“四色定理”简捷证明(完整版)

“四色定理”简捷证明(完整版)
“四色定理”简捷证明(完整版)

“四色定理”简捷证明

王若仲(王洪)

贵州省务川自治县实验学校贵州564300

摘要:1852年,毕业于伦敦大学的格斯里(FrancisGuthrie)来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。就在1976年6月,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,结果没有一张地图是需要五色的,最终证明了四色定理。我发现“四色定理”还有一种简捷的证明方法,就是利用球面几何的知识来证明“四色定理”。

关键词:四色定理;球面几何;线段;相交

中图分类号:0156

引言

1852年,毕业于伦敦大学的格斯里(FrancisGuthrie)来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?他和他正在读大学的弟弟决心试一试,但是稿纸已经堆了一大叠,研究工作却是没有任何进展。1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教,但直到1865年哈密顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1878~1880年两年间,著名的律师兼数学家肯普(Alfred Kempe)和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文,宣布证明了四色定理。大家都认为四色猜想从此也就解决了,但其实肯普并没有证明四色问题。11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。

不过,让数学家感到欣慰的是,郝伍德没有彻底否定肯普论文的价值,运用肯普发明的方法,郝伍德证明了较弱的五色定理。这等于打了肯普一记闷棍,又将其表扬一番,总的来说是贬大于褒。真不知可怜的肯普律师是什么心情。追根究底是数学家的本性。一方面,五种颜色已足够,另一方面,确实有例子表明

三种颜色不够。那么四种颜色到底够不够呢?这就像一个淘金者,明明知道某处有许多金矿,结果却只挖出一块银子,你说他愿意就这样回去吗?

人们发现四色问题出人意料地异常困难,曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。

1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,温恩从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

高速数字计算机的发明,促使更多数学家对“四色问题”的研究。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。就在1976年6月,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,结果没有一张地图是需要五色的,最终证明了四色定理,轰动了世界。

尽管随着计算机的普及,绝大多数数学家对四色定理的证明没有疑问,但某些数学家对经由电脑辅助的证明方式仍旧不够满意,希望能找到一个完全“人工”的证明。正如汤米·R·延森和比雅尼·托夫特在《图染色问题》一书中问的:“是否存在四色定理的一个简短证明,……使得一个合格的数学家能在(比如说)两个星期里验证其正确性呢?”

“四色定理”的证明也需要进行再次审视。还有人将计算机辅助证明和传统证明的差别比喻为借助天文望远镜发现新星和用肉眼发现新星的区别。计算机证明并没有获得数学界普遍的认可。不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法来证明四色问题。

“四色定理”证明

定义1:球面上任意A,B两点之间可以作无数条线段连接;其中最短的一条线段称为A,B两点的距离。

定义2:球面上两条线段有交点,则称这两条线段相交;反之,称这两条线段不相交。

定理1:球面上A,B两点呈现为球体中心轴对称时,那么球面上连接A,B 两点的线段均相等。

证明:因为球面上A,B两点呈现为球体中心轴对称,我们设球体中心点为O,显然OA=OB,现在以OA或OB为半径,以点O为圆心,从A点到B点作半圆;那么以连接A,B两点的直线为轴,以作的半圆为弧,完全可以绕球面旋转一周;故定理1成立。

定理2:球面上A,B两点不呈现为球体中心轴对称时,那么球面上连接A,B两点的所有线段中,有一条线段最短。

证明:因为球面上A,B两点不呈现为球体中心轴对称,假定球面上连接A,B两点的所有线段中,没有一条线段最短;虽然OA=OB,现在以OA或OB为半径,以点O为圆心,从A点到B点作弧;显然作的弧不是半圆,那么以连接A,B两点的直线为轴,以作的弧,不可能完全绕球面旋转一周,这样就产生矛盾;故定理2成立。

定理3:球面上任意A,B,C,D四点,任意两点之间有一条线段连接,球面上必定会出现这样的图形,线段间出现的交点只是A,B,C,D四点。

证明:因为A,B,C,D为球面上任意四点,我们总可以把A,B,C,D设计为一个三棱锥形的四个顶点,这样的话,球面上A,B,C,D四点中,任意两点之间连接一条线段,一定会出现这样的图形,线段间出现的交点只是A,B,C,D四点;故定理3成立。

定理4:球面上任意A,B,C,D,E五点,任意两点之间有一条线段连接,球面上一定不会出现这样的图形,线段间出现的交点只是A,B,C,D,E五点。

证明:因为A,B,C,D,E为球面上任意五点,我们首先总可以把A,B,C,D设计为一个三棱锥形的四个顶点,这样的话,球面上A,B,C,D四点中,任意两点之间连接一条线段,一定会出现这样的图形,线段间出现的交点只是A,B,C,D四点;其次连接EA,EB,EC,ED;不管怎样连接,至少会多出一个交点不在A,B,C,D,E五点上;故定理4成立。

定理5:设有多边形A,B,C,D;则平面上或球面上可以设计出这样的组合图形:多边形A,B,C,D中任意两两多边形均有公共边。

证明:根据定理3,我们把多边形A,B,C,D看作四个点,把多边形A,B,C,D中任意两两多边形有公共边看作任意两点之间有一条线段连接。那么球面上任意A,B,C,D四点,任意两点之间有一条线段连接,球面上必定会出现这样的图形,线段间出现的交点只是A,B,C,D四点;说明平面上或球面上可以设计出多边形A,B,C,D中任意两两多边形有公共边的情形,并且不会出现有多边形与多边形重合或出现多边形与多边形部分重叠的情形;故定理5成立。

定理6:设有多边形A,B,C,D,E;则平面上或球面上一定不会设计出这样的组合图形:多边形A,B,C,D,E中任意两两多边形均有公共边。

证明:根据定理4,我们把多边形A,B,C,D,E看作五个点,把多边形A,B,C,D,E中任意两两多边形有公共边看作任意两点之间有一条线段连接。那么球面上任意A,B,C,D,E五点;任意两点之间有一条线段连接,球面上一定不会出现这样的图形,线段间出现的交点只是A,B,C,D,E五点;说明平面上或球面上一定不会设计出多边形A,B,C,D,E中任意两两多边形有公共边的情形,并且多边形与多边形不重合和多边形与多边形的部分不重叠;即平面上或球面上多边形A,B,C,D,E中任意两两多边形有公共边的情形中一定会出现有多边形与多边形重合或出现多边形与多边形部分重叠的情形;故定理6成立。

四色定理:平面上或球面上每幅地图都可以只用四种颜色着色。证明:由定理5和定理6可知,四色定理成立。

参考文献

[1]百度百科

二〇一五年六月二十二日

托勒密定理圆的其它定理

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等 于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 定理提出 定理的内容。 摘出并完善后的托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对 边乘积的和等于两条对角线的乘积。 定理表述:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 定理内容 指圆内接两对对边乘积的和等于两条对角线的乘积。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD 所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)

由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到: (a?b)(c?d) + (a?d)(b?c) = (a?c)(b?d) ,两边取,运用得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一。平面上,托勒密不等式是三角不等式的形式。 二、 设ABCD是。在BC上,∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。在AC上取一点K,使得∠ABK = ∠CBD;因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。因此△ABK与△DBC,同理也有△ABD ~ △KBC。因此AK/AB = CD/BD,且CK/BC = DA/BD;因此AK·BD = AB·CD,且CK·BD = BC·DA;两式相加,得(AK+CK)·BD = AB·CD + BC·DA;但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕。 三、 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4, ∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.

托勒密定理

托勒密定理 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明 一、(以下是推论的证明,托勒密定理是其中一种特殊情况) 在任意凸四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ACD,连接DE. 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 二.复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a? b)(c? d) + (a? d)(b? c) = (a? c)(b? d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。

1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有: m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C) 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.360docs.net/doc/cd13411255.html,/journal/pm https://https://www.360docs.net/doc/cd13411255.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

数学竞赛辅导托勒密定理一

托 勒密定理 Ptolemy (约公元85年~165年),希腊数大天文学家,他的主要着作《天文集》被后人称为“伟大的数学书”。 托勒密定理 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和。 已知:四边形ABCD 内接于圆,如图,求证:AB·CD+BC·AD=AC·BD 证明:在∠BAD 内作∠BAE =∠CAD ,交BD 于E 。 因∠ABE=∠ACD ,所以△ABE ∽△ACD , 从而AB·CD =AC·BE ①; 易证△ADE ∽△ACB ,所以BC·AD=AC·DE ②; ①+②得AB·CD+BC·AD=AC·BD 。 托勒密定理的逆定理:如果凸四边形两组对边的积的和,等于两对角线的积,此四边形必内接于圆。 已知四边形ABCD 满足AB·CD+BC·AD=AC·BD , 求证:A 、B 、C 、D 四点共圆。 证明:构造相似三角形,即取点E ,使∠BCE =∠ACD ,且∠CBE =∠ CAD ,则△CBE ∽△CAD 。所以BC·AD=AC·BE ①; 又CD CA CE CB =,∠BCA =∠ECD ,所以△BCA ∽△ECD 。AB·CD =AC·DE ②;①+②得AB·CD+BC·AD=AC·(BE+DE )。显然有BE+DE≥DB 。 于是AB·CD+BC·AD≥AC·DB 。等号当且仅当E 在BD 上成立,结合已 知条件得到此时等号成立,这时∠CBD =∠CAD ,即A 、B 、C 、D 四点共圆。 托勒密定理的推广 托罗密不等式在四边形ABCD 中, 有AB·CD+AD·BC≥AC·BD. 并且当且仅当四边形内接于圆时,等式成立。 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ?∠=?∠+?∠ 推论2(四角定理) 四边形ABCD 内接于O e ,则 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排序的四点,则AB CD BC AD AC BD ?+?=? 一、直接应用托勒密定理 例1如图,P 是正△ABC 外接圆的劣弧 上任一点(不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 E B D A A D C B E

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

托勒密定理

托勒密定理Last revision on 21 December 2020

托 勒密定理 【定理内容】 圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆, 则有BD AC BC AD CD AB ?=?+?. [评]等价叙述:四边形的两组对边之积的和 等于两对角线 之积的充要条件是四顶点共圆。 【证法欣赏】 证明:如图,过C 作CP 交BD 于P ,使21∠=∠, ∵43∠=∠,∴ACD ?∽BCP ?, ∴ BP AD BC AC = ,即AD BC BP AC ?=? ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ?∽DCP ?, ∴ DP AB DC AC = ,即DC AB DP AC ?=? ② ∴①+②得:DC AB AD BC DP BP AC ?+?=+?)( 即BD AC BC AD CD AB ?=?+? 【定理推广】 托勒密定理的推广: 在四边形ABCD 中,有BD AC BC AD CD AB ?≥?+?;当且仅当四边形ABCD 内接于圆时,等式成立。 [证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠ 则ABE ?∽ACD ? ∴ AD AE CD BE AC AB ==, ∴BE AC CD AB ?=?; ∵ AD AE AC AB =,且EAD BAC ∠=∠ C D A B E B C D

∴ABC ?∽AED ? ∴ AD ED AC BC = ,即ED AC BC AD ?=?; ∴)(ED BE AC BC AD CD AB +?=?+? ∴BD AC BC AD CD AB ?≥?+? 当且仅当E 在BD 上时“=”成立, 即四点共圆时成立;、、、当且仅当D C B A 【定理推广】 托勒密定理的推论: 等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ?+=22. 分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。 【定理应用】 【例1】 如图,P 是正ABC ?外接圆的劣弧BC 上任一点(不与B 、C 重合), 求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=. [注]此例证法甚多,如“截长”、“补短”等,详情参看《初中 数学一 题多解欣赏》. 【定理应用】 【例2】 证明“勾股定理”: 已知:在ABC Rt ?中,?=∠90B , 求证:222BC AB AC +=。 证明:如图,以ABC Rt ?的斜边AC 为对角 B C

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

第三讲 托勒密定理及其应用

第三讲 托勒密定理及其应用 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”: 在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又 相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴?=??=∴??∴∠=∠=?= ??=∴??∠=∠∠=∠)(

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有 AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形, ∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理, 有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1. 求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

初中数学奥林匹克中的几何问题:第3章托勒密定理及应用附答案

第三章 托勒密定理及应用 【基础知识】 托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D =∠∠,则△ABP ∽△ACD , 于是 A 图3-1 AB BP AB CD AC BP AC CD =??=?. 又ABC △∽△APD ,有BC AD AC PD ?=?. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ?+?=+=?(). ① 注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180E B C E D C +=?∠∠,令BAC ?=∠,AC 与 BD 交于G ,则 111 sin sin()sin 222 ABCD S AC BD AGD AC BD AC BD EDC θ?=??=??+=??∠∠, 11 sin sin 22 EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=??+??△△∠∠ ()()11 sin sin 22 EB BC ED DC EDC AD BC AB DC EDC =?+??=?+??∠∠. 易知 A B C D E B C S S =,从而有AB DC BC AD AC BD ?+?=?. 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则 sin sin sin AC BAD AB CAD AD CAB ?=?+?∠∠∠. ② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式. 推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ?=?∠∠∠∠ sin sin ADB DBC +?∠∠. ③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式. 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ?+?=?. 注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则 sin sin sin sin sin sin APB CPD APD BPC APC BPD ?+?=?∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,

托勒密定理塞瓦定理梅涅劳斯定理西姆松定理

托勒密定理 内容:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 证明: 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD ∴BE/CD=AB/AC,即B E·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, ∴△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又∵BE+ED≥BD ∴AB×CD+AD×BC≥AC×BD 塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 因为(AD:DB)*(BE:EC)*(CF:FA)=1所以CD、AE、BF交于一点

用同一法证 点D,E,F分别为三角形ABC三边BC,AC,AB上的点,若AF/BF*BD/DC*CE/AE=1,则AD,BE,CF 三点共线 逆命题证明 证明:设BE,CF交与点O,AO交BC于点P。 则由赛瓦定理可知,AF/BF*BP/PC*CE/AE=1。 由已知AF/BF*BD/DC*CE/AE=1知,AF/BF*BP/PC*CE/AE=1=AF/BF*BD/DC*CE/AE。 推出BP/PC=BD/DC,所以BD/BC=BP/BC,故BD=BP。 所以D点与P点重合。则AD,BE,CF三点共线,命题得证。 梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/Y A)=1 。 西姆松定理 (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

四色定理的简单证明

四色定理的简单证明 虽然现在已经有不少人用不同方法证明出了四色定理,但我认为四色定理的证明还是有点复杂,所以给出以下证明。(注:图形与图形的位置关系可分为相离、包含、内向接、内向切、外向接、外向切,在此文中由于题意关系不妨重新分为以下关系:1 把包含、内向接、内向切,统一划分为包含关系。2 把外向接单独划分为相接关系。3把相离、外相切统一划分为相离关系。) 此证明过程中把图的组合形式按照其位置关系而抽离出了以下四种基本有效模式: 1 若要存在只需用一种颜色便能彼此区分开来的地图,则该图中所有图形必定满足彼此相离。如下图: 图(1) 分析:这是最简单的一种图形关系模式暂且称为模式a。 2 若要存在只需用两种颜色便能彼此区分开来的地图,则该图中的所有图形必定满足最多只存在两个图形的两两相交的图形。各种有效图形关系如下图:

图(2) 分析:两个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(1)存在包含关系,被包含的图形是对外部无影响的,所以图(1)仍属于模式a。所以两个图形的两两相交只有图(2)的相交关系模式的图形有效的,我们暂且称之为模式b。 3 若要存在只需用三种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在三个图形的两两相交图形。各种有效图形关系如下图: 图(3) 分析:三个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(2)属于存在包含关系,同理整体回归于模式a。所以三个图形的两两相交只有图(1)的相接关系模式的图形是有效图形模式,我们暂且称之为模式c。 4 若要存在只需用四种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在四个图形的两两相交图形。各种有效图形关系如下图: 图(4)

相关文档
最新文档