大豆分离蛋白的主要工艺流程

1大豆分离蛋白的主要技术性能指标

水份:≤6%

干基粗蛋白:≥90%

水溶氮指数:≥60%

TPC:≤10000个

大肠杆菌:0个

色泽:浅黄/乳白

气滋味:具有分离蛋白特有的气滋味

PH值:6.8~7.2

密度:过200目筛95%,过270目筛90%

产品的功能特性将根据不同应用领域来确认

乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。

高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。

高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。

2大豆分离蛋白工艺流程

低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装

3工艺简要描述:

萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。

分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。

酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。

分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。

水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。

分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。

中和:加入碱入中和罐,使凝乳的PH调整到7。

杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌

干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。

筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。

超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。

筛选:对产品进行进一步筛选。

喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。

金属检测:对产品进行金属检测。

包装:检测后的产品进行自动包装系统,按规定的重量进行包装。

大豆蛋白提取技术研究进展

大豆蛋白提取技术研究进展 系别:食品工程系专业:食品科学与工程班级:食科13-2班 学号:************ 姓名:***

摘要 大豆蛋白产品分为三类,即大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白。大豆分离蛋 白含有人体所必需的八种氨基酸,不含胆固醇,具有许多优良的食品性能,添加在食品中可 以改善食品的品质和性能,提高食品营养价值。是一种重要的植物蛋白,在食品工业中得到了广泛的应用,是近年来的研究重点。其中,大豆浓缩蛋白的提取方法有稀酸浸提法、酒精浸提法和湿热浸提法。大豆分离蛋白有碱溶酸沉法、离子交换法、超滤膜分离法等。本文以研究方向和工艺改进方面为着力点解释大豆浓缩蛋白和分离蛋白这两种主要的提取方法的发展脉络。 关键词 大豆浓缩蛋白;大豆分离蛋白;稀酸浸提法;酒精浸提法;碱溶酸沉法;离子交换法;超过滤法;湿热浸提法 大豆分离蛋白(soy protein isolate,SPI )是把脱皮大豆中的除蛋白质以 外的可能性物质和纤维素、半纤维素物质都除掉,得到的蛋白质含量不低于90% 的制品,又称等电点蛋白。与大豆浓缩蛋白相比,生产大豆分离蛋白不仅要从低温脱溶豆粕中除去低分子可溶性糖等成分,而且还要去除不溶性纤维素、半纤维素等成分。其生产方法主要有碱溶酸沉法、超过滤法和离子交换法。 一、碱溶酸沉法 1. 提取原理低温豆粕中的蛋白质大部分能溶于稀碱溶液。将低温豆粕用 稀碱溶液浸提后,用离心分离法除去原料中的不溶性物质,然后用酸把浸出物的PH调至4.5左右,蛋白质由于处于等电点状态而凝聚沉淀,经分离可得到蛋白质沉淀,再经洗涤、中和、干燥得到大豆分离蛋白。 2. 提取工艺豆粕的质量直接影响大豆分离蛋白的功能特性和提取率,只有高质量的豆粕才能获得高质量和高得率的大豆分离。要求原料无霉变,豆皮含量低,残留溶剂少,蛋白质含量高(45沖上),脂肪含量低,NSI高(不低于80%。豆粕粉碎后过40-60目筛。 首先利用弱碱溶液浸泡低温豆粕,使可溶性蛋白质、糖类等溶解出来,利用离心机除去溶液中不溶性的纤维素和残渣。在已溶解的蛋白质溶液中加入适量的酸液,调节溶液的PH达到4.5,使大部分蛋白质从溶液中沉析出来,这时只有大约10%勺少量蛋白质人仍留在溶液中,这部分溶液称为乳清。乳清中除含有少量蛋白质外,还含有可溶性糖、灰分和其他微量成分,然后将用酸沉析出的蛋白质凝聚体进行搅动、水洗、送入中和罐,加碱中和溶解成溶液状态。将蛋白质溶液调节到合适浓度,由高压泵送入加热器经闪蒸器快速灭菌后,再送入喷雾干燥塔脱水,制成大豆分离蛋白。

大豆分离蛋白工艺

大豆分离蛋白工艺 摘要:作为一种食品添加剂,大豆分离蛋白广泛应用于各种各样的食品体系中。 大豆分离蛋白的成功应用在于它具有多种样的功能性质,功能性质是大豆分离蛋白最为重要的理化性质,如凝胶性、乳化性、起护色注、粘度等。本文主要大豆分蛋白的一种制取工艺。 关键字:大豆分离蛋白、分离工艺、影响因素、设备 前言 大豆分离蛋白是重要的植物蛋白产品, 除了营养价值外,它还具有许多重要的功能性质, 这些功能性质对于大豆蛋白在食品中的应用具有重要的价值。大豆蛋白的功能性质可归为三类一是蛋白质的水合性质( 取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质[1]。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋) 时才有实际的意义。表面性质主要是指乳化性能和起泡性能[2]。 1.功能特性 1.1乳化性 乳化性是指将油和水混合在一起形成乳状液的性能。大豆分离蛋白是表面活性剂, 它既能降低水和油的表面张力,又能降低水和空气的表面张力。易于形成稳定的乳状液。乳化的油滴被聚集在油滴表面的蛋白质所稳定,形成一种保护层。这个保护层可以防止油滴聚集和乳化状态的破坏, 促使乳化性能稳定。在烤制食品、冷冻食品及汤类食品的制作中, 加入大豆分离蛋白作乳化剂可使制品状态稳定。 1.2水合性 大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。 1.2. 1吸水性 一般是指蛋白质对水分的吸附能力,它与即水份活度、pH、深度、蛋白质的颗粒大小、颗粒结构、颗粒表面活性等都是密切相关的。随水份活度的增强,其吸水性发生快——慢——快的变化。 1.2. 2保水性 除了对水的吸附作用外,大豆蛋白质在加工时还有保持水份的能力,其保水性与粘度、pH、电离强度和温度有关。盐类能增强蛋白质吸水性却削弱分离蛋白的保水性。最高水分保持能力在pH= 7,温度35~55℃时,为14g水/g蛋白质。1.2. 3膨胀性 膨胀性即蛋白质的扩张作用,是指蛋白质吸收水分后会膨胀起来。它受温度、pH 和盐类的影响显著,加热处理增加大豆蛋白的膨胀性,80℃时为最好,70~100℃之间膨胀基本接近[3]。 1.3吸油性 1.3. 1促进脂肪吸收作用

自-实验7-大豆分离蛋白的制备

综合实验7 大豆分离蛋白的制备 1. 实验目的 蛋白质是人们日常生活中必需的重要营养物质,通常可以从动物的乳汁或天然植物(如花生、大豆等)中提取。大豆(黄豆)是目前植物中蛋白质含量最为丰富的一种,蛋白质含量高达40 %以上,大豆蛋白含有人体必需的8种氨基酸,还含有丰富的不饱和脂肪酸、钙、磷、铁、膳食纤维等,不含胆固醇,具有很高的营养价值。蛋白的提取方法有许多种,例如: 碱提酸沉、酶提酸沉、超声酸沉、酶解提取、膜分离法等。 本实验采用超声波辅助碱提酸沉法提取大豆蛋白,通过粉碎、正己烷低温浸提脱脂、纤维素酶酶解增溶等预处理方法,采用超声波辅助“碱提酸沉法”使蛋白质在等电点状态下析出。通过本实验,掌握超声波、酶解、离心分离、浸提、等电点析出等蛋白质分离手段,了解植物蛋白制备的常用技术。 2. 材料、仪器与设备 2.1 实验材料 黄豆,1mol/LNaOH、10% HCl、正己烷、纤维素酶 2.2 实验仪器 恒温水浴锅、粉碎机、高速离心机、超声波仪、pH计、烘箱、电子天平、250mL三角瓶、平皿、大烧杯、玻棒、药匙 3. 实验内容与步骤 3.1 实验流程 黄豆粉碎→正己烷低温浸提(脱脂)30min→离心分离→收集沉淀→烘干20min→纤维素酶酶解→离心分离→收集沉淀→碱溶(调pH11)→超声波处理20min→离心分离→收集上清→等电点酸沉析出(调pH4.5)→离心分离→收集沉淀→烘干30min称重→计算蛋白质粗提回收率 3.2 实验步骤 (1)黄豆预处理 选择果粒饱满,色泽明亮的黄豆为原料,称取黄豆250g用小型粉碎机粉碎,破碎粉末用60目的不锈钢网筛过筛,去除夹杂物,备用。 (2)溶剂低温浸出法制取脱脂豆粕粉 取250mL三角瓶,加入粉碎后的豆粉20g,100mL正己烷,瓶口用平皿覆盖,恒温水浴60℃浸提30min使大豆中的油脂溶出,5000rpm离心15min后去上清液,将沉淀收集后放烘箱内50℃,20min烘干,得脱脂豆粕粉样品。

粮油加工几个重要工艺流程题

碱炼的化学原理: 中和:RCOOH+NaOH→RCOONa+H2O RCOOH+Na2CO3→RCOONa+NaHCO3 2RCOOH+Na2CO3→2RCOONa+CO2+H2O 不完全中和:2RCOOH+NaOH→RCOOH ▪ RCOONa+ H2O 水解:2RCOONa+ H2O→RCOONa ▪ RCOOH+NaOH 间歇式碱炼工艺流程: 碱液┌含皂脱酸油→洗涤→静置沉降→净油→干燥 ↓│↑↑↓ 过滤毛油→精炼→中和→静置沉降→│废水废水脱油酸 └富油皂脚→皂脚处理→回收油→皂脚 大豆蛋白分离物(大豆分离蛋白):脱脂豆粉→用PH:10的稀碱浸提→分离出残渣后溶液→酸化至等电点→沉淀→中和→干燥→大豆分离蛋白(蛋白质量超过90%以上,基本不含抗营养因子),在水中的溶解度也比前二者高,但回收率较浓缩蛋白低得多。 1.脱脂豆粉:大豆→脱皮→压浸去油脂→蛋白质和碳水化合物→加热灭活抗营养因子、胰蛋 白酶抑制物和血球凝集素→脱脂豆粉(蛋白质含量约为50%) 浓缩大豆蛋白:脱脂豆粉→用PH4.5水或含一定浓度乙醇的水浸提处理→除去低聚糖(胀气因子)和降低胰蛋白酶抑制物的量→蛋白质的含量在70%左右。由于浸提使脱脂豆粉中相当量的蛋白质损失。 玉米淀粉提取工艺流程 玉米淀粉生产包括3个主要阶段:玉米清理、玉米湿磨和淀粉的脱水干燥。 工艺流程中,大致可分为4个部分:①玉米的清理去杂;②玉米的湿磨分离;③淀粉的脱水干燥;④副产品的回收利用。其中玉米湿磨分离是工艺流程的主要部分。 玉米子粒

↓ 清理去杂 ↓ 亚硫酸水溶液→浸泡→浸泡液→浓缩→玉米浆 ↓ 粗破碎 ↓ 胚芽分离→胚芽→脱水→榨油→玉米油→胚芽饼粕 ↓ 细破碎 ↓ 渣滓筛分→渣滓→脱水→饲料 ↓ 淀粉与蛋白分离→麸质水→浓缩→压滤→干燥→蛋白粉 ↓ 淀粉洗涤→工艺水 ↓ 离心脱水→气流干燥→淀粉 玉米淀粉生产的工艺流程 三玉米淀粉提取的工艺原理及工艺操作要点 1、玉米原料选择、加工前的清理和输送 原料:马齿型、半马齿型。 玉米要充分成熟,储存期较短,未经热风干燥处理,具有较高的发芽率。未成熟和过干的玉米子粒加工时会遇到困难,影响技术经济指标。发芽率过低的玉米和经热风干燥过的玉米子粒中淀粉老化程度高,蛋白质成为硬性凝胶不易与淀粉分离,会给淀粉的得率和质量带来不利的影响。 Page No.19 (1)清理:玉米在进入浸泡工艺之前必须清理干净,否则会给后面的工序带来麻烦,增加淀粉中的灰分,降低淀粉的质量。石子、金属杂质会严重损坏机器设备。 玉米的清理主要用风选、筛选、密度去石、磁选等方法,其除杂方法的原理与小麦、水稻的

大豆分离蛋白在肉制品工业中的应用范本

大豆分离蛋白在肉制品工业中的应用范本 一、大豆分离蛋白在火腿类、肠类中的应用 火腿、肠类生产工艺流程如下: 1、大豆分离蛋白直接添加 表1 大豆分离蛋白直接添加法 大豆分离 蛋白添加 量 添加方法添加后效果 2%——6.5%在打料过程中 同其他辅料一 起添加。 ◆添加后可明显改善产品粗糙的口 感,使产品口感细腻、切面光亮; ◆明显提高嫩度和切片性; ◆明显提高保水、保油性; ◆明显改善产品结构,增加弹性; ◆增加冷藏持水率,延长货架期。 2、做成预制胶之后再添加 表2 预制胶胶体添加法 预制胶胶体添 加量 添加方法添加后效果 15%——30%,按照火腿类或使用前先将大豆分 离蛋白胶体斩拌成 ◆增加产品出品率,降低成本; ◆使火腿口感细腻、表面光亮;

肠类的不同要求,添加不同的比例数。糜状,将糜状物同原 料肉一起添加,或滚 揉、或斩拌、或搅拌 均匀即可。 ◆提高嫩度和切片性; ◆提高保水、保油性; ◆改善产品结构,增加弹性; ◆减少冷藏的失水率,延长保质 期。 3、直接替代原料肉添加 表3 替代原料肉添加法 预制胶添加量添加方法添加后效果 18%——32%,按照火腿类或肠类产品的不同要求添加不同比例数。 使用之前需将胶块用绞 肉机绞成6mm大小的块 状,将块状物同原料肉一 起添加,或滚揉、或斩拌、 或搅拌均匀即可。 ◆可替代部分原料 肉,降低成本; ◆增加产品出品 率。 4、注射产品、培根类产品注射用料 5、在高温火腿肠中的应用 大豆分离蛋白与水形成的胶体随着温度的不断升高,硬度会不断增强。用在高温杀菌的产品中,可弥补经过高温杀菌后产品结构和口感下降的缺陷。可直接添加添加量为2—3.8%, 因产品及价位不同,使用的量应根据产品的结构和价位相结合进行调整。 二、大豆分离蛋白在肉丸中的应用。 肉丸生产工艺如下:

大豆分离蛋白生产工艺

大豆分离蛋白生产工艺 1.清洗:将采购的大豆籽进行清洗和筛选,去除杂质,并将符合质量 要求的大豆籽送入仓库准备下一步的加工。 2.蒸煮:将清洗后的大豆籽进行蒸煮处理。蒸煮的目的是软化大豆籽,破坏大豆籽内部的脂肪膜结构,使蛋白质更容易与水进行分离。 3.破碎:蒸煮后的大豆籽送入碾磨机进行破碎处理,以打开大豆籽内 部的细胞,使蛋白质与水进行充分接触。 4.分离:将破碎后的大豆浆通过离心机进行分离,分离出固体部分和 液体部分。固体部分主要是蛋白质,液体部分则主要是淀粉、纤维等。 5.过滤:分离后的大豆浆通过过滤器进行进一步的分离,去除较大的 颗粒和杂质。过滤的目的是得到更纯净的分离蛋白。 6.浓缩:将过滤后的大豆浆送入浓缩设备进行浓缩处理,去除多余的 水分,提高蛋白质的浓度。 7.离心分离:将浓缩后的大豆浆再次通过离心机进行离心分离,以进 一步提高分离蛋白的纯度。 8.脱色:离心分离后的蛋白溶液中可能还含有一些颜色物质,需要进 行脱色处理。常见的脱色方法有活性炭吸附和氢氧化钠沉淀。 9.调节pH值:脱色后的蛋白溶液进行pH值的调节,一般需要将pH 值调整为4.5-5.0之间,以利于后续的凝胶和凝集作用。 10.凝胶:将调节后的蛋白溶液进行加热处理,使蛋白质发生凝胶作用。凝胶温度一般在80-85℃之间。

11.凝集:凝胶后的分离蛋白进行凝集处理,一般采用盐酸、硫酸和 醋酸等酸性物质进行凝集。 12.离心:凝集后的蛋白溶液进行离心处理,分离出固体部分和液体 部分,固体部分就是经过凝结处理的大豆分离蛋白。 13.干燥:将分离后的大豆蛋白固体进行干燥处理,通常有喷雾干燥、真空干燥、凝固干燥等方法可选。 14.粉碎:干燥后的大豆蛋白固体进行粉碎处理,得到所需的粉状产品。 以上就是大豆分离蛋白的生产工艺。通过上述工艺,可以得到高纯度 的大豆分离蛋白,为食品工业生产提供了重要的原料。但需要注意的是, 生产中需要确保设备的清洁、操作的卫生和原料的质量,以确保最终产品 的质量和食品安全。

大豆分离蛋白生产工艺

2011最新大豆分离蛋白生产工艺 1、原料 豆粕质量的好坏直接影响分离蛋白的提取率和功能特性。用于分离蛋白生产的原料豆粕应是清选、去皮、溶剂脱脂,低温或闪蒸脱溶后的低变性豆粕。这种豆粕含杂质少,蛋白含量较高,蛋白变性程度低,适于大豆分离蛋白生产。豆粕中的蛋白变性程度,亦即氮溶解指数(NSI)的高低与大豆分离蛋白的提取率有很大关系。当原料豆粕的NSI值为74.25%时,大豆分离蛋白的得率为37%;NSI值为80.3%时,得率为40%;当NSI值为83%时,得率为43%。分离蛋白的提取率除与豆粕的变性程度有关外,还与用于浸油的原料大豆的蛋白含量组分有密切关系。大豆分离蛋白的主要构成为大豆球蛋白中的7S和11S组分。这两种组分在含盐溶液中的粘度和溶解度也大不相同。大豆球蛋白中的2S组分,分子量小,提取分离蛋白时分散于乳清液中。因此,大豆原料中2S蛋白组分过高,即使蛋白含量和NSI值都很高,蛋白提取率也不会很高。从此得知,用于分离蛋白生产的原料大豆必须进行检测,要采用7S和11S含量较高的大豆品种,这对稳定大豆分离蛋白的提取率和功能性是十分必要的。 2、浸提工艺 从豆粕中萃取蛋白质时,加水量、pH、温度、浸提时间对

分离蛋白的得率有很大影响。 浸泡:很多企业都是先将豆粕干法粉碎后再与水混合浸提。干法粉碎不利于提高蛋白质的提取率,而且容易使蛋白质发生热变性,降低蛋白质的NSI值。若将脱脂豆粕加水先浸泡一段时间再磨浆,这样可以有效的提高蛋白质的提取率。先浸泡后磨浆的方法,比干法粉碎再浸泡更有符合大豆蛋白质的溶解机理。经测定,先浸泡后磨浆比干法粉碎再浸泡的蛋白质提取率高2~4个百分点。 用水浸提大豆蛋白时,加水量越多,蛋白质的提取率就越高,但是加水太多,酸沉时乳清液中的球蛋白量增加,蛋白的损失量也就增高,成品得率反而下降;若加水太少,大豆蛋白的溶出率大大下降,成品的得率也会下降。还会增加后续各工序的难度。同时在磨浆阶段,浆料粒度越细则蛋白得率和浸提效果越高。其实不然,当浆料粒度太细反而会使蛋白得率和浸提效果下降,同时有增教了过滤分离的难度。 蛋白质的溶解度与浸提PH有很大的关系,pH太低的时候,11s蛋白组分能解离成2s组分,这种解离作用造pH3.75时开始至PH2时达到最高峰,当pH小于2时,又会发上聚合作用,形成聚合物。如果ph太高时,因碱性太强会引起脱氨脱羧肽键断裂,又会发生“胱赖反应”,把氨基酸转化成有毒的化合物。所以浸提蛋白的PH必须要有合适的控制范围。

大豆蛋白分离系统工艺流程及技术

大豆蛋白分离系统工艺流程及技术 大豆分离蛋白具有蛋白含量高,几乎不含胆固醇等特点,具有良好的乳化性、凝胶性、溶解性、起泡性、吸油性和持水性等性能,是其它动物蛋白所不能替代的。大豆分离蛋白是一种与人体的必需氨基酸组成比例最接近、更易被人体吸收的天然植物蛋白源,属于全价优质蛋白。 在生产大豆分离蛋白工艺方面,酸沉法工艺应用是最完善的,其主要工艺是粉碎、萃取、分离渣乳、酸沉、凝乳分离、中和老化、杀菌干燥,检验包装等工序。整个进料、分离、出料均是自动、连续、封闭的状态下完成。 一、大豆蛋白质分离纯化工艺 用于生产食用蛋白食品的大豆经过预处理后,浸出油料,提取脱脂豆粕和豆粉,然后在碱性溶液中将大豆蛋白质从豆粉中溶解出来,最后加酸使蛋白质凝集沉淀分离出来。 其中渣液分离是最关键的生产工序,目前普遍采用高转速卧螺离心机,来提高蛋白回收率,萃取后的溶液经卧螺离心机后可直接分离出豆渣和豆浆,根据工序条件又分为一次分离和二次分离。 凝乳分离的目的是将凝乳混合料液中的乳清、碳水化合物、盐类等可溶性部分分离去除,来提纯蛋白的质量,最后再进入水洗工序。 二、其他大豆蛋白生产工艺: 1、传统湿热浸提工艺是由于回收不了可溶于水的大豆蛋白,使得蛋白质得率极低,目前已基本被淘汰。 2、乙醇浸提工艺是醇法制备的大豆浓缩蛋白是一种高蛋白的大豆制品,其氨基酸组成合理,产品的风味清淡、色泽较浅,蛋白损失较小。然而由于醇溶液的变性、沉淀作用,使得产品中的蛋白质发生变性,功能差,使用范围受到限制。由于生产中采用的回液比大,需蒸馏回收乙醇的量较大,因此生产中能源消耗也较高。 3、稀盐酸浸提工艺是产出量虽比前1、2种工艺较大,但工艺复杂,投资较大,工时较多,同时在生产过程中需耗用大量的酸和碱溶液,排出的废水较难处理 三、蛋白质分离纯化工艺优点: 1、产品得率高,百分百回收。 2、不加任何添加剂,绿色环保。 3、不需加热即可浓缩、工艺简单、工时短,能耗低。 4、产品质量好、无变色,变味。 5、可用同一条线生产浓缩蛋白和分离蛋白,不需增加设备。

大豆分离蛋白的主要工艺流程

1大豆分离蛋白的主要技术性能指标 水份:≤6% 干基粗蛋白:≥90% 水溶氮指数:≥60% TPC:≤10000个 大肠杆菌:0个 色泽:浅黄/乳白 气滋味:具有分离蛋白特有的气滋味 PH值:6.8~7.2 密度:过200目筛95%,过270目筛90% 产品的功能特性将根据不同应用领域来确认 乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。 高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。 高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。 2大豆分离蛋白工艺流程 低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装 3工艺简要描述:

萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。 分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。 酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。 分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。 水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。 分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。 中和:加入碱入中和罐,使凝乳的PH调整到7。 杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌 干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。 筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。 超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。 筛选:对产品进行进一步筛选。 喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。 金属检测:对产品进行金属检测。

3.大豆分离蛋白技术介绍

大豆分离蛋白技术介绍 大豆分离蛋白是以低温脱溶大豆粕为原料生产的一种全价蛋白类食品添加剂。大豆分离蛋白中蛋白质含量在90%以上,氨基酸种类有近20种,并含有人体必需的氨基酸。其营养丰富,是植物蛋白中为数不多的可替代动物蛋白的品种之一 大豆分离蛋白成套设备工程规格:30~500T/D 原料适用领域:大豆、核桃、花生等 原料 豆粕质量的好坏直接影响分离蛋白的提取率和功能特性。用于分离蛋白生产的原料豆粕应是清洗、去皮、溶剂脱脂,低温或闪蒸脱溶后的低变性豆粕。这种豆粕含杂质少,蛋白含量较高,蛋白变性程度低,适用于大豆分离蛋白生产。 浸提工艺 从豆粕中萃取蛋白质时,加水量、PH、温度、浸提时间对分离蛋白的得率有很大影响。 浸提时间的选择,主要是看蛋白的溶出率。 分离工艺 采用碱溶酸沉法生产分离蛋白工艺过程中,有两个分离工序,以上用碱液提取大豆蛋白后,离心分离蛋白萃取液和豆渣;二是酸沉后离心分离蛋白凝乳和乳清。分离机是大豆分离蛋白生产中的关键设备。 酸沉、水洗、中和工艺 大豆蛋白的酸沉工艺主要是利用大豆蛋白在PH条件下溶解度最小的原理,使之凝聚沉淀。PH到大豆球蛋白的等电点附近时才能凝聚沉淀。酸沉工艺操作中加酸速度也影响蛋白质的沉淀。 杀菌、均质、干燥工艺 经打浆中和后的蛋白液需经热处理。不同温度的热处理对蛋白产品的粘度、凝胶强度、NSI 值、风味等有不同的影响。 The introduction of soybean protein isolation technology: Soybean protein isolation is a full price protein food additives using low temperature desolventizing big soybean meal as raw material. Protein content in soybean protein isolation is above 90%. There are nearly 20 kinds of species amino acids, and contains essential amino acids. Its rich nutrition is one of the few alternative animal protein in plant protein. Soybean protein isolation equipment engineering specifications: 300~500T/D

大豆分离浓缩蛋白质纯化技术工艺大全

大豆分离浓缩蛋白质纯化技术工艺大全 大豆分离浓缩蛋白质纯化 技术工艺大全 大豆分离蛋白的提取方法 一、起泡法 泡沫分离技术是近十年发展起来的一项新的分离技术。它是根据表面活性的差异,来分离和纯化物质的手段,被广泛应用于环境保护、生物工程、冶金工业及医药工业等许多途径,该技术也是分离和浓缩蛋白质及酶的一条有效途径。这种方法中,大豆蛋白质的分离在一连续操作的泡沫精馏塔中完成,氮气由塔底通入池液,原料液由泡沫界面入进入塔内,泡沫由塔顶导出并被破碎成泡沫液,泡沫液即为分离出的大豆蛋白质。 二、碱提酸沉法 大豆浓缩蛋白提纯的传统方法是碱提酸沉法。大豆浓缩蛋白提纯设备处理将脱脂豆粕与蒸馏水以1:10的比例混合,充分搅拌浸提碱溶大豆蛋白,离心分离,沉淀重新溶于溶液中,喷雾或冷冻干燥即得大豆分离蛋白,其蛋白含量可达90%以上。 三、膜分离方法 膜分离技术制取大豆分离蛋白。大豆浓缩蛋白提纯设备处理先用蛋白浸出率可达80%左右。将浸提液进行循环超滤分离,截留液的浓度可达13%左右。与传统的碱提酸沉法比较,产物得率高,质量好,能耗少,废水排放污染也一定程度上得到解决。 四、大豆浓缩蛋白提纯设备双极膜电解法 这种方法是在电渗析的基础上发展而来的。阴离子交换膜和阳离子交换膜以及阴阳离子交换膜中间的亲水层,达到大豆蛋白质的等电点而使蛋白质沉淀。这种方法不需要加入酸或碱调整蛋白质溶液的pH 值,避免分离得到的大豆蛋白质中混入盐离子,并且可保护大豆蛋白质的功能性。 大豆的蛋白含量较高而且营养丰富,目前大豆蛋白已成为一种重

要的蛋白资源,大豆分离蛋白的功能特性也不同。大豆分离蛋白在提取、加工和贮运过程中会发生物理和化学变化,而大豆浓缩蛋白提纯设备是改变可以提高大豆蛋白在食品中应用设备。

蛋白质等电点的名词解释测定方法

蛋白质等电点的名词解释|测定方法 蛋白质等电点的名词解释: 在等电点时,蛋白质分子以两性离子形式存在,其分子净电荷为零(即正负电荷相等),此时蛋白质分子颗粒在溶液中因没有相同电荷的相互排斥,分子相互之间的作用力减弱,其颗粒极易碰撞、凝聚而产生沉淀,所以蛋白质在等电点时,其溶解度最小,最易形成沉淀物。 蛋白质等电点的测定方法: 方法:平板等电聚焦 原理:蛋白质分子在含有载体两性电介质形成的连续而稳定的线性pH梯度中进行电泳。但不自是按照等电点不同被分离。 仪器:Bio-Rad Model 111Mini IEF Cell 样品要求: 液体:浓度>3mg/ml;体积>200ul;固体:质量>200ug 样品纯度>90%;含盐量<3 0mM;分子量:一般要求大于1000Da 常见影响测试情况: 1、蛋白质纯度不足 2、含盐量过高 3、蛋白质分子量太小,导致无法固定染色 蛋白质等电点的主要应用: 在等电点时,蛋白质分子以两性离子形式存在,其分子净电荷为零(即正负电荷相等),此时蛋白质分子颗粒在溶液中因没有相同电荷的相互排斥,分子相互之间的作用力减弱,其颗粒极易碰撞、凝聚而产生沉淀,所以蛋白质在等电点时,其溶解度最小,最易形成沉淀物。等电点时的许多物理性质如黏度、膨胀性、渗透压等都变小,从而有利于悬浮液的过滤。在等电点外的所有其他pH值,依据蛋白质所带净电荷采用电泳和离子交换层析来分离和分离纯化该蛋白质。 等电点沉淀主要应用于蛋白质等两性电解质的分离提纯,还可应用于大豆异黄酮的分离:用等电点沉淀法脱去蛋白质,可提高异黄酮制品的纯度,异黄酮截留率为7.2%,蛋白质截留率为91.1%。

大豆蛋白的分离提纯及药用前景

大豆蛋白的分离提纯及药用前景

目录 第一章绪论 (1) 第二章大豆分离蛋白的提取方法 (2) 2.1碱提酸沉法 (2) 2.2膜分离方法 (3) 2.3起泡法 (4) 第三章分离蛋白产品在医药领域的作用及前景 (5) 3.1大豆肽 (5) 3.2大豆卵磷脂 (6) 第四章结论 (8) 参考文献 (9)

大豆蛋白的分离提纯及药用前景 摘要 大豆的蛋白含量较高而且营养丰富,一般含蛋白30%—50%。大豆蛋白含有8种人体必需氨基酸,且比例比较合理,只是赖氨酸相对稍高,而蛋氨酸和半胱氨酸含量较低。目前大豆蛋白已成为一种重要的蛋白资源,特别是大豆分离蛋白含蛋白质90%以上,是一种优良的食品原料。 大豆分离蛋白主要由11S球蛋白(Glycinin)和7S球蛋白(β-con-glycinin)组成,大约占整个大豆籽粒贮存蛋白的70%。这两种球蛋白的组成、结构和构象不同,大豆分离蛋白的功能特性也不同。大豆分离蛋白在提取、加工和贮运过程中会发生物理和化学变化,这些适当的改变可以提高大豆蛋白在食品、药品中应用的功能特性。 本文综述了大豆分离蛋白的提取和改性方法,以及大豆分离蛋白在食品生物特别是医药领域的应用前景。 关键词:大豆蛋白,分离方法,应用前景

第一章绪论 大豆营养价值高,资源丰富,原料成本低。食品工业的飞速发展迫切需要具有功能特性和营养特性的蛋白质,作为食品的原料成分或添加基料。除了提供人体所必需的氨基酸外,还具有一定的加工特性和生理活性。为此,加强或改善大豆的功能特性和生物活性,开发新的功能食品,成为食品及医疗保健业亟待解决的问题。在食品、医疗等领域,大豆的研究与应用备受国外的关注。 大豆经清洗、破碎、脱皮、压片和正已烷浸出后,可得到脱脂大豆片,即白豆片。由于白豆片的NSI(水溶性氮指数)值高,为提取分离蛋白提供了可靠的保证。所谓分离蛋白,就是从白豆片里除去非蛋白质成分得到含蛋白90%以上的蛋白粉。大豆分离蛋白是理想的植物蛋白,其中含有人体必需的8种氨基酸(亮氨酸、异亮氨酸、赖氨酸、蛋氨酸、氨酸、色氨酸、苯丙氨酸和缬氨酸)。大豆分离蛋白不仅具有很高的营养性,而且具有乳化性、吸水性、吸油性、凝胶性、粘结性和分散性等众多的功能性。在食品加工业中,它广泛应用于肉制品、面制品和饮料等加工上。大豆分离蛋白生产中的副产品还可以进一步加工成纤维素和低聚糖。它们都是有利于人体健康的功能性物质。 从大豆中分离蛋白是一种提取的植物蛋白质,主要用于食品、化工、生物工程等领域。在食品工业中,可以作为肉食品、冷饮、烘烤食品、乳制品等的添加剂,还可以利用分离蛋白生产出很多的高附加值的产品。其实,在这些产品中,有很多具有预防、治疗疾病的功效,所以如果能将其应用在医药中间体,药品辅料或直接作为某些药品的主要原料进行研发生产,会有非常广阔的应用空间。我国从国外引进了很多的生产技术和设备,进而逐步实现了技术和设备的国产化。国对分离蛋白的提取和性能方面也进行了大量的研究。目前国的生产技术和设备逐步成熟,分离蛋白的许多指标基本上能满足实际生产需要。为了进一步的提高生产和科研水平,我们对分离蛋白的提取进行的

相关文档
最新文档