高一牛顿运动定律专题复习资料

高一牛顿运动定律专题复习资料
高一牛顿运动定律专题复习资料

人教版高一物理专题----有关牛顿运动定律的几个小专题[学习过程]

一. 运用牛顿运动定律解题的基本方法:

牛顿运动定律是力学的核心,整个力学的知识体系都是建立在牛顿运动定律的基础上的,熟练掌握牛顿运动定律是学好力学的关键。

(一)解题的基本思路

1. 选取合适的研究对象:在物理过程中,一般会涉及两个或两个以上的物体,通常选取我们了解得相对较多的那个物体作为研究对象。

2. 分析受力情况和运动情况:画出示意图,分析物体的受力情况与物体的运动情况,分析物体的运动情况是指确定加速度与速度的方向,判断物体是做加速直线还是减速直线运动,或是曲线运动。

3. 建立直角坐标系:一般选取加速度的方向为x轴的正方向,将各个力沿坐标轴方向进行正交分解。有时为了解题的方便,而选取互相垂直的两个力的方向作为x轴和y轴,将加速度沿坐标轴进行正交分解。总之,坐标轴方向的选取要视具体问题灵活运用。

4. 列F=ma方程求解:如果还无法求出未知量,则可运用运动学公式求加速度。求解加速度是解牛顿运动定律题目的关键,因为加速度是联系物体受力情况与运动情况之间的桥梁;如果不求出加速度,则受力情况与运动情况之间的对应关系就无法建立起来,也就无法解题。(二)题型举例

1. 马拉车问题

马拉车沿平直道路加速前进,车之所以能加速前进的原因是什么是因为马拉车的力大于车拉马的力还是因为马拉车的力大于车受到的阻力呢类似的问题还有拔河比赛问题:甲乙两队拔河比赛,结果甲队获胜,是因为甲队对乙队的拉力大于乙队对甲队的拉力吗下面我们通过例题来回答这类问题。

[例1] 汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知()

A. 汽车拉拖车的力大于拖车拉汽车的力;

B. 汽车拉拖车的力等于拖车拉汽车的力;

C. 汽车拉拖车的力大于拖车受到的阻力;

D. 汽车拉拖车的力等于拖车受到的阻力。

分析:根据牛顿第三定律,汽车与拖车的相互拉力,应总是大小相等,方向相反的。拖车之所以能加速前进是因为受到了向前的合力的缘故,即:汽车对拖车的拉力大于拖车受到的阻力,所以正确选项为B,C

2. 合力、加速度与速度间的关系问题

由F=ma可知,加速度与合力一一对应,但因加速度与速度在大小上无对应关系,所以合力与速度在大小上也无必然的关系。

[例2] 一物体在光滑水平面上,初速度为零,先对物体施加一向东的恒力,历时1秒钟;随即把此力改为向西,大小不变,历时1秒钟;接着又把此力改为向东,大小不变,历时1秒钟;如此反复,只改变力的方向,共历时1分钟,在此1分钟内( )

A. 物体时而向东运动,时而向西运动。在1分钟末静止于初始位置之东

B. 物体时而向东运动,时而向西运动。在1分钟末静止于初始位置

C. 物体时而向东运动,时而向西运动。在1分钟末继续向东运动

D. 物体一直向东运动,从不向西运动。在1分钟末静止于初始位置之东

常见错误:很多同学认为速度与合力间也有对应关系,当合力的方向改变时,速度和加速度的方向都随着改变,结果错选了B 选项。

正确解法:与合力相对应的是加速度而不是速度。第1秒内物体向东做匀加速直线运动,1秒末合力的方向发生了变化,加速度的方向也随着改变,但由于惯性,速度方向并未改变,在第2秒内物体做匀减速直线运动,2秒末速度减小到零,按此推理,奇数秒末物体向东的速度最大,偶数秒末物体的速度为零,因此1分钟末,物体静止于初始位置之东,D 选项正确。

3. 受力情况与运动情况间的对应关系问题

牛顿运动定律的核心是牛顿第二定律,它揭示了物体的运动情况与其受力情况间的对应关系,这种对应关系就是整个力学的中心思想,即 受力情况运动情况

0=合F 静止或匀速(0=a )

≠合F 变速运动(0≠a ) [

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少(sin37°=,cos37°=)

解析:

(1)设小球受的风力为F ,小球质量为m ,因小球做匀速运动,则mg F μ=

又F = 即5.0=μ

(2)设杆对小球的支持力为N F ,摩擦力为

f F ,选加速度的方向为x 轴的正方向,建

立直角坐标系,将各个力正交分解。

沿杆方向有 ma

F mg F f =-+θθsin cos ①

垂直于杆的方向有 0cos sin =-+θθmg F F N ②

N f F F μ= ③

将6.0sin =θ,8.0cos =θ,代入以上各式可解得g a 43=,由221at s =可得

g s a s t 382==。

4. 瞬间问题(略)

5. 两物体间相对运动的问题

此类问题难度较大,一般多出现在高考的压轴题中,解此类题目不但要分析每个物体的受力情况与运动情况,还要考虑两物体间的相互联系,例如:两物体位移 速度 加速度间的关系等。

[例4] 一小圆盘静止在桌面上,位于一方桌的水平桌面的中央,桌布的一边与桌的AB 重合,

图2

分析:当桌布沿水平方向加速度运动时,圆盘会在桌布对它的摩擦力作用下,也沿水平方向做加速度运动,当桌布抽离圆盘后,圆盘由于惯性,在桌面对它的摩擦力的作用下,继续向前做匀减速运动,直到静止在桌面上。

解答:设桌长为L ,圆盘的质量为m ,在桌布从圆盘下抽出的过程中,盘的加速度为1a ,所经历的时间为1t ,盘离开桌布时,盘和桌布的速度分别为1v 和2v ,桌布抽出后,盘在桌面上做匀减速运动的加速度的大小为2a ,所经历的时间为2t 。

对盘运用牛顿第二定律有

11ma mg =μ ①

22ma mg =μ ②

对盘和桌布运用运动学公式有

111t a =ν ③

221t a =ν ④

12at =ν ⑤ 盘在整个运动过程中的平均速度是121ν,盘没有从桌面上掉下来的条件是

L t t v 21)(21211≤+⑥ 桌布在抽出的过程中,桌布和盘运动的距离分别为1221t v ,1121t v ,由距离关系有

L t v t v 2121211112=- ⑦ 由以上各式解得g a 12212μμμμ+≥

(二)牛顿第二定律在系统中的应用

牛顿第二定律不仅适用于单个物体,同样也适用于系统,下面总结如下:

1. 若系统内各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析其受到的外力及运动情况,利用牛顿第二定律求出加速度,若求系统内各物体之

间的作用力,应先把物体进行隔离,对某个物体进行单独受力分析,再利用牛顿第二定律解决:

[例1] 如图1所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1:3,用一自然长度为1m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。(cos53°=)求:

((少

图1

(a m m F B A )(+= ①

再取B 为研究对象

a

m F B =?53cos 弹 ② ①②联立求解得N

F 25=弹 由几何关系得,弹簧的伸长量

m m x 25.0)153sin 1(=-?=?

所以弹簧的劲度系数m N x F k /100=?=弹。

(2)撤去力F 瞬间,弹簧弹力不变,A 的加速度

A m F a ?=

'53cos 弹

比较上式1:3:='a a 点评:两者具有相同的加速度,先利用整体法求出加速度,再用隔离法问题迎刃而解。本题为瞬时加速度问题,正确进行各阶段受力分析是解题的关键。弹簧弹力与绳子弹力的区

别在于前者弹力改变需时间,而后者改变不计时间。

练1:如图2所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为μ,物体B 与斜面间无摩擦。在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。已知斜面的倾角为θ,物体B 的质量为m ,则它们的加速度a 及推力F 的大小为( )

A. )sin ()(,sin θμθ++==g m M F g a

图2

2. 若系统内有几个物体,这几个物体的质量分别为1、2、3、…,加速度分别为1、2a 、3a 、…,这个系统的合外力为合F ,则这个系统的牛顿第二定律的表达式为11a m F =合 +

++3322a m a m (注意是矢量相加)。若一个系统内各物体的加速度大小不相同,而又不需要求系统内物体间的相互作用力时,对系统整体列式子,可减少未知的内力,简化数学运算。

图3

分析:本题无须求1m 与2m 之间作用力的大小,可直接用牛顿第二定律在系统整体中应用。2211a m a m F F f +=-

点评:系统受到的合外力等于系统内各质点质量与其加速度乘积的矢量和。

练2:在粗糙的水平面上有一质量为M 的三角形木块,两底角分别为α、β,在三角形木块的两个粗糙斜面上,有两个质量为1m 、2m 的物体分别以1a 、2a 的加速度沿斜面下滑。三角形木块始终是相对地面静止,求三角形木块受到静摩擦力和支持力

答案与提示:把1m 、2m 、M 看作一个系统,将加速度沿水平方向和竖直方向分解。 水平方向上:βαcos cos 2211a m a m F f -=

竖直方向上:βαsin sin 221112a m a m F g m g m Mg N +=-++

解得:βαsin sin )(221121a m a m g m m M F N --++=

(三)用整体法求“静中有动”问题

我们在研究由多个物体构成的“静中有动”系统的时候,如果从整体出发来分析,找出“静”的部分和“动”的部分,再利用牛顿第二定律求解,常常给人以峰回路转、柳暗花明[

ma ma a M F g m M N =+'=-+)(

即ma g m M F N -+=)(

[

根据牛顿第二定律得

Ma

Ma

a

m

g

m

M=

+'

=

+)

(

g

M

m

M

a

+

=

,故正确答案C。

[例3] 如图4所示,质量M=10kg的木楔ABC静止于粗糙水平面上,动摩擦因数μ=,在木楔的倾角θ=30°的斜面上,有一质量m=1kg的物块由静止开始沿斜面下滑,当滑行路程s=时,其速度v=s,在此过程中木楔没有动,求地面对木楔的摩擦力的大小和方向。(g=10m/s2)

图4 v 将木楔和物体视为一整体,以整体为研究对象,整体在水平方向只受静摩擦力

f F 的作

用,木楔静止,加速度0='a ,取水平向左为正方向,由牛顿第二定律得 θθcos cos ma ma a M F f =+'=

即N N ma F f 61.0237.01cos =??==θ,方向向左。

[例4] 如图5

A. 增加图5

解析:设M F NO (+=细线烧断后,物块沿斜面下滑的加速度为2,将斜面和物块视为一整体,以整体为研究对象,在竖直方向上,受到重力g m M )(+与支持力F N 两个力的作用。斜面静止,加速度0='a ,取竖直向下为正方向,由牛顿第二定律得

?=?+'=-+30sin 30sin )(ma ma a M F g m M N

所以?-+=30sin )(ma g m M F N

由牛顿第三定律可知,斜面对测力计的压力在数值上等于F N ,即此时测力计的读数为?-+=='30sin )(ma g m M F F N N

,故测力计的读数减小了 N NO N F F F '-=? []?-+-+=30sin )()(ma g m M g m M N N ma 12154.030sin =??=?=

正确答案为C 。

[例5] 如图6水平压力的大小。

图6

解析:设物体A a =B a 即B A B A A m m g m a +=

以A 、B 、C 整体为研究对象,整体在水平方向上只受到凸出部分的水平压力N F ,取水平向右为正方向,C 静止,其加速度

0=c a ,B 竖直向上加速,在水平方向0='B a 。根据牛顿第二定律得θcos A A B B c c N a m a m a m F +'+=

B A B A A A A m m m m g m a m +-=

=)sin (cos cos θθθ

根据牛顿第三定律,斜面作用于地面凸出部分的水平压力

B A B A A N N m m m m g m F F +-==')sin (cos θθ

从以上几个例题可以看出,对于“静中有动”问题,在研究过程中,我们选取整个系统为研究对象,对整个系统这个“整体”根据“牛顿第二定律”列出关系式,可使问题变繁为简,收到事半功倍的效果。

(四)物体分离的两个临界条件及应用

在解答两个相互接触的物体分离的问题时,不少同学利用“物体速度相同”的条件进行分析得出错误的结论。此类问题应根据具体情况,利用“相互作用力为零”或“物体加速度1. [例1] 如图1A 与B 平F 于A ,使A 、

图1

解析:A 、B 小。A 、B 力N F 和水平力F 三个力的作用。根据牛顿第二定律有

a m m F g

m F a

m F F N N )(cos sin 2111+===-θθ

由以上三式可得,F 的最大值为2211tan )(m g m m m F θ+=

[例2] 如图2所示,质量m=2kg 的小球用细绳拴在倾角?=37θ的斜面上,g=10m/s 2,求:

(1)当斜面以2

1/5s m a =的加速度向右运动时,绳子拉力的大小;

(2)当斜面以22/20s m a =的加速度向右运动时,绳子拉力的大小。

图2

解析:2/3.13s m =。

(1)g a <1,小球仍在斜面上,根据牛顿第二定律有mg F F N T =+θθcos sin 1sin cos ma F F N T =-θθ

代入数据解之得N F T 20=

(2)g a >2cot θ,小球离开斜面,设绳子与水平方向的夹角为α,则2cos ma F T =α mg F T =αsin 代入数据,解之得N F T 520=

[例3] 如图3

止状态。P 的拉力F ,使P 2/10s m g =图3

解析:P 向上做匀加速直线运动,受到的合力为恒力。之前,秤盘对物体的支持力N 逐渐减小;之后,物体离开秤盘。设P 处于静止状态时,弹簧被压缩的长度为x ,则kx mg =,221at x =

代入数据,解之得2

/5.7s m a =

根据牛顿第二定律,有ma mg F F N =-+

所以N F ma mg F -+=

开始时,脱离时,[例4] 如图4大小为2g

图4

解析:绳1mg F ma F T T =?=?30sin 30cos 20

2

所以g a 30=

因为车的加速度02a g >,所以物块已“飘”起来,则绳1和绳2的张力大小分别为

F T 1=2. [例

图5

解析:当托盘以a 匀加速下降时,托盘与物体具有相同的加速度,在下降过程中,物体所受的弹力逐渐增大,支持力逐渐减小,当托盘与物体分离时,支持力为零。设弹簧的伸长量为x ,以物体为研究对象,根据牛顿第二定律有

k a g m x ma

kx mg )

(-==-所以 再由运动学公式,有221at x =即a x t 2=

[例6] 如图6推力A F 作用于A N t F A )29(-=,位移是多少

图6

解析:先假设为N t F B )22(+=。在t=0时,N F A 9=,N F B 2=,此时A 、B 加速度分别为

2/3s m m F a A A A == 2

/31s m m F a B B B ==

则有B A a a >

B A a a >,说明A 、B 间有挤压,A 、B 间实际上存在弹力。

随着t 的增大,A a 减小,B a 增大,但只要B A a a >,两者总有挤压。当A F 对A 独自产生的加速度与B F 对B 独自产生的加速度相等时,这种挤压消失,A 、B 开始脱离,有

B B

A A m F m F = 即 622329t t +=-

解之得

s t 38= A 、B 共同运动时,加速度大小为

2

2

/9

11/6

3)22()29(s m s m t t m m F F a B A B A =+++-=++= A 、B 共同位移为

m m at s 3.4)38(911212122=??==

【模拟试题】

A 1.

是(A. B. C. D. 2. A. C. 加速度先增大,后减小到零 D. 加速度一直增大到某个定值

3. 如图2所示,自由下落的小球,从接触竖直放置的弹簧开始到弹簧的压缩量最大的过程中,小球的速度及所受的合外力的变化情况是( )

A. 合力变小,速度变小

B. 合力变小,速度变大

C. 合力先变小后变大,速度先变大后变小

D. 合力先变大后变小,速度先变小后变大

4. 如图3所示,一弹簧秤放在光滑水平面上,外壳的质量为m ,弹簧及挂钩的质量不计。

绳连接,A平放在滑块上,与滑块间动摩擦因数为,细绳跨过滑轮后将B物体竖直悬挂,设绳和轮质量不计,轮轴不受摩擦力作用,水平推力F作用于滑块,为使A和B与滑块保持

终保持静止,则在物块m 上、下滑动的整个过程中( )

A. 地面对物体M 的摩擦力方向没有改变;

B. 地面对物体M 的摩擦力先向左后向右;

C. 物块m 上、下滑时的加速度大小相同;

D. 地面对物体M 的支持力总小于g m M )(+ 图3

4. 如图4所示,质量为2m 的物体2放在正沿平直轨道向右

行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为

1m 的物体,与物体1相连接的绳与竖直方向成θ角,则( )

A. 车厢的加速度为θsin g

B. 绳对物体1的拉力为θcos 1g

m

C. 底板对物体2的支持力为g m m )(12-

D. 物体2所受底板的摩擦力为θtan 2g m 图4

5. 如图5所示,一木板B 放在平面上,木块A 放在B 的上面,A 的右端通过轻质弹簧秤A. 木块A B. C. 若木板B D. 若用F 2A

B F F T

图5

6. 如图6所示,倾角为?30的光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于

N M

b

a

30°

静止状态,设拔去销钉M (撤去弹簧a )瞬间,小球的加速度大小为2/6s m 。若不拔去销钉M ,而拔去销钉N (撤去弹簧b )瞬间,小球的加速度可能是(g 取2/10s m )( )

A. 2/11s m ,沿杆向上

B. 2

/11s m ,沿杆向下

C. 2/1s m ,沿杆向上

D. 2/1s m ,沿杆向下

图6

7. 一辆载货汽车的质量是5000kg ,它能以2/3.0s m 的加速度起动,卸下货物后,能以2/5.0s m 的加速度起动,设汽车所受的合外力大小不变,则货物质量为 kg 。

8. 质量为60kg 的人,从高处跳下,以s m /8的速度着地,着地时双腿弯曲,经停下来,地面对人的平均作用是 N 。

9.“蹦极”是一项勇敢者的运动。如图7所示,某人用弹性橡皮绳拴住

身体自高空P 处自由下落,在空中感受失重的滋味,若此人质量为50kg ,

橡皮绳长15m ,人可看成质点,g 取2

/10s m 。则

(1)此人从点P 处自由静止下落至运动停止瞬间所用时间为4s ,则

橡皮绳对人的平均作用力约为 N 。

(2)若橡皮绳可相当一根劲度系数为100 N/m 的轻弹簧,则此人从

P 处自由下落 m 时具有最大速度。

图7

【试题答案】

A

1. AC

2. BC

3. C

4. B

5.αtan )(g m M +

6.(1)mg 332,mg 313- (2)mg 313,0

7. 16m/s 8.θcot )(g M m +

9. 3N 10. 最大压力为6N ;最小压力为0

11. ))(2(g g M m μ-+

B

1. B

2. CD

3. AD

4. BD

5. AD

6. BC

7. 2000kg

8. 1200N

9.(1)882N (2)20m

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

4.5 牛顿运动定律应用—【新教材】人教版(2019)高中物理必修第一册讲义

物理概念和规律: 一、动力学的两类基本问题:1.从受力情况确定运动情况,2.从运动情况确定受力情况。 解决两类动力学问题的方法:(1)把握“两个情况”。即物体的受力情况、运动情况,利用力的合成与分解求合力,利用运动学公式列方程。一个桥梁:物体的加速度是联系运动和力的桥梁,先由牛顿第二定律或运动学公式求加速度。 (2)寻找多过程运动问题中各过程间的相互联系。前一个过程的未速度就是后一个过程的 初速度,画图找出各过程间的位移联系。 二、瞬时加速度问题 1.一般思路:分析物体的受力变化情况→由牛顿第二定律列方程→瞬时加速度 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹 力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特 殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性, 弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的 弹力不突变。 三、常见的两类动力学图像问题 1.已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运 力情况。 2.已知物体在某一过程中速度、加速度随时间的变化图线,要求分析物体的受力情况。 四、连接体问题:1.物体系中各物体的加速度相同。这类问题由于物体系中的各物体加速度相同,可将它们看作一个整体,分析整体的受力情况和运动情况,可以根据牛顿第二定律,求出整体的外力中的未知力或加速度。若要求物体系中两个物体间的相互作用力,则应采用隔离法将其中某一物体从物体系中隔离出来,进行受力分析,应用第二定律求某一未知力。这类问题应是整体法和隔离法交替运用,来解决问题的。 2.物体系中某一物体作匀变速运动,另一物体处于平衡状态,两物体在相互作用,这类问题应采用牛顿运动定律和平衡条件联立来解决。应用隔离法,通过对某一物体受力分析应用第二定律(或平衡条件)求出两物体间的相互作用,再过渡到另一物体,应用平衡条件(或第二定律)求出最后的未知量。 五、临界问题 1.某种物理现象转化为另一种物理现象的转折状态叫做临界状态。临界状态又可理解为“恰好出现

人教版高一物理必修1第四章牛顿运动定律知识点及习题(含实验) (1)

牛顿运动定律 1、理想斜面实验 (1)亚里士多德:力是维持物体运动的原因 (2)伽利略理想斜面实验:方法:实验+科学推理 让小球从斜面上滚下来(实验) 若没有摩擦小球将上升到原来高度 减小斜面倾角,小球将上升到原来高度 减小斜面倾角直至水平,小球为想达到原来高度将持续运动下去。 结论:力不是维持物体运动的原因,物体停止是因为受到摩擦阻力的作用。 2、牛顿第一定律(惯性定律) 一切物体总保持,直到有外力迫使它改变这种状态为止。 拓展:运动的物体不受外力,总保持 静止的物体不受外力,总保持 物体的运动状态改变了,说明了 运动状态改变的标志: 例题1:关于力和运动状态的改变,下列说法不正确的是( ) A. 物体加速度为零,则运动状态不变 B. 只要速度大小和方向二者中有一个发生变化,或者二者都变化,都叫运动状态发生变化 C. 物体运动状态发生改变就一定受到力的作用 D. 物体运动状态的改变就是指物体的加速度在改变 2、在水平的路面上有一辆匀速行驶的小车,车上固定一盛满水的碗。现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车在此种情况下的运动叙述正确的是() A. 小车匀速向左运动 B. 小车可能突然向左加速运动 C. 小车可能突然向左减速运动 D. 小车可能突然向右加速运动 3、如图所示,重球系于线DC下端,重球下再系一根同样的绳BA,下列说法正确的是()

A.在绳的A 端缓慢增加拉力,结果CD绳拉断 B.在绳的A端缓慢增加拉力,结果AB绳拉断 C.在绳的A端突然猛一拉,结果AB绳拉断 D.在绳的A端突然猛一拉,结果CD绳拉断 4、如图所示,一个劈形物体A,各面均光滑,放在固定的斜面上,上表面呈水平,在水平面上放一个小球B,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是() A. 沿斜面向下的直线 B. 竖直向下的直线 C. 无规则曲线 D. 抛物线 3、牛顿第三定律:作用力与反作用力定律(不可叠加) 等大:反向: 异物:共线: 共性:同生同失: 例题:如图所示,一个箱子放在水平地面上,箱子内有一根固定的竖直杆,在杆上套着一个环,已知箱子和竖直杆的总质量为M,环的质量为m,环沿竖直杆加速下滑,环与竖直杆的摩擦力大小为Ff,则此时箱子对地面的压力为() A. Mg B. Mg+mg C. Mg+mg?Ff D. Mg+Ff 4、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。 公式是: 对牛顿第二定律的理解 (1)同体性:F、m、a是研究同一个系统的三个物理量,不要乱写m (2)瞬时性: (3)矢量性 (4)力的独立性:作用在物体上的每个力都将产独立地产生各自的加速度,与其他力无关,合外力的加速度即是这些加速度的矢量和。 注意:牛顿运动定律只适用于宏观、低速的物体,不适用于微观、高速的物体,只适用于惯性参考系,不适用于非惯性参考系。 5、牛顿第二定律的一般解题步骤和方法 (1)选对象定状态析受力列方程

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

2018版浙江高中物理学业水平考试物理讲义:必修1 第四章 牛顿运动定律

考点及考点要求 考点一牛顿第一定律 1.历史上对于运动和力关系的不同认识 (1)亚里士多德的错误观点:必须有力作用在物体上,物体才能运动 ______________________. (2)伽利略:运动不需要力来维持,________________________________,而是改变物体运动状态的原因. (3)笛卡尔:如果运动中的物体不受力,物体将保持原有速度(大小、方向)沿同一直线运动,既不停下来也不偏离原来的方向.

2.速度表示物体的运动状态,速度变(大小变或方向变或大小、方向都变)则运动状态变.3.牛顿第一定律 (1)内容:一切物体总保持________________________或____________,除非作用在它上面的力迫使它________这种状态. (2)意义:力不是________物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因,一切物体都有________,因此牛顿第一定律又称为____________. 4.惯性 (1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质. (2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小. (3)普遍性:惯性是物体的固有属性,一切物体都有惯性,与物体的运动情况和受力情况无关. 1.伽利略的理想实验说明了( ) A.要物体运动必须有力的作用,没有力的作用,物体将静止 B.要物体静止必须有力的作用,没有力的作用,物体将一直运动 C.物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态 D.物体不受外力作用时,一定处于静止状态 图1 2.如图1所示为月球车示意图,当该月球车分别在地面和月面以相同的速率行驶时,下面判断正确的是( ) A.在地面运动时的惯性较大

专题 牛顿运动定律的综合应用

专题1牛顿运动定律的综合应用 动力学中的图象问题 1.常见的动力学图象及问题类型 2.解题策略——数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与规律”间的关系;然后根据函数关系读取图象信息或描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标轴包围的“面积”等所表示的物理意义,尽可能多地提取有效信息。 考向动力学中的v-t图象 【例1】(多选)(2015·全国Ⅰ卷,20)如图1甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() 图1 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析由v-t图象可求物块沿斜面向上滑行时的加速度大小为a=v0 t1 ,根据牛顿

第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1。同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1 cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知, 向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为s =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高 度为s sin θ=v 02t 1×v 0+v 12gt 1 =v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误。 答案 ACD 考向 动力学中的F -t 图象 【例2】 (多选)(2019·全国Ⅲ卷,20)如图2(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2。由题给数据可以得出( ) 图2 A.木板的质量为1 kg B.2 s ~4 s 内,力F 的大小为0.4 N C.0~2 s 内,力F 的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律测试题

《牛顿运动定律》测试题 一、选择题(每小题给出的四个选项中至少有一项是正确的,将正确选项填入括号内,每题4分,共48分。) 1、关于物体运动状态的改变,下列说法中正确的是() A、物体运动的速率不变,其运动状态就不变 B、物体运动的加速度不变,其运动状态就不变 C、物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D、物体的运动速度不变,我们就说它的运动状态不变 2、关于惯性的大小,下列说法中正确的是() A、质量相同的物体,在阻力相同情况下,速度大的不容易停下来,所以速度大的物体惯性大 B、上面两个物体既然质量相同,那么惯性就一定相同 C、推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大 D、在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 3、关于物体运动状态与所受外力的关系,下列说法中正确的是() A、物体受到恒定外力作用时,它的运动状态一定不变 B、物体受到的合力不为零时,一定做变速运动 C、物体受到的合外力为零时,一定处于静止状态 D、物体的运动方向就是物体受到的合外力的方向 4、物体静止于水平桌面上,则下列说法中正确的是() A、桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B、物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C、物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D、物体对桌面的压力和桌面对物体的支持力是一对平衡的力 5、下列说法正确的是() A、体操运动员双手握住单杠吊在空中不动时处于失重状态 B、蹦床运动员在空中上升和下落过程中都处于失重状态 C、举重运动员在举起杠铃后不动的那段时间内处于超重状态 D、游泳运动员仰卧在水面静止不动时处于失重状态 6、设雨滴从很高处竖直下落,所受空气阻力f和速度v成正比.则雨滴的运动情况() A、先加速后减速,最后静止 B、先加速后匀速 C、先加速后减速直至匀速 D、加速度逐渐减小到零 1,g为重力加速度。人对电梯7、一质量为m的人站在电梯中,电梯加速上升,加速大小为g 3

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

牛顿运动定律试题及答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

02物理竞赛讲义——牛顿运动定律

第二部分牛顿运动定律 第一讲牛顿三定律 一、牛顿第一定律 1、定律。惯性的量度 2、观念意义,突破“初态困惑” 二、牛顿第二定律 1、定律 2、理解要点 a、矢量性 b、独立作用性:ΣF →a ,ΣF x→a x… c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。 3、适用条件 a、宏观、低速 b、惯性系 对于非惯性系的定律修正——引入惯性力、参与受力分析 三、牛顿第三定律 1、定律 2、理解要点 a、同性质(但不同物体) b、等时效(同增同减) c、无条件(与运动状态、空间选择无关) 第二讲牛顿定律的应用 一、牛顿第一、第二定律的应用 单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。 应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。 1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中() A、一段时间内,工件将在滑动摩擦力作用下, 对地做加速运动 B、当工件的速度等于v时,它与皮带之间的摩 擦力变为静摩擦力 C、当工件相对皮带静止时,它位于皮带上A点 右侧的某一点 D、工件在皮带上有可能不存在与皮带相对静止 的状态 解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。 较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t →0 ,a →

实验四: 验证牛顿运动定律

实验四: 验证牛顿运动定律 , 注意事项 1.平衡摩擦力:在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,即不要给小车加任何牵引力,且要让小车拖着纸带匀速运动。 2.实验条件:小车的质量M 远大于小盘和砝码的总质量m 。 3.操作要领:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,再放开小车,且应在小车到达定滑轮前按住小车。 误差分析 1.因实验原理不完善引起误差。以小车、小盘和砝码整体为研究对象得mg =(M +m )a ; 以小车为研究对象得F =Ma ;求得F =M M +m ·mg =11+m M ·mg <mg ,本实验用小盘和砝码的

总重力mg 代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力。 2.摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差。 考点一 教材原型实验 考向1 实验原理与实验操作 (2019·广东实验中学月考改编)某实验小组利用如图所示的装置探究加速度与力、 质量的关系。 (1)实验中除了需要小车、砝码、托盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、两根导线、复写纸、纸带之外,还需要________、________。 (2)下列做法正确的是________。 A .调节滑轮的高度,使牵引小车的细绳与长木板保持平行 B .在调节木板倾斜角度平衡小车受到的滑动摩擦力时,将装有砝码的托盘通过定滑轮拴在小车上 C .实验时,先放开小车再接通打点计时器的电源 D .通过增减小车上的砝码改变质量时,不需要重新调节木板倾斜度 E .用托盘和盘内砝码的重力作为小车和车上砝码受到的合外力,为减小误差,实验中一定要保证托盘和砝码的总质量远小于小车和车上砝码的总质量 (3) 某同学以小车和车上砝码的总质量的倒数1M 为横坐标,小车的加速度a 为纵坐标,在坐标纸上作出的a -1M 关系图线如图甲所示。由图甲可分析得出:加速度与质量成________关系(填“正比”或“反比”);图线不过原点说明实验有误差,引起这一误差的主要原因是平

牛顿运动定律试题

牛顿运动定律试题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

2017-2018学年度3E试题4-1 分卷I 一、单选题 1.有关超重和失重,以下说法中正确的是( ) A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.若空气阻力忽略不计,竖直上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.站在月球表面的人处于失重状态 2.如图所示,光滑水平面上放置质量分别为m、2m 和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F拉其中一个质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( ) A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻绳刚好被拉断C.当F逐渐增大到时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为 3.竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中.不计空气阻力,取向上为正方向,在下列图象中最能反映小铁球运动情况的是( )A. B. C. D. 4.某跳水运动员在3 m长的踏板上起跳,我们通过录像观察到踏板和运动员要经历如图所示的状态,其中A为无人时踏板静止点,B 为人站在踏板上静止时的平衡点,C为人在起跳过程中人和踏板运动的最低点,则下列说法中正确的是( ) A.人和踏板由C到B过程中,人向上做匀加速运动 B.人和踏板由C到A的过程中,人处于超重状态 C.人和踏板由C到A的过程中,先超重后失重 D.人在C点具有最大速度 5.为了节省能量,某商场安装了智能化的电动扶梯.无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示.那么下列说法中正确的是( ) A.顾客始终受到三个力的作用 B.顾客始终处于超重状态 C.顾客对扶梯作用力的方向先指向左下方,再竖直向下

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

牛顿运动定律(竞赛学生版)

2014航班讲义牛顿运动定律(一) 1、如图所示,C为一放在固定的粗糙水平桌面上的斜面,其质量m C=6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆可不计。A和B是两个滑块,质量分别为m A=3.0kg,m B= 0,5kg,由跨过定滑轮的不可伸长的轻绳相连,开始时设法抓住A,B和C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直,今用一大小等于26.5N的水平推力F作用于C,并同时释放A,B和C.若C沿桌面向左滑行,其加速度 a=3.0m/s2,B相对桌面无水平方向位移(绳子是一直绷紧的).试求与桌面的摩擦系数μ (图中α = 37°,β = 53°,重力加速度 g = 10m/s2) 2.如图所示,一个长为2l的竖硬滑槽AB,沿竖直面滑下,在滑槽的中点安放 一个相对滑槽固定不动的小球C,其质量为m,B端向右以速度v匀速运动. 试求当α = 45°角时,小球对滑动槽的作用力. 3.如图所示,一个圆柱体和一个楔子,互相触及地沿着两个与地面成 相等夹角α的固定斜面作无摩擦的移动.圆柱体质量为m1,楔子的质 量为m2 .试求楔子对圆柱体的压力.

4.如图所示,质量为M的劈和质量为m的杆,在施加于劈上的水平力 F作用下,分别以加速度a1和a2做无摩擦运动,劈的倾角为α.求加 速度a1和a2以及劈与杆的作用力N. 5.如图, 一三角形楔ABC置于光滑水平面上,两斜边与平面夹角分别为 300,600,在斜边上有两物体m1,m2,用不可伸长的细绳联接并跨在楔顶点A上的一定滑轮上,m1,m2可在斜面上无摩擦地滑动.令楔的质量为M,已知三物体的质量之比为 m1:m2:M= 4:1: 1 6.滑轮光滑且质量可忽略.求(1)楔的加速度a及m1对于M的加速度a'. (2)若m1从静止开始沿斜面移动20cm,楔沿水平面移动的距离. 6. 在火车车厢内有一长l,倾角为θ的斜面,当车厢以恒定加速度 a0从静止幵始运动时,物体自倾角为θ的斜面顶部A点由静止开始下 滑,已知斜面的静摩擦因数为μ。求物体滑至斜面底部B点时,物体 相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多少时,物体 可静止于A点?

高一物理牛顿运动定律测试题

(三)牛顿运动定律测验卷 一.命题双向表 二. 期望值:65 三. 试卷 (三)牛顿运动定律测验卷 一.选择题(每道小题 4分共 40分 ) 1.下面关于惯性的说法正确的是() A.物体不容易停下来是因为物体具有惯性 B.速度大的物体惯性一定大 C.物体表现出惯性时,一定遵循惯性定律 D.惯性总是有害的,我们应设法防止其不利影响 2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后 又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零 B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值 C.物体的速度从零开始逐渐增大到某一数值 D.以上说法均不对 3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动, 且v1

图-1 图 3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1m2 D .力F 与v1、v2反向,且m1 2a 1 D a 2 = 2a 1 9、质量为m 1和m 2的两个物体,由静止从同一高度下落,运动中所受的空气阻力分别是F 1和F2.如果发现质量为m 1的物体先落地,那么 A. m 1>m 2 B. F 1<F 2 C. F 1/m 1<F 2/m 2 D. F 1/m 1>F 2/m 2 10、如图所示,将质量为m =0.1kg 的物体用两个完全一样的竖直轻弹簧固定在升降机内,当升降机和物体以4m/s 2的加速度匀加速向上运动时,上面的弹簧对物体的拉力为0.4N ,当升降机和物体以8m/s 2的加速度向上运动 时,上面弹簧的拉力为 A 、0.6N B 、0.8N C 、1.0N D 、 1.2N

实验验证牛顿运动定律

实验:验证牛顿运动定律 [基本要求] [数据处理] 1.探究加速度与力的关系 以加速度a 为纵轴、F 为横轴,先根据测量的数据描点,然后作出图象,看图象是否是通过原点的直线,就能判断a 与F 是否成正比. 2.探究加速度与质量的关系 以a 为纵轴、m 为横轴,根据各组数据在坐标系中描点,将会得到如图甲所示的一条曲线, 由图线只能看出m 增大时a 减小,但不易得出a 与m 的具体关系.若以a 为纵轴、1m 为横轴,将会得到如图乙所示的一条过原点的倾斜直线,据此可判断a 与m 成反比. [误差分析] 1.因实验原理不完善引起的误差:本实验用小盘和砝码的总重力m ′g 代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力. 2.摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.

[注意事项] 1.平衡摩擦力:一定要做好平衡摩擦力的工作,也就是调整出一个合适的斜面,使小车的重力沿着斜面方向的分力正好平衡小车所受的摩擦阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,即不要给小车加任何牵引力,并要让小车拖着打点的纸带运动. 2.不需要重复平衡摩擦力:整个实验中平衡了摩擦力后,不管以后是改变小盘和砝码的总质量还是改变小车的质量,都不需要重新平衡摩擦力. 3.实验条件:每条纸带必须在满足小车的质量远大于小盘和砝码的总质量的条件下打出,只有如此,小盘和砝码的总重力才可视为小车受到的拉力. 4.“一先一后”:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,再释放小车. 考向1 对实验原理和注意事项的考查 [典例1] (1)我们已经知道,物体的加速度a 同时跟合外力F 和质量M 两个因素有关.要研究这三个物理量之间的定量关系,需采用的思想方法是 . (2)某同学的实验方案如图所示,她想用砂桶的重力表示小车受到的合外力F ,为了减少这种做法带来的实验误差,她先做了两方面的调整措施: ①用小木块将长木板无滑轮的一端垫高,目的是 . ②使砂桶的质量远小于小车的质量,目的是使拉小车的力近似等于 . (3)该同学利用实验中打出的纸带求加速度时,处理方案有两种: A.利用公式a =2x t 2计算 B.根据逐差法利用a =Δx T 2计算 两种方案中,选择方案 比较合理. [解析] (1)实验研究这三个物理量之间关系的思想方法是控制变量法.(2)用小木块将长木板无滑轮的一端垫高,目的是平衡摩擦力,只有在满足砂桶的质量远小于小车的质量时,拉力才可近似等于砂桶的重力.(3)计算加速度时,用逐差法误差较小. [答案] (1)控制变量法 (2)平衡摩擦力 砂桶的重力 (3)B 考向2 对数据处理和误差的考查 [典例2] (2016·新课标全国卷Ⅲ)某物理课外小组利用图(a)中的装置探究物体加速度与其所受合外力之间的关系.图中,置于实验台上的长木板水平放置,其右端固定一轻滑轮;轻绳跨过滑轮,一端与放在木板上的小滑车相连,另一端可悬挂钩码.

相关文档
最新文档