线面、面面平行的判定和性质随堂练习[附含答案解析]

线面、面面平行的判定和性质随堂练习[附含答案解析]
线面、面面平行的判定和性质随堂练习[附含答案解析]

线面、面面平行的判定与性质

基础巩固强化

1.(文)(2011·北京海淀期中)已知平面α∩β=l,m是α内不

同于l的直线,那么下列命题中错误

..的是( )

A.若m∥β,则m∥l B.若m∥l,则m∥β

C.若m⊥β,则m⊥l D.若m⊥l,则m⊥β

[答案] D

[解析]A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.

(理)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )

A.若m∥α,m∥n,则n∥α

B.若m?α,n?β,m∥β,n∥α,则α∥β

C.若α∥β,m∥α,m∥n,则n∥β

D.若α∥β,m∥α,n∥m,n?β,则n∥β

[答案] D

[解析]A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.

2.(文)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )

A.若m?α,n?α,且m∥β,n∥β,则α∥β

B.若m∥α,m∥n,则n∥α

C.若m∥α,n∥α,则m∥n

D.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β

[答案] D

[解析]选项A中的直线m,n可能不相交;选项B中直线n可能在平面α内;选项C中直线m,n的位置可能是平行、相交或异面.(理)(2011·浙江省温州市测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.α∥β,m?α,n?β?m∥n

B.l⊥β,α⊥β?l∥α

C.m⊥α,m⊥n?n∥α

D.α∥β,l⊥α?l⊥β

[答案] D

[解析]对于选项A,m,n平行或异面;对于选项B,可能出现l?α这种情形;对于选项C,可能出现n?α这种情形.故选D.

3.(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是( )

A.若α∥β,l?α,则l∥β

B.若α∥β,l⊥α,则l⊥β

C.若l∥α,m?α,则l∥m

D.若α⊥β,α∩β=l,m?α,m⊥l,则m⊥β

[答案] C

[解析]对于选项C,直线l与m可能构成异面直线,故选C.

4.(2011·广东揭阳模拟)若a不平行于平面α,且a?α,则下列结论成立的是( )

A.α内的所有直线与a异面

B .α内与a 平行的直线不存在

C .α内存在唯一的直线与a 平行

D .α内的直线与a 都相交 [答案] B

[解析] 由条件知a 与α相交,故在平面α内的直线与a 相交或异面,不存在与a 平行的直线.

5.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m 、n ,其中

m 2+n 2=6,则该三棱锥体积的最大值为( )

A.12

B.8327

C.33

D.23

[答案] D

[解析] 令m =n ,由m 2+n 2=6得m =n =3,取AB 的中点E ,则BE =22,PB =3,∴PE =102,CE =10

2

,∴EF =2,

∴V P -ABC =13S △PEC ·AB =13×(12×2×2)×2=23,∵23>12,∴23>33,

23>83

27

,故选D.

6.(2011·苏州模拟)下列命题中,是假命题的是( )

A.三角形的两条边平行于一个平面,则第三边也平行于这个平面

B.平面α∥平面β,a?α,过β内的一点B有唯一的一条直线b,使b∥a

C.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥d

D.一条直线与两个平面成等角是这两个平面平行的充要条件

[答案] D

[解析]三角形的任意两边必相交,故三角形所在的平面与这个平面平行,从而第三边也与这个平面平行,∴A真;假设在β内经过B点有两条直线b、c都与a平行,则b∥c,与b、c都过B点矛盾,故B真;∵γ∥δ,α∩γ=a,α∩δ=b,∴a∥b,同理c∥

d;又α∥β,γ∩α=a,γ∩β=c,∴a∥c,∴a∥b∥c∥d,故

C真;正方体ABCD-A1B1C1D1中,AC与平面AA1D1D和平面CC1D1D所成角相等,但平面AA1D1D∩平面CC1D1D=DD1,故D假.

7.(2012·北京东城区综合练习)在空间中,有如下命题:

①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;

②若平面α∥平面β,则平面α内任意一条直线m∥平面β;

③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;

④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.

其中正确命题的序号为________.

[答案]②

[解析]①中,互相平行的两条直线的射影可能重合,①错误;

②正确;③中,平面α与平面β不一定垂直,所以直线n就不一定垂直于平面β,③错误;④中,若平面α内的三点A、B、C在一条直线上,则平面α与平面β可以相交,④错误.

8.(2011·福建文,15)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.

[答案] 2

[解析]∵EF∥平面AB1C,

平面ABCD经过直线EF与平面AB1C相交于AC,∴EF∥AC,

∵E为AD的中点,∴F为CD的中点,

∴EF=1

2AC=

1

2

×22= 2.

9.(2011·郑州一检)已知两条不重合的直线m、n,两个不重合的平面α、β,有下列命题:

①若m∥n,n?α,则m∥α;

②若n⊥α,m⊥β,且n∥m,则α∥β;

③若m?α,n?α,m∥β,n∥β,则α∥β;

④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α.

其中正确命题的序号是________.

[答案]②④

[解析]对于①,直线m可能位于平面α内,此时不能得出m ∥α,因此①不正确;对于②,由n⊥α,m∥n,得m⊥α,又m⊥

β,所以α∥β,因此②正确;对于③,直线m ,n 可能是两条平行

直线,此时不一定能得出α∥β,因此③不正确;对于④,由“如果两个平面相互垂直,则在一个平面内垂直于它们交线的直线必垂直于另一个平面”可知,④正确.综上所述,其中正确命题的序号是②④.

10.(文)(2012·辽宁文,18)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.

(1)证明:MN ∥平面A ′ACC ′;

(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =1

3Sh ,其中S 为

底面面积,h 为高).

[分析] (1)欲证MN ∥平面A ′ACC ′,须在平面A ′ACC ′内找到一条直线与MN 平行,由于M 、N 分别为A ′B ,B ′C ′的中点,B ′C ′与平面A ′ACC ′相交,又M 为直三棱柱侧面ABB ′A ′的对角线A ′B 的中点,从而M 为AB ′的中点,故MN 为△AB ′C ′的中位线,得证.(2)欲求三棱锥A ′-MNC 的体积,注意到直三棱柱的特殊性和点M 、N 为中点,可考虑哪一个面作为底面有利于问题的解决,视A ′MC 为底面,

则S△A′MC=1

2

S△A′BC,∴V A′-MNC=

1

2

V N-A′BC,又V N-A′BC=V A′-NBC,易知A′N

为三棱锥A′-NBC的高,于是易得待求体积.

[解析](1)连结AB′,AC′,由已知∠BAC=90°,

AB=AC,三棱柱ABC-A′B′C′为直三棱柱,

所以M为AB′中点.

又因为N为B′C′的中点,

所以MN∥AC′.

又MN?平面A′ACC′,

AC′?平面A′ACC′,

因此MN∥平面A′ACC′.

(2)连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.

又A′N=1

2

B′C′=1,

故V A′-MNC=V N-A′MC=1

2

V N-A′BC=

1

2

V A′-NBC=

1

6

.

[点评] 本题考查了线面平行的证明,锥体的体积两方面的问题,对于(1)还可以利用面面平行(平面MPN∥平面A′ACC′,其中P 为A′B′的中点)来证明;

(2)还可利用割补法求解.

(理)(2012·浙江文,20)如图,在侧棱垂直底面的四棱柱ABCD -A1B1C1D1中,AD∥BC,AD⊥AB,AB=2,AD=2,BC=4,AA1=2,E 是DD1的中点,F是平面B1C1E与直线AA1的交点.

(1)证明:①EF∥A1D1;

②BA1⊥平面B1C1EF;

(2)求BC1与平面B1C1EF所成角的正弦值.

[分析] (1)①欲证EF∥A1D1,∵B1C1∥A1D1,∴只需证EF∥B1C1,故由线面平行的性质定理“线面平行?线线平行”可推证.

②要证BA1⊥平面B1C1EF,需证BA1⊥B1C1,BA1⊥B1F,要证BA1⊥B1C1,只需证B1C1⊥平面AA1B1B,要证BA1⊥B1F,通过在侧面正方形AA1B1B 中计算证明即可.

(2)设BA1与B1F交于点H,连结C1H,则∠BC1H就是所求的角.

[解析](1)①∵C1B1∥A1D1,C1B1?平面ADD1A1,

∴C1B1∥平面A1D1DA.

又∵平面B1C1EF∩平面A1D1DA=EF,

∴C 1B 1∥EF ,∴A 1D 1∥EF .

②∵BB 1⊥平面A 1B 1C 1D 1,∴BB 1⊥B 1C 1,

又∵B 1C 1⊥B 1A 1,∴B 1C 1⊥平面ABB 1A 1.∴B 1C 1⊥BA 1. 在矩形ABB 1A 1中,F 是AA 1的中点, tan ∠A 1B 1F =tan ∠AA 1B =2

2,即

∠A 1B 1F =∠AA 1B , ∴BA 1⊥B 1F .又∵BA 1⊥B 1C 1, 所以BA 1⊥平面B 1C 1EF .

(2)设BA 1与B 1F 交点为H ,连结C 1H .

由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与平面B 1C 1EF 所成的角.

在矩形AA 1B 1B 中,由AB =2,AA 1=2,得BH =4

6.

在Rt △BHC 1中,由BC 1=25,BH =

4

6

得, sin ∠BC 1H =BH BC 1=30

15

.

所以BC1与平面B1C1EF所成角的正弦值是

30 15

.

[点评] 本题主要考查空间点、线、面的位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力.

能力拓展提升

11.(文)(2011·北京模拟)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:

①若l与m为异面直线,l?α,m?β,则α∥β;

②若α∥β,l?α,m?β,则l∥m;

③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.

其中真命题的个数为( )

A.3 B.2 C.1 D.0

[答案] C

[解析]①设α∩β=a,当l,m都与a相交且交点不重合时,满足①的条件,故①假;②中分别在两个平行平面内的两条直线可能平行,也可能异面,故②假;由三棱柱知③真;故选C.

(理)

如图,在三棱柱ABC -A ′B ′C ′中,点E 、F 、H 、K 分别为AC ′、

CB ′、A ′B 、B ′C ′的中点,G 为△ABC 的重心.从K 、H 、G 、B ′中

取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( )

A .K

B .H

C .G

D .B ′

[答案] C

[解析] 假如平面PEF 与侧棱BB ′平行则和三条侧棱都平行,不满足题意,而FK ∥BB ′,排除A ;假如P 为B ′点,则平面PEF 即平面A ′B ′C ,此平面只与一条侧棱AB 平行,排除D.

若P 为H 点,则HF 为△BA ′C ′的中位线,∴HF ∥A ′C ′;EF 为△ABC ′的中位线,∴EF ∥AB ,HE 为△AB ′C ′的中位线,∴HE ∥

B ′

C ′,显然不合题意,排除B.

[点评] 此题中,∵EF 是△ABC ′的中位线,∴EF ∥AB ∥A ′B ′,故点P 只要使得平面PEF 与其他各棱均不平行即可,故选G 点.

12.(文)(2012·江西文,7)若一个几何体的三视图如图所示,则此几何体的体积为( )

A.11

2 B .5 C.92

D .4

[答案] D

[解析]由三视图知该几何体为直六棱柱.其底面积为S=2×[1 2

×(1+3)×1]=4,高为1.所以体积V=4.

(理)(2012·四川文,6)下列命题正确的是( )

A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D.若两个平面都垂直于第三个平面,则这两个平面平行

[答案] C

[解析]本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,

对于A选项,两条直线也可相交,B选项若三点在同一条直线上,平面可相交.D选项这两个平面可相交(可联系墙角),而C项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.

13.(2012·南昌二模)若P是两条异面直线l、m外的任意一点,则下列命题中假命题的序号是________.

①过点P有且仅有一条直线与l,m都平行;②过点P有且仅有一条直线与l,m都垂直;③过点P有且仅有一条直线与l,m都相交;

④过点P有且仅有一条直线与l,m都异面.

[答案]①③④

[解析]①是假命题,因为过点P不存在一条直线与l,m都平行;②是真命题,因为过点P有且仅有一条直线与l,m都垂直,这

条直线与两异面直线的公垂线平行或重合;③是假命题,因为过点P 也可能没有一条直线与l ,m 都相交;④是假命题,因为过点P 可以作出无数条直线与l ,m 都异面,这无数条直线在过点P 且与l ,m 都平行的平面上.

[点评] 第③个命题易判断错误.当点P 与l 确定的平面α∥m 时,或点P 与m 确定的平面β∥l 时,过点P 与l 、m 都相交的直线不存在.

14.(2012·佛山一模)过两平行平面α、β外的一点P 作两条直线,分别交α于A 、C 两点,交β于B 、D 两点,若PA =6,AC =9,PB =8,则BD =________.

[答案] 12

[解析] 由面面平行的性质定理可知AC ∥BD ,又由平行线分线

段成比例定理可得PA PB =AC BD ,即68=9

BD

,得BD =12.

15.(文)如图,在三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AB ⊥BB 1,AC =BC =BB 1=2,D 为AB 的中点,且CD ⊥DA 1.

(1)求证:BB 1⊥平面ABC ; (2)求证:BC 1∥平面CA 1D ;

(3)求三棱锥B 1-A 1DC 的体积.

[解析] (1)∵AC =BC ,D 为AB 的中点,∴CD ⊥AB , 又∵CD ⊥DA 1,∴CD ⊥平面ABB 1A 1,∴CD ⊥BB 1, 又BB 1⊥AB ,AB ∩CD =D , ∴BB 1⊥平面ABC .

(2)连接BC 1,连接AC 1交CA 1于E ,连接DE ,易知E 是AC 1的中点,又D 是AB 的中点,则DE ∥BC 1,又DE ?平面CA 1D ,BC 1?平面CA 1D ,

∴BC 1∥平面CA 1D .

(3)由(1)知CD ⊥平面AA 1B 1B , 故CD 是三棱锥C -A 1B 1D 的高,

在Rt △ACB 中,AC =BC =2,∴AB =22,CD =2, 又BB 1=2,∴V B 1

-A 1

DC =V C -A 1B 1

D =1

3

S △A 1B 1

D ·CD

=16A 1B 1×B 1B ×CD =16×22×2×2=43

. (理)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12

CD .

(1)求证:BC⊥平面ABPE;

(2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M;若不存在,说明理由.

[解析](1)∵PO⊥平面ABCD,

BC?平面ABCD,∴BC⊥PO,

又BC⊥AB,AB∩PO=O,AB?平面ABP,PO?平面ABP,∴BC⊥平面ABP,

又EA∥PO,AO?平面ABP,

∴EA?平面ABP,∴BC⊥平面ABPE.

(2)点E即为所求的点,即点M与点E重合.

取PO的中点N,连结EN并延长交PB于F,

∵EA=1,PO=2,∴NO=1,

又EA与PO都与平面ABCD垂直,∴EF∥AB,

∴F为PB的中点,∴NF=1

2

OB=1,∴EF=2,

又CD=2,EF∥AB∥CD,

∴四边形DCFE为平行四边形,∴DE∥CF,

∵CF?平面PBC,DE?平面PBC,∴DE∥平面PBC.

∴当M与E重合时,DM∥平面PBC.

16.

(2012·北京海淀区二模)在正方体ABCD-A′B′C′D′中,棱AB、BB′、B′C′、C′D′的中点分别为E、F、G、H,如图所示.

(1)求证:AD′∥平面EFG;

(2)求证:A′C⊥平面EFG;

(3)判断点A、D′、H、F是否共面,并说明理由.

[解析]

(1)证明:连结BC′.

在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′.

所以四边形ABC′D′是平行四边形.

所以AD′∥BC′.

因为F、G分别是BB′、B′C′的中点,

所以FG∥BC′,所以FG∥AD′.

因为EF、AD′是异面直线,所以AD′?平面EFG.

因为FG?平面EFG,所以AD′∥平面EFG.

(2)证明:连结B′C.

在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′?平面BCC′B′,

所以A′B′⊥BC′.

在正方体BCC′B′中,B′C⊥BC′,

因为A′B′?平面A′B′C,

B′C′?平面A′B′C,A′B′∩B′C′=B′,

所以BC′⊥平面A′B′C.

因为A′C?平面A′B′C,所以BC′⊥A′C.

因为FG∥BC′,所以A′C⊥FG.

同理可证:A′C⊥EF.

因为EF?平面EFG,FG?平面EFG,EF∩FG=F,

所以A′C⊥平面EFG.

(3)点A、D′、H、F不共面.理由如下:

假设A、D′、H、F共面.连结C′F、AF、HF.

由(1)知,AD′∥BC′,

因为BC′?平面BCC′B′,AD′?平面BCC′B′.

所以AD′∥平面BCC′B′.

因为C′∈D′H,所以平面AD′HF∩平面BCC′B′=C′F.

因为AD′?平面AD′HF,所以AD′∥C′F.

所以C′F∥BC′,而C′F与BC′相交,矛盾.

所以A,D′、H、F点不共面.

1.设m、l是两条不同的直线,α是一个平面,则下列命题正确的是( )

A.若l⊥m,m?α,则l⊥α

B.若l⊥α,l∥m,则m⊥α

C.若l∥α,m?α,则l∥m

D.若l∥α,m∥α,则l∥m

[答案] B

[解析]两条平行线中一条垂直于一个平面,则另一条也垂直于

这个平面,故选B.

2.

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.

(1)证明:PA⊥平面ABCD;

(2)在棱PC上是否存在一点F,使BF∥平面AEC?如果存在,请求出此时PF FC的值;如果不存在,请说明理由.

[解析](1)因为底面ABCD是菱形,∠ABC=60°,所以AB=AD =AC=a.

在△PAB中,由PA2+AB2=2a2=PB2,知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(2)连结BD,则平面PBD与平面AEC的交线为EO,在△PBD中作BM∥OE交PD于M,则BM∥平面AEC,在△PCE中过M作MF∥CE交PC 于F,则MF∥平面AEC,故平面BFM∥平面AEC,所以BF∥平面AEC,F点即为所求的满足条件的点.由条件O为BD的中点可知,E为MD 的中点.

又由PE:ED=2:1,∴M为PE的中点,

又FM∥CE,故F是PC的中点,∴此时PF:FC=1.

3.如图,正方形ABCD和四边形ACEF所在平面互相垂直,EF∥

立体几何中线面平行的经典方法+经典习题(附详细解答

精心整理 F 高中立体几何证明平行的专题 (基本方法) 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等 等。 (1)通过“平移”再利用平行四边形的性质 1棱则易 证2、AB 过A ADE 沿 3、 M 为4角梯 形,分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2)利用三角形中位线的性质

5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。求证:PA ∥7D 为AC 8 BAD ∠是平行四边形; 四点是否共面?为什么? (.39为正方形ABCD 的中心,BB 1的10 A B C D E F G M

求证:AE ∥平面PBC ; 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠?ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG; 二 (I ACB ∠在ABCD 中,又FA ?平面ABFE ,GM ?平面ABFE ,所以GM//平面AB 。 (4)利用对应线段成比例 12、如图:S 是平行四边形ABCD 平面外一 点,M 、N 分别是SA 、BD 上的点, 且 SM AM =ND BN ,

线线平行线面平行面面平行的练习题

线线平行、线面平行、面面平行部分的练习题 1.如图2-3-3所示,已知α∩β=CD,α∩γ=EF,β∩γ=AB,AB ∥α.求证:CD∥EF. 2.已知直线a ∥平面α,直线a ∥平面β,平面αI 平面β=b , 求证//a b . 3. 正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。求证:MN //平面BCE 4.如图2-3-7所示,正三棱柱ABC —A1B1C1中,D 是BC 的中点,试判断A1B 与平面ADC1的位置关系,并证明你的结论. 5.、已知⊥PA 矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点, 求证:MN//平面PAD. 6.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,设M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点.求证:(1)E 、F 、B 、D 四点共面;(2)面AMN ∥面EFBD. 7.已知在正方体ABCD -1111D C B A 中,M 、N 分别是11D A 、11B A 的中点,在该正方体中作出与平面AMN 平行的平面,并证 明你的结论。

8.已知点 是△ 所在平面外一点,点 , , 分 别是△ ,△ ,△ 的重心,求证:平面 平 面 . 9. 已知三棱锥P—ABC,A′,B ′C ′是△PBC,△PCA,△PAB 的重心. (1)求证:面A′B′C′∥面ABC; (2)求S △A ′B ′C ′: S △ABC . . 10. 如图所示11 1 ABC A B C -中,平面ABC//平面A 1B 1C 1 , 若D 是棱1 CC 的中点,在棱AB 上是否存在一点E ,使 11//C AB DE 证明你的结论 答案与提示: 1.证明:∵AB β,AB α,又∵AB ∥α,α∩β =CD,∴AB ∥CD,同理AB∥EF,∴CD∥EF. 2. 证明:经过a 作两个平面γ和δ,与平面α和β分别相交于直线c 和d , ∵a ∥平面α,a ∥平面β, ∴a ∥c ,a ∥d ,∴c ∥d , 又∵d ?平面β,c ?平面β, ∴c ∥平面β, d c b a δ γ β α

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

线面、面面平行练习题

一、选择题 1、直线和平面平行是指该直线与平面内的( ) (A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交 (D)任意一条直线都不相交 2、已知a b ||,αα?,则必有( ) ()||(),A a b B a b 异面 (),C a b 相交 (),D a b 平行或异面 3、若直线a,b 都与平面α平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线 4、下列四个命题中,正确命题的个数是( )个 (1)过直线外一点,只能作一条直线与这条直线平行; (2)过平面外一点,只能作一条直线与这个平面平行; (3)过直线外一点,只能作一个平面与这条直线平行; (4)过两条异面直线中的一条直线,只能作一个平面与另一条直线平行。 (A)1 (B)2 (C)3 (D)4 5、下列命题中,错误的命题是( ) (A)如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个 平面相交; (B)一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行; (C)经过两条异面直线中的一条直线,有一个平面与另一条直线平行; (D)空间四边形相邻两边的中点的连线,平行于经过另外两边的平面。 6.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线( ) A .异面 B .相交 C .平行 D .不确定 7.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( ) A .①④ B .①⑤ C .②⑤ D .③⑤ 8.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行 B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行

线面平行典型例题.

线面平行典型例题和练习 直线与平面、平面与平面平行的判定与性质中,都隐含着 直线与直线的平行,它成为联系直线与平面、平面与 平面平行的纽带,成为证明平行问题的关键. 1运用中点作平行线 例1已知四棱锥 P —ABCD 的底面是距形,M 、N 分别是AD 、PE 的中点,求证MN//平面 PCD 2 ?运用比例作平行线 例2.四边形ABCD 与AEEF 是两个全等正方形,且AM 平面BCE 3. 运用传递性作平行线 例3?求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行 4. 运用特殊位置作平行线 例4.正三棱柱ABC-A i B i C i 的底面边长为 2,点E 、F 分别是C 动点,EC= 2FB= 2 .问当点M 在何位置时MB//平面AEF? 课堂强化: i. i .棱长都相等的四面体称为正四面体.在正四面体 A-BCD 中,点M N 分别是CD 和AD 的中点, 给出下列命题: ①直线MIN/平面ABC i C 、B i B 上的点,点M 是线段AC 上的 求证:MN//

②直线CD L平面BMN ③三棱锥B-AMN的体积是三棱锥B-ACM的体积的一半. 则其中正确命题的序号为 2.如图,几何体E-ABCD是四棱锥,△ ABD为正三角形,CB=CD EC丄BD. (I)求证:BE=DE (n)若/ BCD=120 , M为线段AE的中点,求证:DM/平面BEC 3..如图,直三棱柱ABC-A' B' C',/ BAC=90 , AB=AC=2, AA =1,点M N分别为A'B 和B' C'的中点. (I)证明:MIN/平面A' ACC ; (n)求三棱锥A' -MNC的体积. 4.如图所示的几何体中,△ ABC为正三角形,AE和CD都垂直于平面ABC且AE=AB=2 CD=1, F为BE的中点. (1)若点G在AB上,试确定G点位置,使FG//平面ADE并加以证明; 5.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点. (1)求证:AC丄SD; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE//平面PAC若存在,求SE: EC的值;若不存在,试说明理由. 6.如图,在四棱锥P-ABCD中,/ ABC=Z ACD=90 , / BAC=Z CAD=60 , PA丄平面ABCD E为PD的中点,AB=1, PA=2. (I )证明:直线CE//平面PAB 7.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM±取一点G,过G和AP作平面交平面BDMF GH求证:AP// GH 8.已知平面 a //面B , AB CD为异面线段,AB? a , CD? B ,且AB=a, CD=b AB与CD所成的角为0,平面Y //面a ,且平面丫与AC BC BD AD分别相交于点MN、P、Q且MN P、Q为中点, (1)若a=b,求截面四边形MNP啲周长;

高中数学教案 线面平行的判定定理和性质定理

教学目的: 1.掌握空间直线和平面的位置关系; 2.直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面 ”平行的转化 教学重点:线面平行的判定定理和性质定理的证明及运用 教学难点:线面平行的判定定理和性质定理的证明及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系 通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础 前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点 教学过程: 一、复习引入: 1 空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4 :平行于同一条直线的两条直线互相平行 推理模式://,////a b b c a c ?. 3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 5.空间两条异面直线的画法 a b 1A A 6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线 推理模式:,,,A B l B l ααα?∈???AB 与l 是异面直线

7.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上异面直线所成的角的范围:2 , 0(π 8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. 9.求异面直线所成的角的方法: (1)通过平移,在一条直线上找一点,过该点做另一直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 10.两条异面直线的公垂线、距离 和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线 在这两条异面直线间的线段(公垂线段)的长度, 叫做两条异面直线间的距离. 两条异面直线的公垂线有且只有一条 二、讲解新课: 1.直线和平面的位置关系 (1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点); (3)直线和平面平行(没有公共点)——用两分法进行两次分类. a α?,a A α=,//a α. a α a α 2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////l m l m l ααα???. 证明:假设直线l 不平行与平面α, ∵l α?,∴l P α=, 若P m ∈,则和//l m 矛盾, 若P m ?,则l 和m 成异面直线,也和//l m 矛盾,

直线与平面位置关系典型例题

典型例题一 例1 简述下列问题的结论,并画图说明: (1)直线?a 平面α,直线A a b = ,则b 和α的位置关系如何? (2)直线α?a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α?b 或A b =α ; (2)由图(2)可知:α//b 或α?b . 说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二 例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面 BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了. 证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形 ∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ?的中位线, ∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢? 由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为: 过直线作平面,得交线,若线线平行,则线面平行.

典型例题三 例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论. 分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面; (2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' , a ', b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面. 说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论. 典型例题四 例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α?b . 求证:α//b . 证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βα , ∵α//a , ∴c a //. 又∵b a //, ∴c b //. ∵α?b ,α?c , ∴α//b . 说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化. 和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.

面面平行测试题

直线、平面平行的判定及其性质测试题 、选择题 1. 下列命题中正确的是() ①若一个平面内有两条直线都与另一个平面平行,则这两个平面平行 ②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行 ③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行 ④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行 A. ①③ B. ②④ C. ②③④ D. ③④ 2、已知直线a与直线b垂直,a平行于平面a ,则b与a的位置关系是() A. b | // a B.b 二a C.b 与a 交 D.以上都有可能 4. 若直线m不平行于平面,且m,则下列结论成立的是( ) A. 内的所有直线与m异面 B. 内不存在与m平行的直线 C. 内存在唯一的直线与m平仃 D. 内的直线与m都相交 5. 下列命题中,假命题的个数是() ①---------------------------------------- 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;②过平面外一点有且只有一条直线和这个平面平行;③过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤a和b异面,则经过b存在唯个平面与平行 A. 4 B. 3 C. 2 D. 1 7 . , B是两个不重合的平面,a b是两条不同直线,在下列条件下,可判定// B 的是() A. ,B都平行于直线a,b B. 内有三个不共线点到B的距离相等 C . a,b 是内两条直线,且a/ B, b//B D . a,b是两条异面直线且a/ ,b/ ,a/ B b / B 8 . 两条直线a,b满足a / b,b〒,则a与平面的关系是()A . a / B . a与相交C. a与不相交D . a卄 2 、 已知a|| ,b,则必有() ()Aa||b(B a,b异面(C)a,b相交(D)a,b平行或异面 3、若直线a,b都与平面平行,则a和b的位置关系是() (A)平行(B)相交(C)异面(D)平行或相交或是异面直线 9.设a,b表示直线, 表示平面,P是空间一点,下面命题中正确的是() A . a ,则a// B . a// ,b ,贝U a//b C . // ,a ,b ,则a//b D . P a,P ,a〃, // ,则a

线线平行、线面平行、面面平行的判定方法(本人原创)

在空间“线线平行、线面平行、面面平行”的判定方法 一、两条直线平行的判定方法 (1)在同一平面内没有公共点的两条直线平行(定义) (2)先证在同一平面内,再用平面几何中的平行线的判定理或者相关图形的性质进行证明。 如①在同一平面内,两条直线被第三条直线所截,如果同位角或内错角相等,或同旁内角 互补,则两直线平行。 ②三角形、梯形中位线定理。 ③平行四边形、矩形、菱形、正方形性质(对边平行)。 ④在同一个平面内,同垂直于一条直线的两条直线平行(注意:此结论在空间不适合)。 (3)(线面平行的性质)如果一条直线和一个平面平行,则经过这条直线的一个平面与这个平面相交,那么这条直线和交线平行。 (4)如果两直线都平行于第三条直线,那么这两条直线互相平行(平行的传递性)。 (5)(面面平行的性质)如果两个平行平面分别和第三个平面相交,则它们的交线平行。 (6)(线面垂直的性质之一)如果两条直线垂直于同一个平面,那么这两条直线平行。 (7)用向量证明。 二、一条直线和一个平面平行的判定 (1)如果一直线和一平面没有公共点,那么这条直线就和这个平面平行(定义) (2)平面外的一条直线,如果和这个平面内的一条直线平行,那么这条直线就和这个平面平行(线面平行的判定定理)。 (3)如果两个平面相互平行,那么在一个平面内的任何一条直线都平行于另一个平面. (线面平行的性质)。 (4)向量法。 三、两个平面平行的判定 (1)如果两个平面没有公共点,那么这两个平面互相平行(定义) (2)如果一个平面内的两条相交直线分别和另一个平面平行,那么这两个平面平行。 (3)如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 (4)如果两个平面分别平行于第三个平面,那么这两个平面平行。 (5)如果两个平面垂直于同一条直线,那么这两个平面平行。

直线与平面平行经典题目

9.2 直线与平面平行 ●知识梳理 1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内. 2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行. 3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行. ●点击双基 1.设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是 A.α⊥β且m ⊥β B.α∩β=n 且m ∥n C.m ∥n 且n ∥α D.α∥β且m β 答案:D 2.设m 、n 是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是 ①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④ 解析:①②显然正确.③中m 与n 可能相交或异面.④考虑长方体的顶点,α与β可以相交. 答案:A 3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是 A.异面 B.相交 C.平行 D.不能确定 解析:设α∩β=l ,a ∥α,a ∥β, 过直线a 作与α、β都相交的平面γ, 记α∩γ=b ,β∩γ=c , 则a ∥b 且a ∥c , ∴b ∥c . 又b ?α,α∩β=l ,∴b ∥l .∴a ∥l . 答案:C 4.(06重庆卷)对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m 与l A.平行 B.相交 C.垂直 D.互为异面直线 解析:对于任意的直线l 与平面α,若l 在平面α内,则存在直线m ⊥l ;若l 不在平面α内, 且l ⊥α,则平面α内任意一条直线都垂直于l ,若l 不在平面α内,且l 于α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m 与l 垂直, 综上所述,选C. 5.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α?m ;④βα⊥;⑤βα//. (i )当满足条件 ③⑤ 时,有β//m ;(ii )当满足条件 ②⑤ 时,有β⊥m .

线面平行的判定定理和性质定理

线面平行的判定定理和性质定理 教学目的: 1.掌握空间直线和平面的位置关系; 2.直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面”平行的转化 教学重点:线面平行的判定定理和性质定理的证明及运用 教学难点:线面平行的判定定理和性质定理的证明及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系 通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础 前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点 教学过程: 一、复习引入: 1 空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4 :平行于同一条直线的两条直线互相平行 推理模式://,////a b b c a c ?. 3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 5.空间两条异面直线的画法 a b 1A A 6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线 推理模式:,,,A B l B l ααα?∈???AB 与l 是异面直线

7.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上异面直线所成的角的范围:2 , 0(π 8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. 9.求异面直线所成的角的方法: (1)通过平移,在一条直线上找一点,过该点做另一直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 10.两条异面直线的公垂线、距离 和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线 在这两条异面直线间的线段(公垂线段)的长度, 叫做两条异面直线间的距离. 两条异面直线的公垂线有且只有一条 二、讲解新课: 1.直线和平面的位置关系 (1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点); (3)直线和平面平行(没有公共点)——用两分法进行两次分类. a α?,a A α=,//a α. a α a α 2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////l m l m l ααα???. 证明:假设直线l 不平行与平面α, ∵l α?,∴l P α=, 若P m ∈,则和//l m 矛盾, 若P m ?,则l 和m 成异面直线,也和//l m 矛盾,

关于线面,面面平行证明题

. 线面,面面平行证明 一.线面平行的判定 1. 定义:直线和平面没有公共点,则直线和平面平行. 2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 3.符号表示为:,,////a b a b a ααα??? 二.面面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 符号语言:_____________________________________________________________________ 选择题 1.已知直线1l 、2l , 平面α, 1l ∥2l , 1l ∥α, 那么2l 与平面α的关系是( ). A. 1l ∥α B. 2l ?α C. 2l ∥α或2l ?α D. 2l 与α相交 2.以下说法(其中a ,b 表示直线,α表示平面) ①若a ∥b ,b ?α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ?α,则a ∥b 其中正确说法的个数是( ). A. 0个 B. 1个 C. 2个 D. 3个 3.已知a ,b 是两条相交直线,a ∥α,则b 与α的位置关系是( ). A. b ∥α B. b 与α相交 C. b ?α D. b ∥α或b 与α相交 4.如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( ). A. 平行 B. 相交 C. 平行或相交 D. AB ?α 5.如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面( ). A. 只有一个 B. 恰有两个 C. 或没有,或只有一个 D. 有无数个 6 .已知两条相交直线a、b,a∥平面α,则b与平面α的位置关系 ( ) A b∥α B b与α相交 C b?α D b∥α或b与α相交 7.不同直线,m n 和不同平面,αβ,给出下列命题: ① ////m m αββα????? ② //////m n n m β β? ??? ③ ,m m n n αβ?? ????异面 其中假命题有 ( ) A 0个 B 1个 C 2个 D 3个 8.若将直线、平面都看成点的集合,则直线l∥平面α可表示为 ( ) A l?α B l?α C l≠α D l∩α=? 9.平行于同一个平面的两条直线的位置关系是 ( ) A 平行 B 相交 C 异面 D 平行或相交或异面 10.下列命题中正确的是( ) ① 若一个平面内有两条直线都与另一个平面平行,则这两个平面平行 ②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行 ③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行 ④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行

平行线经典四大模型典型例题及练习

平行线四大模型 平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行, 如上图: 若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行); 若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行); 若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行: 平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同 旁内角也有相应的数量关系,这就是平行线的性质. 性质1: 两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2: 两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等 性质3: 两条平行线被第三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补

本讲进阶平行线四大模型 模型一“铅笔”模型 点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°; 结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD. 模型二“猪蹄”模型(M模型) 点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP; 结论2:若∠P=∠AEP+∠CFP,则AB∥CD. 模型三“臭脚”模型 点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若∥,则∠=∠-∠或∠=∠-∠; 结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD. 模型四“骨折”模型 点P在EF左侧,在AB、CD外部“骨折”模型结论1:若∥,则∠=∠-∠或∠=∠-∠; 结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.

关于线线、线面、面面平行练习题(含答案)

直线、平面平行的判定及其性质 测试题 A 一、选择题 1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面 2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F , G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( ) A .//,a b αα? B .//,//a b αα C .//,//a c b c D .//,a b ααβ=I 4.若直线m 不平行于平面α,且m ?α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( ) ① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行 A .4 B .3 C .2 D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12 MN AC BD ≥+ B .()12 MN AC BD ≤+ C .()12 MN AC BD =+ D .()12 MN AC BD <+ 二、填空题 7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________. 8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是 ①②③④ 9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .

高中数学必修二2.2.1线面与面面平行的判定

2.2.1 线面与面面平行的判定 【使用说明及学法指导】 1.先自学课本,理解概念,完成导学提纲; 2.小组合作,动手实践。 【学习目标】 1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景; 2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行. 3. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题; 4. 理解和掌握两个平面平行的判定定理及其运用; 【重点】直线与平面平行、平面与平面平行的判定定理及应用 【难点】直线与平面平行、平面与平面平行的判定定理及应用 一、自主学习 1.预习教材P54~ P57,完成下列问题 复习:直线与平面的位置关系有______________,_______________,_________________. 讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗? 2.导学提纲 探究1:直线与平面平行的背景分析 实例1:如图,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动 的一边l与墙所在的平面位置关系如何? 实例2:如图,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系? 结论: 探究2:直线与平面平行的判定定理 问题:探究1两个实例中的直线l为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一 结论表示出来吗? 直线与平面平行的判定定理 定理: 反思:思考下列问题 ⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?

探究3:两个平面平行的判定定理 问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行 吗?由此你可以得到什么结论? 问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外 一个平面平行,那么这两个平面就平行呢? 试试:在长方体中,回答下列问题 面,AA∥面BB C C,则面AA B B∥面BB C C吗? ⑴如下图,AA AA B B 面,则A ADD 面吗? 面∥DCC D ⑵如下图6-2,AA∥EF,AA∥DCC D 面,EF∥DCC D ⑶如下图,直线A C和B D相交,且A C、B D都和平面ABCD平行(为什么),则平面A B C D∥平面ABCD吗? 反思:由以上3个问题,你得到了什么结论? 两个平面平行的判定定理: 如图所示,∥. 反思: ⑴定理的实质是什么? ⑵用符号语言把定理表示出来. 二、典型例题 例1. 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?

七年级数学《平行线》典型例题

《平行线》典型例题 1.在同一平面内有三条直线,如果要使其中两条且只有两条平行,则它们( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点 2.下列说法不正确的是( ) A.平面内两直线不平行就相交 B.经过一点有且只有一条直线与已知直线平行 C.平行于同一直线的两直线平行 D.同一平面内,垂直于同一直线的两直线平行 3.已知如图,AB、BE被AC所截,下列说法不正确的是( ) A.∠1与∠2是同旁内角B.∠1与∠ACE是内错角 C.∠B与∠4是同位角D.不能得到内错角∠1与∠3 4.如图,下列条件中,能判定AB//CE的是( ) A.∠A =∠ACE B.∠B =∠ACE C.∠B =∠ACB D.∠A =∠ECD

参考答案 1、答案:C 说明:因为只有两条直线平行,所以第三条直线跟这两条平行直线都不平行,即第三条直线跟这两条直线都有交点,所以它们一共有两个交点,答案为C. 2、答案:B 说明:选项B,没有说明这个点在什么位置,如果这个点在这条直线上,则无法过这个点做出一条与该直线平行的直线,所以选项B的说法是错误的,而其它选项的说法都是正确的,答案为B. 3、答案:C 说明:∠B与∠4是AB、CD被BE所截而成的同位角,不是AB、BE被AC所截的同位角,所以C的说法是不正确的;而∠1与∠2是AB、BE被AC所截而成的同旁内角;∠1与∠ACE是AB、BE被AC所截的内错角;∠1与∠3是AB、CD被AC所截成的内错角,不是AB、BE被AC 所截而成的内错角,所以正确答案应该是C. 4、答案:A 说明:∠A与∠ACE是AB、CE被AC所截而成的内错角,所以由∠A =∠ACE可以判定AB//CE,A正确;∠B与∠ACE,以及∠A与∠ECD构不成内错角,也构不成同位角,因此,由∠B =∠ACE,∠A =∠ECD都不能判定AB//CE,B、D都错误;∠B与∠ACB是AB与AC被BC所截而成的同旁内角,所以由∠B =∠ACB也无法判定AB//CE,C错;答案为A.

线面、面面平行的判定、性质定理

线面、面面平行的判定、性质定理 1、已知: b ,a//, a//,则 a 与b的位置关系是() A. a// bB. a b C. a ,b相交但不垂直D. a ,b异面 2、已知: b ,a//,a//,则a与b的位置关系是(). A. a// bB.a b C. a 、b相交但不垂直D.a、b异面 3、过平面外的直线l ,作一组平面与相交,如果所得的交线为 a , b , c ,?,则这些交线的位置关系为() A.都平行 B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点 4、 a , b 是两条异面直线, A 是不在a,b上的点,则下列结论成立的是() A.过 A 且平行于 a 和 b 的平面可能不存在 B.过 A 有且只有一个平面平行于 a 和 b C.过 A 至少有一个平面平行于 a 和 b D.过 A 有无数个平面平行于 a 和 b 5、如图,已知点P 是平行四边形AB C D 所在平面外的一点, E , F 分别是 P A , B D 上的点且 PE∶EA BF ∶FD ,求证:EF//平面PBC. P E D C F 6、如图,正方形 A BC D的边长为1 3,平面 A BC D 外一点 P 到正方形各顶点的距离都是13 ,M,N 分别是 PA , DB 上的点,且 PM ∶M A BN∶ND 5∶8 . ( 1)求证:直线 MN // 平面PBC; P ( 2)求线段M N的长. M D C E N A B 7、如图,已知P 为平行四边形 A B C D 所在平面外一点,M 为 PB 的中点, 求证: PD //平面MAC .P M B A C D 8、如图,在正方体ABC D A1B1C 1D1中,E ,F 分别是棱 B C , C 1 D 1的中点,求证:EF //平面BB1D1D .D1F C 1 A 1 B1 D C A B A B E

线面平行典型例题(新)

线面平行典型例题和练习 直线与平面、平面与平面平行的判定与性质中,都隐含着直线与直线的平行,它成为联系直线与平面、平面与平面平行的纽带,成为证明平行问题的关键. 1.运用中点作平行线 例1.已知四棱锥P ABCD -的底面是距形,M、N分别是AD、PB的中点,求证MN∥平面PCD . 2.运用比例作平行线 例2.四边形ABCD与ABEF是两个全等正方形,且AM=FN,其中M AC ∈,N BF ∈,求证:MN∥平面BCE 3. 运用传递性作平行线 例3.求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行 4.运用特殊位置作平行线 例4.正三棱柱ABC-A1B1C1的底面边长为2,点E、F分别是C1C、B1B上的点,点M是线段AC上的动点,EC=2FB=2.问当点M在何位置时MB∥平面AEF? 课堂强化: 1. 1.棱长都相等的四面体称为正四面体.在正四面体A-BCD 中,点M ,N 分别是CD 和AD 的中点, 给出下列命题: ①直线MN ∥平面ABC ; A C N P D M B G 图M F N C E A D B H m αβ l γσn 图4 k A B C E F N M B 1 A 1 C 1 图5

②直线CD⊥平面BMN; ③三棱锥B-AMN的体积是三棱锥B-ACM的体积的一半. 则其中正确命题的序号为 2. 如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (Ⅰ)求证:BE=DE; (Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC . 3. .如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC= 2,AA′=1,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′-MNC的体积. 4. 如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.(1)若点G在AB上,试确定G点位置,使FG∥平面ADE,并加以证明; 5. 如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的 2倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由. 6. 如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2. (I)证明:直线CE∥平面PAB; 7. 如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH. 8. 已知平面α∥面β,AB、CD为异面线段,AB?α,CD?β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ∥面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.且M、N、P、Q为中点,

相关文档
最新文档