去除土壤水分对高光谱估算土壤有机质含量的影响

去除土壤水分对高光谱估算土壤有机质含量的影响
去除土壤水分对高光谱估算土壤有机质含量的影响

土壤有机质测定方法

土壤有机质的测定(重铬酸钾容量法) 土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。因为土壤有机质直接影响着土壤的理化性状。 测定原理 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。其反应式为: 重铬酸钾—硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O 硫酸亚铁滴定剩余重铬酸钾的反应: K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O 测定步骤: 1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。 2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。 3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。 4.在测定样品的同时必须做两个空白试验,取其平均值。可用石英砂代替样品,其他过程同上。 结果计算 在本反应中,有机质氧化率平均为90%,所以氧化校正常数为100/90,即为1.1。有机质中碳的含量为58%,故58g碳约等于100g有机质,1g碳约等于1.724g有机质。由前面的两个反应式可知:1mol的K2Cr2O7可氧化3/2mol的C,滴定1molK2Cr2O7,可消耗6mol FeSO4,则消耗1molFeSO4即氧化了3/2×1/6C=1/4C=3 计算公式为:

全球变化条件下的土壤呼吸效应_彭少麟

第17卷第5期2002年10月 地球科学进展 ADVANCE IN EARTH SCIENCES Vol.17 No.5 Oct.,2002 文章编号:1001-8166(2002)05-0705-09 全球变化条件下的土壤呼吸效应 彭少麟,李跃林,任 海,赵 平 (中国科学院华南植物研究所,广东 广州 510650) 摘 要:土壤呼吸是陆地植物固定CO2尔后又释放CO2返回大气的主要途径,是与全球变化有关的一个重要过程。综述了全球变化下CO2浓度上升、全球增温、耕作方式的改变及氮沉降增加的土壤呼吸效应。大气CO2浓度的上升将增加土壤中CO2的释放通量,同时将促进土壤的碳吸存; 在全球增温的情形下,土壤可能向大气中释放更多的CO2,传统的土地利用方式可能是引发温室气体CO2产生的重要原因,所有这些全球变化对土壤呼吸的作用具有不确定性。认为土壤碳库的碳储量增加并不能减缓21世纪大气CO2浓度的上升。据此讨论了该问题的对策并提出了今后土壤呼吸的一些研究方向。其中强调,尽管森林土壤碳固定能力有限,但植树造林、森林保护是一项缓解大气CO2上升的可行性对策;基于现有田间尺度CO2通量测定在不确定性方面的进展,今后应继续朝大尺度田间和模拟程序方面努力;着重回答全球变化条件下的土壤呼吸过程机理;区分土壤呼吸的不同来源以及弄清土壤呼吸黑箱系统中土壤微生物及土壤动物的功能。当然,土壤呼吸的测定方法尚有待改善。 关 键 词:土壤呼吸;碳循环;全球变化 中图分类号:Q142.3 文献标识码:A 土壤呼吸是植物固定碳后,又以CO2形式返回大气的主要途径。土壤碳库在全球变化研究中的地位已日益突出,而土壤呼吸作为土壤碳库碳平衡的一个重要相关过程不容忽视,研究土壤呼吸有助于揭示土壤碳库动态机理。在大气与土壤界面,土壤CO2释放的驱动因子是多种多样的,在全球变化条件下研究相关因子与土壤呼吸是全球变化研究的一个重要内容。全球变化有不同的定义,1990年美国的《全球变化研究议案》,将全球变化定义为“可能改变地球承载生物能力的全球环境变化(包括气候、土地生产力、海洋和其它水资源、大气化学以及生态系统的改变)”。狭义的全球变化问题主要指大气臭氧层的损耗、大气中氧化作用的减弱和全球气候变暖[1,2]。土壤呼吸研究工作的开展,从研究对象来说,涉及农田、森林、草地等,从研究的地域来说从低纬至高纬均有研究,其中大部分研究集中于中纬度的草地和森林,目前,北极冻原也有研究报道[3]。 本文对在全球CO2浓度升高、气温上升、大气氮沉降等发生变化的背景下,土壤呼吸的响应作一综述,以促进土壤呼吸的研究,加深人们(特别是政策决策层)对土壤呼吸的认识。 1 大气CO2浓度升高的土壤呼吸效应 早期的土壤呼吸的测定基于表土层CO2的释放,开始于80多年前[4]。随着科学研究的发展,时至今日,土壤呼吸因为其全球的CO2总释放量已被  收稿日期:2002-01-04;修回日期:2002-05-31. *基金项目:国家自然科学基金重大项目“中国东部样带主要农业生态系统与全球变化相互作用机理研究”(编号:39899370);中国科学院知识创新工程重要方向项目“南方丘陵坡地农林复合生态系统构建机理与可持续性研究”(编号:KZCX2-407);广东省重大基金项目“广东省主要农业生态系统与全球变化相互作用机理研究”(编号:980952)资助.  作者简介:彭少麟(1957-),男,广东人,研究员,主要从事生态学方面的研究工作.E-mail:slpeng@https://www.360docs.net/doc/e210940418.html,

土壤有机质含量测定

土壤有机质的测定 一重铬酸钾容量法——外热法 1原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易 变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g,溶于600~800ml 蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免急剧升温,每加约100ml硫酸后稍停片刻,并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.5 0.1 mol·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶 解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~800ml水中,加浓硫 酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍把土块压细,使之通过 1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到0.0001g。置入150ml三角 瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬酸钾-硫酸溶液10ml混匀。

黑土有机质下降的原因

班级:14级园艺姓名:郑森 学号:2144120514

问题:东北地区黑土地有机质含量急剧下降 一.理清思路 我们要知道 土壤有机质是什么?到底是什么减少了 有机质的来源是什么?是不是从源头上输入量减少了?分析原因 有机质的去向是什么?是不是输出的量增加了?分析原因 总结后给出建议。 二.具体分析 首先我们要知道土壤有机质指的是什么? 土壤有机质:是指存在于土壤中的所含碳的有机物质。它包括各种动植物的残体、微生物体及其会分解和合成的各种有机质。 土壤有机质的来源有哪些? 1.植物残体 包括各类植物的凋落物、死亡的植物体及根系。 2.动物、微生物残体 包括土壤动物和非土壤动物的残体,及各种微生物的残体。.这部分来源相对较少。但对原始土壤来说,微生物是土壤有机质的最早来源。 3.排泄物和分泌物 土壤有机质的这部分来源虽然量很少,但对土壤有机质的转化起着非常重要的作用。 4.废水废渣 人为施入土壤中的各种有机肥料(绿肥、堆肥、沤肥等),工农业和生活废

水,废渣等,还有各种微生物制品,有机农药等。[1] 分析原因 从植物残体来源途径来说 a.人们将秸秆等本应反田的有机质来源进行了焚烧; b.不合理的耕作方法,例如清耕法、免耕法,降低了土壤有机质含量;而有利于“养地”的生草法、休闲轮作却很少见。 从动物残体来源途径来说 c.肥土壤动物的残体一般会被清理 从废水废渣来源途径来说 d.人们投入的有机肥越来越少,而偏爱上了化肥,这种施肥偏好直接从源头上减少了土壤有机质的含量,是主要因素。 土壤有机质的去向有哪些? 1. 植物吸收利用 2. 微生物分解利用 3. 水土流失及风蚀 分析原因 从植物吸收利用途径来说 e.作物产量的提高势必会从土壤中吸取更多养分,其中就包含了大 量的有机质的营养成分。 从微生物分解途径来说 f.微生物的生命活动需要能量,其中一大部分能量来自于土壤中 的微生物。人们施肥方式和施肥量的不科学会破坏土壤结构,从而降低了土壤保持有机质的能力。向土壤中过量施入氮肥后,微生物的氮素供应增加1份,相应消耗的碳素就增加25 份,所消耗的碳素来源于土壤有机质,有机质含量低,影响微生物的活性,从而影响土壤团粒结构的形成,导致土壤板结。[2]

土壤水分对农业生产的影响讨论

土壤水分对农业生产的影响讨论 土壤水分是影响农业生产的重要因子之一,掌握土壤水分资料对农业生产实践有重要意义。土壤中水分的变化不仅与水分消耗有关,而且也与水分收入诸如降水、融雪和地下水流以及其它因素有关。在作物地,还与地面特性、作物种类及其发育期、作物地上部和根系状况有关。因此,土壤水分在时间和空间上的变化是很大的。 为了确切地取得土壤水分的可靠数据,近年来研究出不少测定和计算方法,本文不讨论这些具体测定和计算方法,主要目的是讨论有关土壤水分测定中几个共同性问题。 1 试验资料 本文所用数据取自北京农业大学曲周实验站土壤水分试验场,该地属半湿润季风气候区,对黄淮海平原有一定的代表性,测定地段为裸地和冬小麦地,土壤水分用土壤水分仪测定一次,取4次重复,每10cm为一土层,测至1.5m或2.om深度。土壤为盐化潮土,地下水埋深3.5~4.om,测定时间为1981年~1987年。 2 讨论和分析 浏定深度根据河北曲周1982年(属典型年份)裸地各季土壤水分垂直变化资料分析〔功,按土壤垂直剖面的水分变化状况,作出了土壤水分垂直分层,所划分的三个层次为

土壤水分极活跃层,土壤水分活跃层和土壤水分稳定层。各层的特点见表1.另据1986~1987年冬小麦地(施氮肥15kg/亩)于麦收后选100x100cm2五行麦茬地挖土壤剖面,修平剖面后,用水冲去土粒露出根系,统计smm长的根数,其根量随剖面深度的分布“幻如表2所示。 分析表1,2,3中的数据,可以看出:在上述条件下,为了掌握土壤水分不同时间的垂直变化特点,通常在裸地测定深度达lm即可,因为在lm深以下的土层中,土壤水分垂直分布的季节变化和各季水分的垂直梯度均不大。在作物地,从冬小麦根系随深度的分布和不同作物利用水分的有效土层来看,测至lm深度也够了。在一些作物的生育初期和浅根作物的一些生育期,利用水分的有效土层较浅,一般在sm 左右,这主要是由于根系分布状况所决定的。在冬小麦生育后期,0~50cm土层的根系数量占。~100”m土层根般的90%以上,因此侧定深度不能浅于50cm.0~20cm土层内冬小麦根量占。~100cm土层的2邝左右,且该土层土壤水分变化激烈,故。~20cm土层是土壤水分测定的重要土层。 2.2N.J定层次按A.A.罗杰的说法,测定层次的确定要考虑土壤发生层,即一个测定层次不要包括两个上壤发生层,也就是在同一土壤发生层内考虑选取测定层次,因为在不同土壤发生层内土壤水分的差异可能较大,如此才能清晰地看出土壤水分的垂直变化川。通常,在土壤水分垂直梯度大的

土壤有机质测定实验报告

土壤实验报告 土壤有机质的测定 姓名:学号:实验日期: 一、方法原理: 土壤有机质是土壤的重要组成物质之一,是作为衡量土壤肥力高低的一个重要指标,土壤有机质含量也反映一定的成土过程。 测定土壤有机质方法很多,一般采用重铬酸钾硫酸法。此法操作简便,设备简单,速度快,再现性较好,适合大批样品分析和实验室用。 所谓重铬酸钾硫酸法就是在加热条件下,用一定量的标准重铬酸钾溶液,氧化土壤有机碳,多余的重铬酸钾则用硫酸亚铁溶液滴定,以实际消耗的重铬酸钾量计算出有机碳的含量,再乘以常数1.724,即为土壤有机质含量,其反应方程式如下: 2K2Cr2O7+3C+6H2SO4=2K2SO4+Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 二、操作步骤: (1)准确称取通过60号筛风干土样0.1~0.5克(精确到0.0001克),放入干的硬质试管中,用移液管加入5毫升重铬酸钾标准溶液,再用移液管(或加液器)加入5毫升浓硫酸,小心摇匀,在试管口上加一弯颈小漏斗。 (2)预先将植物油浴锅温度升到185~190度,将试管插入铁丝笼中,并将铁丝笼放入上述油锅中加热,此时温度控制在170~180度,使管内溶液保持沸腾5分钟,然后取出铁丝笼,待试管稍冷后,擦净外部油液。 (3)冷却后将试管内溶液洗入250毫升三角瓶中,使瓶内总体积在60~80毫升,此时酸度约为1.5mol/L,然后加邻啡罗啉指示剂3-5滴,用0.2mol/L硫酸亚铁溶液滴定,溶液颜色由黄色经过绿色突变到棕红色即为终点。 (4)在测定样品时必须做空白实验,可以用纯砂或灼烧土代替样品,以免溅出溶液。其他手续同上。 实验操作时注意事项: (1)此法要求有机质含量在2%以上者,相对误差不超过5%,有机质含量低于2%,绝对误差不超过0.05,因此,必须根据有机质含量多少决定称量,一是有机质在7~15%的土样可称0.1~0.5克。2~4%者可称0.5~0.2克少于2%可0.5克以上,以减少误差。 (2)消化煮沸的时间必须尽量准确一致,否则,对分析结果有较大影响,必须从

土壤有机质含量

监测表明:甘肃土壤有机质低有害重金属含量低 2010-06-28 03:51:00 来源: 甘肃日报(兰州) 跟贴 0 条手机看新闻 我省耕地质量监测结果表明 土壤有机质低有害重金属含量低 本报兰州讯(记者王朝霞实习生刘婉琼)省农业节水与土壤肥料站连续13年对我省耕地质量监测表明,我省耕地土壤有机质远低于全国平均水平,土壤培肥任务艰巨;耕地土壤有害重金属汞、砷、铅、铬等含量远低于指标范围,对耕地危害程度较低。 我省于1997年开始进行耕地土壤监测,根据区域、气候、土壤特点和农业生产实际,在具有代表性、面积较大的黑垆土、黄绵土、灌漠土、灰钙土等四大类型土壤上布设监测点,并建立了9个国家级监测站。根据监测结果,我省耕地养分含量指标低于华北、东北、华南、华东地区,基本接近西北地区的平均水平。其中,土壤有机质2009年的全国平均水平为22.97克/千克,而我省平均水平仅为1.21-1.33克/千克;全氮、有效磷含量基本接近全国平均水平,速效钾含量高于全国平均水平。13年间,黄绵土、灌漠土的有机质略有积累,黑垆土则有所下降。 同时,我省主要耕地土壤有害重金属含量较低。汞平均值0.02毫克/千克,变化幅度0.008-0.039毫克/千克,远低于指标≤0.5毫克/千克的范围;砷平均值11.85毫克/千克,变化幅度10.19-13.59毫克/千克,远低于指标≤25毫克/千克范围;铅平均值28.48毫克/千克,变化幅度18.27-38.84毫克/千克,远低于指标≤150毫克/千克范围。这表明我省主要耕地土壤有害重金属含量对耕地危害程度还不是很高。 根据监测,我省耕层养分盈亏情况为氮盈余,磷富积,钾亏缺,我省需要合理调整农田肥料结构,需要加强测土配方施肥,提高有机肥量,减少氮肥使用量,增加磷、钾肥。并对渍涝排水型、坡地梯改型、沙化型、盐碱耕地型、障碍层次型、瘠薄培肥型、高寒阴湿型等全省七种类型的中低产田进行改造。

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

土壤有机质含量的测定

土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K 2Cr 2 O 7 +3C+8H 2 SO 4 →K 2 SO 4 +2Cr 2 (SO 4 ) 3 +3CO 2 +8H 2 O K 2Cr 2 O 7 +6FeSO 4 +7H 2 SO 4 →K 2 SO 4 + Cr 2 (SO 4 ) 3 +3Fe 2 (SO 4 ) 3 +8H 2 O 用Fe2+滴定剩余的K 2Cr 2 O 7 2-时,以邻啡罗啉(C 2 H 8 N 2 )为氧化还原指示剂,在 滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO 4.7H 2 O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁 55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H 2SO 4 1.5ml,再加蒸馏 水定容到1000ml备用。

土壤呼吸的影响因素及全球尺度下温度的影响

土壤呼吸的影响因素及全球尺度下温度的影响 土壤呼吸是指土壤释放CO 2的过程, 主要是由微生物氧化有机物和根系呼吸产生, 另有极少的部分来 自于土壤动物的呼吸和化学氧化 土壤生物 活性和土壤肥力乃至透气性的指标受到重视[ 通量(flux)是物理学的用语,是指单位时间内通过一定面积输送的能量和物质等物理量的数量。 二氧化碳通量就是一定时间通过一定面积的二氧化碳的量。 土壤作为 一个巨大的碳库(11394×1018gC[12]), 是大气CO 2的重要的源或汇, 其通量(约68±4×1015gC?a[13])如此巨 大(燃料燃烧每年释放约512×1015gC[14]), 使得即使轻微的变化也会引起大气中CO 2浓度的明显改变。因 此, 在土壤呼吸的研究中, CO 2通量的精确测定已成为十分迫切的问题。 土壤呼吸影响因素:土壤温度,湿度,透气性,有机质含量,生物,植被及地表覆盖,土地利用,施肥,PH,风速,其他因素。诸如单宁酸 [25]、可溶性有机物(DOM)中的 低分子化合物(LMW )[62]等都对土壤CO2释放速率有显著 的影响.,,,采伐,火烧, 有关生物过程的影响 绝大部 分的CO 2是由于土壤中的生物过程产生的。土壤呼吸的实质是土壤微生物、土壤无脊椎动物和植物根系呼 吸的总和 地表凋落物作为土壤有 机质的主要来源以及作为影响地表环境条件——如温度、湿度等因子对土壤呼吸也产生显著作用

土壤呼吸与土壤温度、水分含量之间的关系 在土壤水分含量充 足、不成为限制因素的条件下土壤呼吸与土壤温度 呈正相关(表1)[4, 15, 19, 21, 25~32]。而在水分含量成为限 制因子的干旱、半干旱地区, 水分含量和温度共同 起作用[18, 3 抑制作用的影响 目前已有文献表明对根系和微生物呼吸的抑制作用在土壤空气CO 2浓度较高时会发生 这也就意味着在大气CO 2浓度升高 时, 土壤呼吸也会受到抑制。 土壤呼吸随纬度的变化 从图3可知, 土壤呼吸量随着纬度的增加而逐渐降低, 可得到一拟合方程: y = 1586e- 010237x(R2= 0147) (1) 其中, y 为土壤呼吸量, x 为纬度 温度与土壤呼吸的关系 最终得到全球尺度下温度对土壤呼吸的影响大小的尺度——Q 10值。Q10值表示温度每升高10度,土壤呼吸速率增加的 倍数 [45 - 46 ] 得到了全球森林植被的土壤呼吸速率与年均温的关系, 即: y = 349166e010449x(R3= 0147) (3) 其中, y 为呼吸速率, x 为年均温。 得到了全球范围的Q 10值= 1157。与已报道的各样点的Q 10值相比全球尺度下的Q 10 值较低, 也就是就, 随温度的上升, 呼吸速率的增加较慢一些 土壤呼吸的测量方法问题及其影响 。测量方法可以分为直接测量和间接测量法[51]。直接测量法中又包括静态法和动态法[52]。其中, 由于实 际工作中具体条件的限制, 目前采用较为广泛的是静态法。CO 2的具体测量技术又有碱吸收法和红外吸收

土壤离心机测量土壤水分特征曲线的方法及应用意义

土壤离心机测量土壤水分特征曲线的方法及应用意义 土壤水分特征曲线一般也叫做土壤特征曲线或土壤pF曲线,它表述了土壤水势(土壤水吸力)和土壤水分含量之间的关系。通常土壤含水量Q以体积百分数表示,土壤吸力S以大气压表示。由于在土壤吸水和释水过程中土壤空气的作用和固、液而接触角不同的影响,实测土壤水分特征曲线不是一个单值函数曲线。 用非线性函数表示土壤水分特征曲线与渗透系数变化的理论模型有Van Genuchten模型 (V-G模型)、Brooks-Corey模型等。这些理论模型的参数需要通过对土壤水分特征曲线的 观测加以确定。 土壤水分特征曲线是重要的土壤水力性质参数之一: 土壤水的基质势或土壤水吸力是随土壤含水率而变化的,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,属于土壤的基本物理性质,是研究土壤水动力学性质比不可少的重要参数,对研究土壤水运动及其溶质运移有重要作用,在生产实践中具有重要意义。 已有的土壤水分特征曲线测定方法主要包括负压计法、砂性漏斗法、压力仪法、离心机法等。土壤的渗透系数也随含水率变化,表现为曲线关系。 以土壤吸力表示土壤水分的状态,干燥的土壤对土壤水分的吸力强,湿润的土壤对水分的吸力弱,所以用土壤对水分吸力的大小,在一定范围内可以表示土壤水分状态和土壤水势。土壤吸力一般用大气压表示,干燥土壤的吸水极强,可达几千甚至上万个大气压,为了书写方便起见,一般用与大气压相当的水柱高度的厘米数(负值)对数来表示,称pF。 检测土壤水分特征pF曲线高速冷冻离心机HR21M

怎样用离心机法测土壤水分特征曲线? 用土壤离心机测土壤水分特征曲线方法:去取原状土或者扰动土,在不同转速和时间下测量含水量做水分特征曲线即可。根据离心机实测试验数据,分析不同质地土壤水分特征曲线变化趋势。相同离心力下,随着黏粒含量增加,最佳离心时间变长。 用离心机法测土壤水分特征曲线意义: 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 土壤水分特征曲线主要有以下几方面的应用: 1.进行基质势和含水量的相互换算。 根据土壤水分特征曲线可将土壤湿度换算成土壤基质势,依据基质势可判断土壤水分对作物的有效度。也可将基质势换算成含水量,根据土壤水分特征曲线可查得田间持水量、凋萎湿度和相应的有效水范围。土壤水分特征曲线斜率的倒数,即单位基质势变化所引起含水量的变化,称之为比水容重,是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要重要指标。 2.表示比水容重。 土壤水分特征曲线斜率的倒数,即单位基质势变化所引起含水量的变化,称之为比水容重,是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要重要指标。 3.可以间接反映土壤孔隙的分布。 若将土壤中的孔隙设想为各种孔径的圆形毛细管,那么S和毛细管直径d的关系可简单的表示为S=4σd。式中σ为水的表面张力系数,室温条件下一般为75×105N/cm。应用数学物理方法对土壤中的水运动进行定量分析时,水分特征曲线是不可缺少的重要参数。 4.可以判断土壤质地状况和土壤水分在吸力段的分布状况。 曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0 时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。

土壤有机质含量的测定-重铬酸钾发

测定所需试剂 1 土壤有机质的测定一重铬酸钾容量法——外热法 1 原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机 质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g ,溶于600~800ml蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免 急剧升温,每加约100ml硫酸后稍停片刻, 并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.50.1m o l·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~ 800ml水中,加浓硫酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍压细,使之通过1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm 筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到 0.0001g。置入150ml三角瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬 酸钾-硫酸溶液10ml混匀。 表1 不同土壤有机质含量的称样量 有机质含量,% 试样质量,g

土壤有机质的测定2.0

实验报告 课程名称: 土壤学实验 指导老师: 谢晓梅 成绩:__________________ 实验名称: 土壤有机质的测定 同组学生姓名: 边舒萍 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂 四、实验器材与仪器 五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得 一、 实验目的和要求 1. 了解土壤有机质测定对于农业生产的意义; 2. 掌握土壤有机质含量的测定方法。 二、 实验内容和原理 有机质是土壤中重要组成成分,其含量水平是衡量土壤肥力的重要指标之一。本实验 采用重铬酸钾容量法——稀释热法,利用浓硫酸和重铬酸钾混合时产生的热氧化有机质中的碳,通过测定消耗的氧化剂的量来计算得出土壤有机质含量,从而分析该土壤肥力水平,并对此提出改良措施。 重铬酸钾容量法——稀释热法过程的化学反应式: 氧化过程:K 2Cr 2O 7+C+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+CO 2+H 2O 滴定过程:K 2Cr 2O 7+FeSO 4+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+Fe 2(SO 4)3+H 2O 土壤有机碳与有机质换算公式: 土壤有机质(g/Kg )=土壤有机碳(g/Kg )×1.724 三、 实验器材与仪器 土样(取于余杭塘路施工旁,风干研磨细后过100目筛);

250mL三角瓶×2,10mL量筒,100mL量筒,5mL移液管,5.00mL移液枪,棕色酸式滴定管; 1mol/L 1/6 K2Cr2O7标准溶液,浓硫酸,领啡啰啉指示剂,0.5021mol/L FeSO4标准溶液。 四、操作方法和实验步骤 1.在500mL三角瓶中加入m=0.5070g土样; 2.用移液管加入1mol/L 1/6 K2Cr2O7标准溶液10mL; 3.混匀后用移液枪移取浓硫酸20mL,旋转摇动1min,之后放置30mL,加水100mL; 4.滴入3滴指示剂后用0.5021mol/L FeSO4标准溶液滴定至溶液由绿色变暗绿色, 最终以瞬间变为砖红色为终点; 5.用相同方法作空白对照(不加土样)测定。 五、实验数据记录和处理 表1 FeSO4标准溶液消耗体积与土壤有机质(碳)含量 样品 滴定前读 数V1/mL 滴定后读 数V2/mL FeSO4消耗体积 V(V0)/mL 土壤有机碳么 m1(g/Kg) 土壤有机质 m2(g/Kg) 第一组0.00 18.70 18.70 5.255 9.060 空白组 3.32 23.35 20.03 注:m1={[c(V0-V)×10-3×3.0×1.33]/m}×1000;m2=m1×1.724 其中,1.33为氧化校正系数;m为所称量土样重。 六、实验结果与分析

土壤水分特征曲线

土壤水动力学 学院:环境科学与工程学院专业:水土保持与沙漠化防治学号: 姓名:

土壤水分特征曲线的研究与运用 摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。 关键词:土壤水分特征曲线Van Genuchten模型运用 1.土壤水分特征曲线的研究 1.1土壤水分特征曲线的概念 土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。 1.2土壤水分特征曲线的意义 土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

1.3土壤水分特征曲线的测定方法 1.3.1直接法 通过实验方法直接测定土壤水分特征曲线的方法称为直接法。直接法中有众多的实验室和田间方法,如力计法、压力膜法、离心机法、砂芯漏斗法、平汽压法等,而前3种应用最为普遍。①力计法:是土壤通过土杯从力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。但力计仅能测定低吸力围0~0.08Mpa的特征曲线。②压力膜法:是加压使土壤水分流出,导致土壤基质势降低直到基质势与所加压力平衡为止,测定此时的土壤含水量.通过改变压力逐步获取不同压力下的含水量即可得到水分特征曲线。压力膜法可应用于扰动土和原状土,测定特征曲线的形状与土壤固有的特征曲线相符,可应用于土壤水分动态模拟,但测定周期长,存在着土壤容重变化的问题。③离心机法:测定某吸力下所对应的含水量,原理和实验过程同压力膜法相似,但其压力来源于离心机高速旋转产生的离心力。离心机法可应用于扰动土和原状土,测定周期短。特征曲线的相对形状与土壤固有的特征曲线相符,可用于土壤水分动态模拟。但是离心机仅可测定脱水过程,且在测定过程中土壤容重变化很大,若能对容重的影响进行校正,可望有较高的测定准确度。邵明安(1985)从土壤蒸发试验的预测与实测的含水量的偏离程度初步研究了以上3种方法测定土壤基质势的差别及准确性,结果表明考虑容重变化的离心机法有较高的准确度。④砂芯漏斗法:就是用一个砂芯漏斗和连接悬挂水柱的土板形成

土壤有机质含量的测定(精)

实训六土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下:2K2Cr2O7+3C+8H2SO4→K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4→K2SO4+ Cr2(SO4)3+3Fe2(SO4)3+8H2O 用Fe2+滴定剩余的K2Cr2O72-时,以邻啡罗啉(C2H8N2)为氧化还原指示剂,在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO4.7H2O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H2SO41.5ml,再加蒸馏水定容到1000ml备用。 3.硫酸亚铁溶液的标定准确吸取3份0.1333mol/L K2Cr2O7标准溶液各5.0ml 于250ml三角瓶中,各加5ml6mol/L H2SO4和15ml蒸馏水,再加入邻啡罗啉指示剂3~5滴,摇匀,然后用0.2mol/LFeSO4溶液滴定至棕红色为止,其浓度计算为: c= V 0.5 1333 .0 6? ? 式中:c——表示硫酸亚铁溶液摩尔浓度(mol/L); V——滴定用去硫酸亚铁的体积(mol);

土壤有机质测定方法

土壤有机质测定方法(参考土壤农化分析,南京农学院主编) 原理: 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O7等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量试剂: 10.4N重铬酸钾—硫酸溶液:称取研细的化学纯的重铬酸钾(三级)40g,溶解子600ml蒸馏水中(必要时可加热),待完全溶解后加水稀释至1L(用容量瓶量取1L蒸馏水,以保证合适水酸比),将溶液移入2L大烧杯中。缓缓加入浓硫酸1000m1(未打开的浓硫酸2瓶)于K2Cr2O7溶液中,硫酸加入水中会大量放热,为避免溶液急剧升温,每加约100ml硫酸就稍停片刻,过程中不断搅动,并将大烧杯入在盛有冷水的盆内降温。配好的溶液冷却备用。冬天可以稍微多加50ml水,以防止重铬酸钾结晶。 2重铬酸钾的基准溶液,准确称取分析纯K2Cr2O7 (在130烘3小时)9.807g于600ml烧杯中,慢慢加入浓H2S04约100m1,搅拌溶解,将溶液全部洗入1000ml容量瓶中定容备用。此溶液浓度C(1/6 K2Cr2O7)0.2000mol/L。 30.2N硫酸亚铁溶液(C1):称取硫酸亚铁56g,溶解于600ml水中,加H2S04 20ml,搅拌均匀,然后加水定容至1L,贮存于棕色瓶中。 此溶液易受空气氧化,使用时必须每天标定一次准确浓度。标定方法:准确浓度以重铬酸钾基准溶液标定之,即准确分别吸取二份重铬酸钾基准溶液各20ml于250ml三角瓶中,加入邻啡罗琳指示剂4滴,然后用0.2N FeSO4滴定至终点,根据硫酸亚铁溶液的消耗量,计算出FeSO4的准确浓度C2,c2=C1*V1/V2(C1:重铬酸钾标准溶液浓度0.2;V1:吸取重格酸钾标准溶液浓度20;V2:滴定时所耗硫酸亚铁溶液体积)。 4. 邻啡罗琳指示剂。称取分析纯邻啡罗琳1.490g,硫酸亚铁0.7g,溶于100m1水中,(必要时可加热完全溶解)。此时试剂与FeSO4形成红棕色络合物,指示剂易变质贮于棕色滴瓶中。 操作步骤 准确称取通过100目筛的风干土样0.2g(植物0.02g)于消煮管, 用移液管准确加入0.4N 重铬酸钾硫酸溶液10ml,180度消煮7min,取出冷却。冷却后,将试管内容物用60-70ml蒸馏水(分3-4次)转入250ml三角瓶中,滴入邻啡罗琳指示剂4滴,用0.2N硫酸亚铁滴定,溶液的变色过程是橙黄,蓝绿,砖红色即为终点。酸式滴定管(架子) 每一批样品测定的同时,进行二个空白试验 计算 土壤有机碳()烘干土样重 V0:空白耗0.2N硫酸亚铁毫升数。V:滴定土样耗硫酸亚铁毫升数。0.003:为1个毫克当量碳的克数;1.1:为氧化校正系数; 土壤有机质%=土壤有机碳%×1.724(1.724:为有机碳换算成有机质的平均换算系数)。 土壤有机质测量时土壤称重参考值: TN 土壤称重有机质含量土壤称重 低于2mg/g 0.4-0.5g 2%以下0.4-0.5g 2-5mg/g 0.2g 2-7% 0.2-0.3 5-8mg/g 0.1 7-10% 0.1 8mg/g以上0.1g 10-15% 0.05 加20ml重铬酸钾的硫酸溶液 注意事项:1)此方法适用范围:土壤有机质含量在15%以下;2)如果试样滴定所用硫酸亚铁标准的亳升数不到空白标定所耗硫酸亚铁标准溶液毫升数的1/3,就应减少土壤称样量,重新做;3)误差:有机质含量小于1%,误差约0.05%;含量为1-4%时,误差约0.1%;含量4-7%时,误差约0.3%;含量10%以上,误差约0.5%.

相关文档
最新文档