演气体浓度的方法,在WINDOWS 操作系统下应用非线性最小二乘 拟合算法实现了CO 气体的定量分析。在FTIR 光谱拟合中,使用HITRAN 数据库中的光谱作为校准训练集,使测量的CO 红外透过率谱与计算的参考光谱达到最佳拟合得到了该气体的浓度,反演结果的绝对准确度达到1%~5%。 主题词 红外傅里叶变换;非线性最小二乘算法;透过率谱;浓度反演中图分类号:O65713 文献标识码:A 文章编号:100020593(2005)1021573204   收稿日期:2004203228,修订日期:2004206226 基金项目:国家自然科学基金项目(10274080)和安徽省高校优秀中青年骨干教师项目资助 作者简介:朱 军,女,1968年生,中国科学院安徽光学精密机械研究所博士研究生 引 言 光谱拟合方法用于气体浓度反演,具有快速、可再生以及灵活方便等特点,它是基于样品池的气体分析的实用基础。另外,它在开放光路测量等不容易测量到真实的校准谱或参考谱的情况下,该方法具有很大的优越性[1]。对于采用该方法进行分析的物质种类必须有可以用的线参数,HI 2 TRAN 和其他已经开发的分子数据库 [224] 是公开可用的,在 一些校准训练集中可以采用其中的光谱。 本文采用的非线性峰值拟合方法适用于长光程开放测量或者密封池测量时的气体浓度反演。在不服从Beer 定律的情况下该方法具有独特的优势,因为光谱拟合不需要假定浓度和测量的吸收之间满足线性。首先,通过FTIR 光谱仪测量分析得到气体的透过率光谱;然后,将实测光谱与HITRAN 数据库中的计算光谱拟合,每次拟合迭代必须重新计算光谱;最终,由最佳拟合光谱可以得到气体的浓度信息。 1 基本工作原理 FTIR 测量系统如图1所示,主要由傅里叶变换红外光谱仪、计算机、红外光源和辅助光路等组成。其中,FTIR 光谱仪测量入射红外辐射的光谱辐射曲线 ;红外光源提供标准辐射源;辅助光路系统将被测气体或红外光源的辐射引入 FTIR 光谱仪。计算机采集探测器信号,并利用傅里叶变换 完成时域干涉图到频域光谱图的转换,得到被测气体的红外辐射透过率光谱,再通过光谱拟合分析计算得到实测气体的 浓度信息。 Fig 11 Schem atic diagram of FTIR measurement system 在通过实测的透过率光谱反演气体浓度的过程中,获得 拟合校准谱的方法非常关键,本文通过吸收线参数的数据库HITRAN [5,6]计算拟合校准谱。在软件中采用了标准的吸收线参数,修正并按比例转换成浓度,为计算的谱设定光程、温度和压强,将它们与压强及多普勒线型分量作卷积以提供真正的单色大气透过率光谱。然后单色光谱与仪器线形函数作卷积,仪器线形函数包括有限分辨率效应、视场的发散、切趾和谱移位。计算的光谱可以仿真光谱仪上测量的光谱,以它们作为气体浓度信息分析的训练集。根据我们给定的初始浓度通过迭代计算以达到计算的光谱与实测光谱的最佳拟合,这样就可以获得未知气体的浓度。将实测的透过率光谱减去拟合光谱可以得到剩余光谱,剩余光谱中明显存在的光谱结构可能表示其他没有预测到的分子的存在。 2 光谱拟合与误差评价 对于实测光谱的拟合采用非线性峰值拟合算法,它可以 准确地确定峰值的位置、宽度、高度和一些重叠的峰值区

土壤有机质的测定2.0

实验报告 课程名称: 土壤学实验 指导老师: 谢晓梅 成绩:__________________ 实验名称: 土壤有机质的测定 同组学生姓名: 边舒萍 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂 四、实验器材与仪器 五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得 一、 实验目的和要求 1. 了解土壤有机质测定对于农业生产的意义; 2. 掌握土壤有机质含量的测定方法。 二、 实验内容和原理 有机质是土壤中重要组成成分,其含量水平是衡量土壤肥力的重要指标之一。本实验 采用重铬酸钾容量法——稀释热法,利用浓硫酸和重铬酸钾混合时产生的热氧化有机质中的碳,通过测定消耗的氧化剂的量来计算得出土壤有机质含量,从而分析该土壤肥力水平,并对此提出改良措施。 重铬酸钾容量法——稀释热法过程的化学反应式: 氧化过程:K 2Cr 2O 7+C+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+CO 2+H 2O 滴定过程:K 2Cr 2O 7+FeSO 4+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+Fe 2(SO 4)3+H 2O 土壤有机碳与有机质换算公式: 土壤有机质(g/Kg )=土壤有机碳(g/Kg )×1.724 三、 实验器材与仪器 土样(取于余杭塘路施工旁,风干研磨细后过100目筛);

250mL三角瓶×2,10mL量筒,100mL量筒,5mL移液管,5.00mL移液枪,棕色酸式滴定管; 1mol/L 1/6 K2Cr2O7标准溶液,浓硫酸,领啡啰啉指示剂,0.5021mol/L FeSO4标准溶液。 四、操作方法和实验步骤 1.在500mL三角瓶中加入m=0.5070g土样; 2.用移液管加入1mol/L 1/6 K2Cr2O7标准溶液10mL; 3.混匀后用移液枪移取浓硫酸20mL,旋转摇动1min,之后放置30mL,加水100mL; 4.滴入3滴指示剂后用0.5021mol/L FeSO4标准溶液滴定至溶液由绿色变暗绿色, 最终以瞬间变为砖红色为终点; 5.用相同方法作空白对照(不加土样)测定。 五、实验数据记录和处理 表1 FeSO4标准溶液消耗体积与土壤有机质(碳)含量 样品 滴定前读 数V1/mL 滴定后读 数V2/mL FeSO4消耗体积 V(V0)/mL 土壤有机碳么 m1(g/Kg) 土壤有机质 m2(g/Kg) 第一组0.00 18.70 18.70 5.255 9.060 空白组 3.32 23.35 20.03 注:m1={[c(V0-V)×10-3×3.0×1.33]/m}×1000;m2=m1×1.724 其中,1.33为氧化校正系数;m为所称量土样重。 六、实验结果与分析

土壤有机质含量的测定(精)

实训六土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下:2K2Cr2O7+3C+8H2SO4→K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4→K2SO4+ Cr2(SO4)3+3Fe2(SO4)3+8H2O 用Fe2+滴定剩余的K2Cr2O72-时,以邻啡罗啉(C2H8N2)为氧化还原指示剂,在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO4.7H2O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H2SO41.5ml,再加蒸馏水定容到1000ml备用。 3.硫酸亚铁溶液的标定准确吸取3份0.1333mol/L K2Cr2O7标准溶液各5.0ml 于250ml三角瓶中,各加5ml6mol/L H2SO4和15ml蒸馏水,再加入邻啡罗啉指示剂3~5滴,摇匀,然后用0.2mol/LFeSO4溶液滴定至棕红色为止,其浓度计算为: c= V 0.5 1333 .0 6? ? 式中:c——表示硫酸亚铁溶液摩尔浓度(mol/L); V——滴定用去硫酸亚铁的体积(mol);

项目名称Stokes光谱反演太阳矢量磁场的技术研究及-云南师范大学

项目名称:Stokes光谱反演太阳矢量磁场的技术研究及应用 主要完成人:梁红飞(云南师范大学)、高朋鑫(云南天文台)、冯雯(昆明理工大学)、陈娥(云南师范大学)、张皓晶(云南师范大学)、顾啸 马(云南天文台)、钟树华(云南天文台) 推荐单位:云南省教育厅 项目重要科学发现点、主要学术代表作、主要完成人的学术思想贡献(800字以内): 科学发现点: 1.基于偏振辐射转移方程建立了一套快速反演太阳Stokes轮廓的技术并编写了相应程序。利用该反演技术和程序探讨Stokes轮廓与各个物理参数之间的变化关系,探索黑子内各物理参数(矢量磁场、密度、温度等)在不同光学深度上是怎样影响Stokes光谱轮廓的。我们应用该技术对云南天文台太阳Stokes 光谱望远镜的观测数据进行分析,精确测定了太阳黑子内的矢量磁场,验证了太阳黑子存在漩涡状的磁场结构。 2.在应用测量到的矢量磁场分布计算太阳黑子内的电流密度、无力因子、电流螺度及磁螺度等物理量时,我们发现测量出的磁场矢量即使存在微小的误差,应用传统的微分算法计算出活动区电流密度分布也会出现非常大的偏差,甚至导致计算出错误结果。为了解决这个问题,我们提出了应用环路计分算法取代微分算法,结果显示环路计分算法能够很好的消除误差对电流密度计算准确度的不良影响,能够获得精确的计算结果。 3.应用非偏振光谱数据研究了耀斑后环等活动体内的物质分布状况,提出了耀斑后环内物质是沿磁力线作自由滑落的运动特征。 4.精确地测定了黑子本影和半影内的大气运行波的周期和传播速度,这对理解太阳高能活动的能量传输和积累有非常重要的意义。 5.基于国内外地面观测设备和空间观测设备发布的数据,对太阳活动,特别是日冕物质抛射(CME)的整体行为演化进行研究。对CME速度、纬度及加速度的太阳活动周行为、分布进行了统计研究,得到了一些有意义的结果,对理解CME的起源和演化,以及预报有帮助。另外基于与CME紧密相关的太阳活动暗条的数据研究了高纬度太阳活动的纬度漂移,为太阳活动发电机理论提供了一定的基础。 主要学术代表作: 1. Author: Liang HF.; Ma L.; Zhao HJ.; Xiang FY; Title: Electric current density calculation and error analysis of solar active regions Pub: 2009NewA...14..294L 2. Author: Liang, H. F.; Qu, Z. Q.; Zhao, H. J.; Xiang, F. Y, Title: Correlation analysis between vector magnetograms measured by S3T and MSFC,

土壤有机质测定方法

土壤有机质测定方法(参考土壤农化分析,南京农学院主编) 原理: 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O7等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量试剂: 10.4N重铬酸钾—硫酸溶液:称取研细的化学纯的重铬酸钾(三级)40g,溶解子600ml蒸馏水中(必要时可加热),待完全溶解后加水稀释至1L(用容量瓶量取1L蒸馏水,以保证合适水酸比),将溶液移入2L大烧杯中。缓缓加入浓硫酸1000m1(未打开的浓硫酸2瓶)于K2Cr2O7溶液中,硫酸加入水中会大量放热,为避免溶液急剧升温,每加约100ml硫酸就稍停片刻,过程中不断搅动,并将大烧杯入在盛有冷水的盆内降温。配好的溶液冷却备用。冬天可以稍微多加50ml水,以防止重铬酸钾结晶。 2重铬酸钾的基准溶液,准确称取分析纯K2Cr2O7 (在130烘3小时)9.807g于600ml烧杯中,慢慢加入浓H2S04约100m1,搅拌溶解,将溶液全部洗入1000ml容量瓶中定容备用。此溶液浓度C(1/6 K2Cr2O7)0.2000mol/L。 30.2N硫酸亚铁溶液(C1):称取硫酸亚铁56g,溶解于600ml水中,加H2S04 20ml,搅拌均匀,然后加水定容至1L,贮存于棕色瓶中。 此溶液易受空气氧化,使用时必须每天标定一次准确浓度。标定方法:准确浓度以重铬酸钾基准溶液标定之,即准确分别吸取二份重铬酸钾基准溶液各20ml于250ml三角瓶中,加入邻啡罗琳指示剂4滴,然后用0.2N FeSO4滴定至终点,根据硫酸亚铁溶液的消耗量,计算出FeSO4的准确浓度C2,c2=C1*V1/V2(C1:重铬酸钾标准溶液浓度0.2;V1:吸取重格酸钾标准溶液浓度20;V2:滴定时所耗硫酸亚铁溶液体积)。 4. 邻啡罗琳指示剂。称取分析纯邻啡罗琳1.490g,硫酸亚铁0.7g,溶于100m1水中,(必要时可加热完全溶解)。此时试剂与FeSO4形成红棕色络合物,指示剂易变质贮于棕色滴瓶中。 操作步骤 准确称取通过100目筛的风干土样0.2g(植物0.02g)于消煮管, 用移液管准确加入0.4N 重铬酸钾硫酸溶液10ml,180度消煮7min,取出冷却。冷却后,将试管内容物用60-70ml蒸馏水(分3-4次)转入250ml三角瓶中,滴入邻啡罗琳指示剂4滴,用0.2N硫酸亚铁滴定,溶液的变色过程是橙黄,蓝绿,砖红色即为终点。酸式滴定管(架子) 每一批样品测定的同时,进行二个空白试验 计算 土壤有机碳()烘干土样重 V0:空白耗0.2N硫酸亚铁毫升数。V:滴定土样耗硫酸亚铁毫升数。0.003:为1个毫克当量碳的克数;1.1:为氧化校正系数; 土壤有机质%=土壤有机碳%×1.724(1.724:为有机碳换算成有机质的平均换算系数)。 土壤有机质测量时土壤称重参考值: TN 土壤称重有机质含量土壤称重 低于2mg/g 0.4-0.5g 2%以下0.4-0.5g 2-5mg/g 0.2g 2-7% 0.2-0.3 5-8mg/g 0.1 7-10% 0.1 8mg/g以上0.1g 10-15% 0.05 加20ml重铬酸钾的硫酸溶液 注意事项:1)此方法适用范围:土壤有机质含量在15%以下;2)如果试样滴定所用硫酸亚铁标准的亳升数不到空白标定所耗硫酸亚铁标准溶液毫升数的1/3,就应减少土壤称样量,重新做;3)误差:有机质含量小于1%,误差约0.05%;含量为1-4%时,误差约0.1%;含量4-7%时,误差约0.3%;含量10%以上,误差约0.5%.

土壤有机质含量的测定

土壤有机质含量的测定 、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K2Cr26+3C+8HSC4—K2SC4+2Cr2(SC h)3+3CO+8H2O K2Cr26+6FeSO+7H2SC4—?SC4+ Cr 2(SC h)3+3Fe2(SO)3+8H2O 用Fe2+滴定剩余的K2Cr2O72-时,以邻啡罗啉(C2H8N2)为氧化还原指示剂,在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(CF+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1.仪器用具 硬质试管(18mm x 180mm)>油浴锅、铁丝笼、电炉、温度计(0~200C)、分析天平(感量O.OOOIg)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml, 100ml)、草纸或卫生纸。 2.试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130 C烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到 1000ml,摇匀备用。 2.0.2mol/L 硫酸亚铁(FeSQ7H2O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,力卩6mol/L H2SQ1.5ml,再加蒸馏水定容到1000ml 备用。 3.硫酸亚铁溶液的标定准确吸取3份0.1333mol/L ?Cr26标准溶液各5.0ml于

简析差分吸收光谱反演方法在环境监测系统中的应用

简析差分吸收光谱反演方法在环境监测 系统中的应用 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 鉴于人们生活水平和经济实力的不断上涨带来的出行车辆的增多,国内各种烟气排放量也居高不下,空气环境质量已经成为人们口常关注重点,相关行业对环境污染源的监测也引起业内专家极大重视,不同环境测量和监测手段也如同雨后春笋纷纷涌现,而其中应用较为普遍、发展极其快速的就是差分吸收光谱法,简称DOAS。该技术最早是20世纪70年代中期德国相关环境物理研究机构提出的,随着光学分析计算和信息技术的不断发展进步,再加上全球对环境保护的口益重视,差分吸收光谱反演法运用到环境监测领域也口益广泛,如空气中二氧化硫、甲醛、氯化物、二氧化氮等等诸多有害、有毒气体中的浓度测量。通过差分吸收光谱方法能够更好监测不同波段气体分子差分吸收的不同来对气体大气浓度进行反演,从而更好地测量获取多类气体的浓度信息,可以说其在反演污染物浓度应用上面优势显著,因此差分吸收光谱反演方法在环境监测系统中有着十分重要的研究价值。

1差分吸收光谱法的原理 DOAS技术借用了Lambert Bee:的吸收定律原理,通过利用大气中污染气体对紫外线和可见光波段特征吸收光谱来监测鉴定气体分子,并根据一定原理和公式得出污染气体分子以及其浓度,因此其较为适合应用到波段有吸收特征的气体分子上,如甲苯、一氧化氮、芳香族有机苯、甲醛、二氧化硫、臭氧、二氧化氮等。通过DOAS测量监测,利用滤波去除其中波长变化缓慢的光波后就只乘」下分子窄带吸收导致的光衰减,然后根据测量信号光谱与同样处理的实验室得到的标准吸收截面参考光谱之间的拟合进行最小二乘法,通过这种反演算法就能够得出测量目标对象的浓度。这种通过不同气体分子波段之间差分吸收的不同来反演得出其浓度的技术方法就是DOAS测量反演方法在环境监测系统应用的理论基础。 2差分吸收光谱法的特点 虽然差分吸收光谱应用到环境监测系统中,其测量涉及到的仪器设备繁多,其测量步骤也略显繁琐,然而其应用特点优势也极为明显,主要有三:第一,差分吸收光谱技术能够在相同波段对多种气体分子浓度进行测量,也就是说其能够利用简单一台仪器野外进行多种大气污染物测量和浓度监测,其应用范围相当

土壤有机质含量

土壤有机质含量 单位体积土壤中含有的各种动植物残体与微生物及其分解合成的有机物质的数量。一般以有机质占干土重的百分数表示。 气候直接影响土壤的水热状况和物理、化学过程的性质和强度。如中等水热条件下,土壤有机质积累最多(温带半湿润环境下的黑土是世界上最肥沃的土壤);通过影响岩石的风化过程、地貌形态及生物的活动,间接影响土壤的形成和发育。如:湿热条件下风化壳最厚,土壤层厚度大。干旱或者寒冷条件下,风化壳薄,土壤层也薄。 生物是土壤有机物质的来源,土壤形成过程中最活跃的因素,土壤肥力的高低主要取决于有机质含量的多少。没有生物的参与(生物循环),就不会有土壤的形成。 一般而言,森林土壤有机质含量要低于草地土壤。 1简介 organic substances content in soil 2提高途径 土壤有机质泛指土壤中以各种形式存在的含碳有机化合物。对低产田来说,通过下列途径可以增加有机质含量,以培肥地力。对高产田来说,由于有机质不断分解,也需要不断补充有机质。 折叠一 增施有机粪肥。堆肥、沤肥、饼肥、人畜粪肥、河湖泥等都是良好的有机肥。 折叠二 提倡秸秆还田。研究表明,秸秆直接还田比施用等量的沤肥效果更好。目前,大力提倡以小麦高茬为主要措施的秸秆还田技术,小麦收割时,留20-30厘米高麦秆,经一个雨季的风吹日晒雨淋,到小麦再播种时,已变成半分解状态,成为上好的有机肥料。秸秆还田简单易行,省力省工,但在还田时,就应加施化学氮肥,避免微生物与作物争氮。 折叠三 粮肥轮作、间作,用地养地相结合。随着农业生产的发展,复种指数越来越高,致使许多土壤有机质含量降低,肥力下降。实行粮肥轮作、间作制度,不仅可以保持和提高有机质含量,还可以改善土壤有机质的品质,活化已经老化了的腐殖质。 折叠四

土壤有机质测试方法

土壤有机质的测定 (重铬酸钾容量法-外加热法) 试剂准备: 1.0.8 mol·L-1(1/6K2Cr2O7):称取130℃烘干的重铬酸钾(分析纯)39.2245g溶于水,定容1000mL。 2. 0.2mol·L-1FeSO4溶液:称取硫酸亚铁(FeSO4·7H2O,化学纯)56.0g溶于水中,加入浓硫酸5mL,稀释至1L。(不稳定,现用现配) 3.邻菲罗啉指示剂:称取邻菲罗啉(分析纯)1.485g与FeSO4·7H2O 0.695g,定容至100mL。 4.浓硫酸 操作步骤: 称取通过0.149mm(100目)的风干土样(约0.2g,根据有机质含量确定,有机质含量越高,质量越少)于硬质试管中→加重铬酸钾8mL(根据有机质含量来确定)→浓硫酸5mL→摇匀→弯颈漏斗→消煮炉(设定到220℃~240℃)→试管内液体沸腾发生气泡时开始计时5min→冷却→转移至250mL三角瓶中,并用蒸馏水冲洗漏斗和试管壁,使三角瓶中液体总体积约60~70mL,加邻菲罗啉指示剂2~3滴,用0.2mol·L-1FeSO4滴定(橙黄→蓝绿→砖红色),记录FeSO4的体积。 每一批样品测定的同时,进行2-3个空白试验,即取少许二氧化硅颗粒代替土样,其他步骤相同。注:滴定时多滴入一滴,约0.05mL。

土壤有机碳(mg·kg-1)=c×V重铬酸钾×(V0-V1)×3×1.1/( V0×m) 式中:c——0.8 mol·L-1(1/6K2Cr2O7)标准溶液的浓度; V 重铬酸钾——重铬酸钾标准溶液加入的体积,mL; V0——滴定空白样时所消耗的FeSO4体积,mL; V1——滴定样品时所消耗的FeSO4体积,mL;3——1/4C原子的摩尔质量,g/mol; 1.1——氧化校正系数; m——为风干土质量,g。 土壤有机质(mg·kg-1)=土壤有机碳×1.724 式中:1.724——土壤有机碳换成土壤有机质的平均换算系数。

土壤有机质

土壤有机质是土壤中除碳酸盐以外的所有含碳化合物的总称,包括植物的残体,施入的有机肥料,以及经过微生物作用所形成的腐殖质。 土壤有机质有五种类型:①新鲜有机质,尚未被分解的动植物残体,如作物的秸秆和根茬等;②半分解的有机质,有机残体在缺氧条件下,经微生物作用后形成的物质,如泥炭、半腐烂的有机肥料等;③简单的有机化合物,为有机残体经微生物分解所产生的,在土壤中含量不多,如糖类、氨基酸、脂肪酸等;④微生物,包括细菌、真菌、放线菌、原生动物和一些昆虫等;⑤腐殖质,是有机质经微生物转化后形成的黑色或黑褐色,成分和结构都比较复杂的高分子有机胶体,一般分为可溶于稀碱但不溶于酸的胡敏酸和溶于碱又溶于酸的富里酸,以及既不溶于碱又不溶于酸的胡敏素三个组分。前四种土壤有机质为非腐殖质物质,占土壤有机质总量的30%—50%,腐殖质占土壤有机质总量的%50—70%。 土壤有机质的成分主要是碳、氢、氧,还含有氯、硫、磷、钾、钙、镁、铁以及微量元素,是作物营养元素的来源,也是微生物的食物,一般只占表层干土重的0.5%—3%,个别土壤如黑土有机质含量达10%左右。土壤有机质数量虽然不多,但它对土壤的物理、化学性质有很大影响,对培肥、改良土壤有重要作用。 根据土壤普查耕层有机质含量数据标准划分成6 个等级:

大于40 g kg-1、30 g kg-1~40 g kg-1、20 g kg-1~30 gkg-1、10 g kg-1~20 g kg-1、6 g kg-1~10 g kg-1、小于(等于)6 g kg-1。 在自然状态下,影响土壤有机质含量的因素包括气候、植被、母质、地形和时间,而在人类耕作活动影响下,施肥状况和耕作措施则成为短期影响农田土壤有机质含量的主要原因。

土壤有机质高光谱特征及其反演研究

Vol. 37 No. 4Aug2019上海交通大学学报(农业科学版)JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (AGRICULTURAL SCIENCE )第37卷第4期 2019年8月文章编号:1671-9964(2019)04-0037-08 DOI : 10. 3969/J. ISSN. 1671-9964. 2019. 04. 007 土壤有机质高光谱特征及其反演研究 吴 裕12,申广荣123,刘 璐12,支月娥13 (1.上海交通大学农业与生物学院,低碳农业研究中心,上海200240; 2.国家林业局上海城市森林生态系统国家 定位观测研究站,上海200240; 3.农业部都市农业重点实验室,上海200240) 摘 要:具有精细的光谱分辨率,可获取地物纳米级连续光谱信息的高光谱技术以其简便、快速、 精度高和无损等优势成为获取土壤有机质(soil organic matter,SOM )含量的重要手段,在精确农 业发展中发挥着重要作用%本文阐述了高光谱反演土壤有机质的机理,概述了土壤有机质含量的 光谱反射特征,包括不同土壤类型、不同土壤有机质含量的光谱响应波段,以及土壤有机质含量的 光谱反演方法和模型的研究进展。进一步分析了土壤有机质光谱特征研究中存在的问题并对发展 趋势进行了展望和分析,以期为以后的研究提供一定的参考。 关键词:土壤有机质;高光谱;遥感;特征波段;反演方法 中图分类号:S15 文献标识码:A Hyperspectral characteristics of soil orga n ic matter and in v ers i o n methods WUYu 1,, SHEN Guang-rong 123, LIU Lu 1,, ZHI Yue-e 1, (1. Research Center for Low-Carbon Agriculture,School of Agriculture and Biology ,Shanghai Jiaotong University, Shanghai 200240,China ; 2. Shanghai Urban Forest Ecosystem Research Station of National Positioning and Observation,State Forestry Administration,Shanghai 200240,China ; 3. Key Laboratory of Urban Agriculture (South ),MinistryofAgriculture ,Shanghai200240,China ) Abstract : Hyperspectral technology is playing an important role in precision agriculture. With high spectral resolution and continuous spectral information of objects in nanoscale, it has become a reliable means of monitoringsoilorganic ma t er (SOM )foritssimplicity ,rapidity ,highprecisionandnon-destructiveness measurement. This article explains the mechanism of predicating SOM content with hyperspectral technology and summarizes the spectral reflection characteristics of SOM ? including the spectral sensitive bandOofdi f erentOoiltypeO &di f erentSOM content &andthe modeling methodOin predicating SOM< Furthermore it points out the current problems in the study of hyperspectral characteristics of SOM and showsthedevelopmenttrendofthistechnologyinordertoprovidesomereferenceforfutureresearch< Key words : soil organic matter ; hyperspectral soil ; remote-sensing ; sensitive band ; modeling method 土壤有机质(soil organic matter,SOM )是指存 在于土壤中的含碳有机物质,主要包括动物、植物残 体和微生物体及其分解或合成的各种有机质,是土 壤碳库的重要组成部分土壤碳库是陆地生态系 统最大的碳库,其中土壤有机质作为土壤碳库主要 的存在形式,对全球碳循环的平衡起着重要作用2) 收稿日期:2018-12-11 基金项目:国家重点研发计划(2017YFD0800204);上海交大农工交叉项目(Agri-X2015004) 作者简介:吴裕(1994-),男,硕士生,研究方向:农业高光谱遥感,email :1973613621@sjtu. edu. cn ; 申广荣(1964-)为本文通讯作者,女,博士,副教授,研究方向侬业遥感,email :sgrong@sjtu. edu cn

相关文档
最新文档