不等式练习题(含答案)

不等式练习题(含答案)
不等式练习题(含答案)

第九章 不等式与不等式组

9.1 不等式

1.不等式x ≥–1的解在数轴上表示为 A . B .

C .

D .

2.“x 的2倍与3的差不大于8”列出的不等式是 A .238x -≤ B .238x -≥

C .238x -<

D .238x ->

3.下列不等式中是一元一次不等式的是 ①2x –1>1;②3+12x <0;③x ≤2.4;④1x <5;⑤1>–2;⑥3

x

–1<0. A .2个 B .3个

C .4个

D .5个

4.用不等式表示“x 的2倍与3的和大于10”是___________. 5.若1123x -

>-,则x ___________2

3

. 6.一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 7.用适当的不等式表示下列不等关系: (1)x 减去6大于12; (2)x 的2倍与5的差是负数; (3)x 的3倍与4的和是非负数; (4)y 的5倍与9的差不大于1-;

8.用“>”或“<”填空:

(1)如果a–b

(2)如果3a>3b,那么a________b;

(3)如果–a<–b,那么a________b;

(4)如果2a+1<2b+1,那么a________b. 9.把下列不等式化为“x>a”或“x

(1)x+6>5;(2)3x>2x+2;(3)–2x+1

2

2

x-

<

1

4

x+

.

10.下列说法中,正确的是

A.x=2是不等式3x>5的一个解

B.x=2是不等式3x>5的唯一解

C.x=2是不等式3x>5的解集

D.x=2不是不等式3x>5的解

11.用不等式表示图中的解集,其中正确的是

A .x >–3

B .x <–3

C .x ≥–3

D .x ≤–3

12.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是

A .x <2

B .x >–2

C .当a >0时,x <2

D .当a >0时,x <2;当a <0时,x >2

13.不等式y +3>4变形为y >1,这是根据不等式的性质__________,不等式两边同时加上__________. 14.若a

则m __________n .

15.如果不等式(a –3)x

b

a ,那么a 的取值范围是________. 16.阅读下面解题过程,再解题.

已知a >b ,试比较–2019a +1与–2019b +1的大小. 解:因为a >b ,① 所以–2019a >–2019b ,② 故–2019a +1>–2019b +1.③

问:(1)上述解题过程中,从第______步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.

17.不等式的解集中是否一定有无限多个数?

不等式|x |≤0、x 2<0的解集是什么?

不等式x 2>0和x 2+4>0的解集分别又是什么?

18.(2018·广西)若m >n ,则下列不等式正确的是

A .m –2

B .

4m >4

n C .6m <6n D .–8m >–8n

19.(2018·宿迁)若a

A .a –1

B .2a <2b

C .–

3a >–3

b D .a 2

1.【答案】A

【解析】不等式x ≥–1的解在数轴上表示为,故选A .

2.【答案】A

【解析】根据题意,得2x –3≤8.故选A . 3.【答案】C

【解析】①符合一元一次不等式的定义,故①正确; ②符合一元一次不等式的定义,故②正确; ③符合一元一次不等式的定义,故③正确; ④

1

x

是分式,故此不等式不是一元一次不等式,故④错误; ⑤此不等式不含未知数,不是一元一次不等式,故⑤错误;

⑥符合一元一次不等式的定义,故⑥正确;故选C.

4.【答案】2x+3>10

【解析】∵x的2倍为2x,∴x的2倍与3的和大于10可表示为:2x+3>10.故答案为:2x+3>10.5.【答案】<

【解析】

1

2

-x>

1

3

-两边都乘以?2得:x<

2

3

.故答案为:<.

6.【答案】2(x+50)≥280

【解析】∵一个长方形的长为x米,宽为50米,

∴周长为2(x+50)米,

∴周长不小于280米可表示为2(x+50)≥280,

故答案为2(x+50)≥280.

7.【解析】(1)由题意可得:x–6>12;

(2)由题意可得:2x–5<0;

(3)由题意可得:3x+4≥0;

(4)由题意可得:5y–9≤–1.

8.【解析】(1)由a–b

(2)由3a>3b,得a>b;

(3)由–a<–b,得a>b;

(4)由2a+1<2b+1,得2a<2b,∴a

故答案为:(1)<;(2)>;(3)>;(4)<.

9.【解析】(1)不等式两边同时减去6,得x+6–6>5–6,解得x>–1.

(2)不等式两边同时减去2x,得3x–2x>2x+2–2x,解得x>2.

(3)不等式两边同时减去(x+1),得–2x+1–(x+1)

–3x<6,不等式两边同时除以–3,得x>–2.

(4)不等式两边同时乘4,得–2(x–2)

不等式两边同时减去(x+4),得–2x+4–(x+4)

10.【答案】A

【解析】A.x=2是不等式3x>5的一个解,正确;B.不等式3x>5的解有无数个,则B错误;C.x=2是不等式3x>5的解,则C错误;D.x=2是不等式3x>5的解,则D错误,故选A.

11.【答案】C

【解析】由数轴知不等式的解集为x≥–3,故选C.

12.【答案】D

【解析】因为a的符号不确定,所以要分类讨论,当a>0时,x<2;当a<0时,x>2,故选D. 13.【答案】1;–3

【解析】不等式y+3>4变形为y>1,这是根据不等式的性质1,不等式两边同时减去3,即加上–3,不等号的方向不变.故答案是:1;–3.

14.【答案】<;>;>

【解析】(1)若a

(2)若mx>my,且x>y成立,则m>0;

(3)若5m–7b>5n–7b,则m>n.

故答案是:<;>;>.

15.【答案】a>3

【解析】因为不等号没有改变方向,所以a–3>0,则a>3,故答案为a>3.

16.【解析】(2)②;

(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;

(3)因为a>b,所以–2019a<–2019b,

故–2019a+1<–2019b+1.

17.【解析】不等式的解集中不一定有无数多个数.

|x|≤0的解集是x=0,x2<0无解.

x2>0的解集为x>0或x<0,

x2+4>0的解集为一切实数.

18.【答案】B

C、将m>n两边都乘以6得:6m>6n,此选项错误;

D、将m>n两边都乘以–8,得:–8m<–8n,此选项错误;

故选B.

19.【答案】D

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

一元一次不等式单元测试题

《一元一次方程》试题 【巩固练习】 一、选择题 1.下列方程中,是一元一次方程的是( ). A .250x += B .42x y +=- C .162x = D .x =0 2. 下列变形错误的是( ) A.由x + 7= 5得x+7-7 = 5-7 ; B.由3x -2 =2x + 1得x= 3 C.由4-3x = 4x -3得4+3 = 4x+3x D.由-2x= 3得x= - 32 3. 某书中一道方程题:213 x x ++=W ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ). A .-2.5 B .2.5 C .5 D .7 4. 将(3x +2)-2(2x -1)去括号正确的是( ) A 3x +2-2x +1 B 3x +2-4x +1 C 3x +2-4x -2 D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ) A.-8 B.-4 C.-2 D.8 6.解方程121153 x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x -1) B .3x+3=15-10x -5 C .3(x+1)=15-5(2x -1) D .3x+1=15-10x+5 7.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .7 8.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ). A .18元 B .18.4元 C .19.6元 D .20元 二、填空题 9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x 52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x . 11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 . 13.“代数式9-x 的值比代数式x 3 2-1的值小6”用方程表示为 .

高二数学不等式练习题及答案

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

不等式练习题(带答案)

不等式基本性质练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)( (b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+ b a B .111≥+b a C . 211<+ b a D . 211≥+b a 4.已知a 、b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37- ,26- = c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

(完整word版)中职不等式单元测试题一

不等式单元测试题(一) 一、选择题:本大题共12小题,每小题3分,共36分 1、不等式的解集的数轴表示为( ) (A )(B ) (C ) (D ) 2、设,A=(0,+∞),B=(-2,3],则A ∩B= ( ) (A )(-2,+∞) (B ) (-2,0) (C ) (0,3] (D )(0,3) 3、已知a 、b 、c 满足c a c B 、c (b -a )<0 C 、c 2b 0 4、不等式|x +1|(2x -1)≥0的解集为 ( ) A 、{x |x ≥ 21} B 、{x |x ≤-1或x ≥21} C 、{x |x =-1或x ≥21} D 、{x |-1≤x ≤2 1} 5、若a b 1 B 、b a -1>a 1 C 、a ->b - D 、|a |>b - 6、不等式x 2 >x 的解集是 ( ) A (-∞,0) B (0,1) C (1,+∞) D (-∞,0)∪(1,+∞) 7、已知0a b +>,0b <,那么,,,a b a b --的大小关系是 ( ) A .a b b a >>->- B .a b a b >->->C .a b b a >->>- D .a b a b >>->- 8、已知下列不等式:①x 2+3>2x ;②a 5+b 5 >3 223b a b a +;③22b a +≥2(a -b -1),其中正确的个 数为 ( ) A 、0 B 、1 C 、2 D 、3 9、已知A ={x |-1≤x ≤1},B ={x |1-a ≤x ≤2a -1},若B ?A ,则a 的范围为 ( ) A 、(-∞,1] B 、[1,+∞) C 、[2,+∞) D 、[1,2] 10、下列不等式中,对任意x ∈R 都成立的是 ( ) A . 244x x +≤1 B .x 2+1>2x C .lg(x 2 +1)≥lg2x D .2111 x <+ 11、 不等式 的解集是( ) (A )(2,4) (B ) (C )(-4,-2) (D ) 12.在R 上定义运算:x *y =x (1-y ).若不等式(x -a )*(x +a )<1对任意实数x 恒成立,则( ) A .-10的解集为(- 21,3 1),则a +b =. 16、不等式 204 x x ->+的解集是 . 17、022=+b a 是0=a 条件 18、设A=(-1,3],B=[3,6],则A ∩B= ; 三、解答题:本大题共6小题,共36分。 19、解下列不等式:(1)|3x -5|<8, (2)3|2x -1|≤2. 20、解下列不等式:(1);(2) .

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式单元测试题

第八章一元一次不等式测试题 一、选择题: 1、如果,那么下列不等式不成立的是() A、B、C、D、 2、不等式的解集是() A、B、C、D、 3 、下列各式中,是一元一次不等式的是() A、E、C、D、 4、已知不等式,此不等式的解集在数轴上表示为() 5、在数轴上从左至右的三个数为a, 1 + a,—a,则a的取值范围是() A a v B a v 0 C、a> 0 D、a v — 6、(2007 年湘潭市)不等式组的解集在数轴上表示为() 7、不等式组的整数解的个数是() A、1 个 B、2 个 C、3 个 D、4 个 8、在平面直角坐标系内, P(2x—6, x—5)在第四象限,则x 的取值范围为() A、3v x v 5 B、—3v x v 5 C、—5v x v 3 D、—5v x v— 3 9、方程组的解x、y满足x>y,贝U m的取值范围是() A. B. C. D. 10、、(2013?荆门)若关于x的一元一次不等式组有解,则m的取值范围为() A. < C. D. me

11、(2013?孝感)使不等式x - 1>2与3x - 7 v 8同时成立的x的整数值是() A.3, 4 D.不存在 12、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法 第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售?你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买 ()块肥皂? 二、填空题 13、若不等式组无解,则m的取值范围是 _______________ . 14、不等式组的解集为x >2,则a的取值范围是________________ . 15、(2013?厦门)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全 区域?甲工人在转移过程中,前40米只能步行,之后骑自行车. 已知导火线燃烧的速度为米/秒,步行的速度为1米/秒,骑车的速度为4米/秒?为了确保甲工人的安全,则导火线的长要大于______________________ 米 16、(2013?白银)不等式2x+9》3 (x+2)的正整数解是 ____________ ? 17、(2013?宁夏)若不等式组有解,则a的取值范围是______________ ? 18、(2013?南通)关于x的方程mx 1 2x的解为正实数,则m的取值范围是 _____________ 19、(2013?包头)不等式(x - m) > 3 - m的解集为x > 1,贝U m的值为 _______ . 三、解答题: 20、解不等式(组) x v 1 —x< x + 5 (1)

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

初一不等式单元测试

七年级数学《不等式与不等式(组)》练习题 班级_______姓名________成绩_________ 一、 选择题(4×8=32) 1、下列数中是不等式x 3 2>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60 A、5个 B、6个 C、7个 D、8个 2、下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( ) A、b a +-+-33 B、0 b a - C、b a 3 131 D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( ) A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2- 5、不等式组???2 2 x x 的解集为( ) A 、x >2- B 、2-83+x 的解集为( ) A 、x >21 B 、x <0 C 、x >0 D 、x <2 1 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个 8、下图所表示的不等式组的解集为( ) -2 A 、x 3 B 、32 x - C 、 2- x D 、32 x - 二、 填空题(3×6=18) 9、“x 的一半与2的差不大于1-”所对应的不等式是 10、不等号填空:若a

相关文档
最新文档