车削加工切削力测量实验

车削加工切削力测量实验
车削加工切削力测量实验

车削加工切削力测量实验

实验概述

切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。通过对实测的切削力、进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。

通过本实验可使同学熟悉制造技术工程中的基础实验技术和方法,理解设计手册中的设计参数的来由,在处理实际工程问题中能合理应用经验数据。

实验目的与要求

1、 掌握车削用量υc 、f 、a p ,对切削力及变形的影响。

2、 理解切削力测量方法的基本原理、了解所使用的设备和仪器。

3、 理解切削力经验公式推导的基本方法,掌握实验数据处理方法。

实验系统组成

实验系统由下列设备仪器组成

1、 CA6140车床单元

2、 3向切削力传感器单元

3、 YD-15动态应变仪单元

4、 计算机数据处理仪单元

5、 DCI 型电子秤或测力环

6、 硬质合金外圆车刀单元

7、 45号钢试件单元

3向切削力传感器结构与工作原理

3向切削力传感器是一种以电阻式应变片为敏感元件的力传感器。它具有八角扁环型结构(上下环)的弹性元件。八角扁环是用整体钢材加工成八角状结构,从而避免接触面间的摩擦和螺钉夹紧的影响。在八角状弹性元件的适当位置粘贴电阻应变片作为敏感元件。弹性元件受力变形后,导致电阻应变片变形,引起电阻应变片的电阻值变化,见图1。其电阻变化率△R/R 与应变△L/L 有如下的线性关系:

△R/R=K 0*△L/L=K 0*ε

式中K o 为电阻应变片的应变灵敏系数,一般K o =2.0~2.4;

ε—八角状弹性元件的应变。

由于应变片电阻的电阻变化率△R/R 是很小的。故此需外接电阻应变仪,将电阻应变片的微小变化量

放大,进而转变成电流(电压)的变化量,形成电信号输出。在电阻应变仪的输出端连接计算机数据处理仪,对此信号进行实时采样,A/D 转换、形成数字数据流输出,存储,形成实验数据的实时记录文档。

图1 3向切削力传感器示意图

实验原理

车削工件时,车刀安装在3向切削力传感器前端,可以将切削力传递给传感器的八角扁环。切削力中的进给抗力分量F f使八角环受到切向推力,切深抗刀分量F p使八角状环受到压缩,主切削力分量F c使八角环上面受拉

伸下面受压缩。对于这种不同的受力情况,

在八角环上适当地布置应变片,就可在相互

极小干扰的情况下分别测出各个切削分力。

实验系统调整

1、首先将试件夹固在车床夹盘上,并用尾

座上的顶尖顶牢。卸下原四方刀架,装

上3向切削力传感器。

2、将测量F c、F f、F p的3组应变片均按全

桥接线,分别接到三个电桥盒上。

3、连接应变仪单元、计算机数据处理仪单

元。图2 车削切削力示意图

图2 外圆车削过程切削力示意图

4、应变仪平衡调节:

1)打开DY-15型稳压电源开关,指示灯亮,观察面板上电压表,指针应定在24伏上。

2)从YD-15型应变仪的第一槽路开始,逐个观察输出表是否指零。如果不指零,可调节“低

阻基零”电位器,同时用万用表测量电压输出接线叉上的输出电压值。如果不指零可调节“电压基零”电位器为之满足。(一般正常情况下,该项已调好)。

3)将衰减开关依次转动到“100”、“30”、“10”、“3”、

“1”档逐次调零,同时转换“预静”开关预和

静位置,分别调节“R”和“C”,调节到输出指

示表在静和预都指零,此时电桥已经平衡。

5、调整计算机数据处理仪单元

1)根据测量信号的大小选择应变仪上的“标定”

应变尺度,选择数据处理仪的测量显示界面上

“标定”功能按钮,记录下定标数据记录值。2)将应变仪“输出”开关扳到“测量”位置,选

择数据处理仪的测量显示界面上“测量”功能

按钮,数据应指示为零,并不应有变化,否则

证明电桥不平衡,应重新调整应变仪使之平衡。

图3应变片连接示意图

3)根据测量信号的频率选择采样频率。

实验步骤

1、切削深度a p对切削力的影响实验

在刀具几何角度和切削用量(υc、f)一定的条件下,只改变切深a p(如1、1.5、2、2.5mm),将所测得的切削力值填入实验报告的表1中。

2、进给量f对切削力的影响

在刀具几何角度和切削用量(υc、a p)一定的条件下,只改变进给量f(如0.1、0.2、0.3、0.4),将所测得的切削力值填入实验报告的表2中。

3、切削速度υc对主切削力F c的影响

在刀具几何角度和切削用量(f、a p)一定的条件下,只改变车床主轴转速(如n=12.5、15、20、25、32、40、50、63、80、100、125、150、200、250、320),测出一系列相应的

F c值,填入实验报告的表3中,并在直角坐标纸上,按力和速度之关系画出F c-υc的曲线图。

实验报告内容

1.实验条件

车刀几何角度、试件材料、试件直径、实验切削用量

2.实验结果记录

切削深度υc对切削力的影响的实验结果、切削深度f对切削力的影响的实验结果、切削深度a p对切削力的影响的实验结果

3.实验数据处理,建立切削力的经验公式

用双对数坐标法(作图法),也可用最小二乘法(计算法)用双对数坐标建立切削力的经验公式

F c=C ap*a p*X Fc (式1)

F c=C f*fy*F c (式2)

两边取对数

lgF c=lgC ap+X Fc lg a p

lgF c=lgC f+Y Fc*lg f

实验数据推导切削力指数公式

这是直线方程(y=b+aX)。lgC ap和lgC f为直线的截距b。X Fc 和Y Fc为直线的斜率a。当a p=1或f=1时,可得lgF c= lgC ap和lgF c= lgC f,即得C ap和C f。X Fc 和Y Fc可有直线斜率(tg a)求得。如测X Fc:

X Fc=tg a=AB/BC ,同理可求得Y Fc

将式1与式2合并,即得经验公式:

F c= C fc*a p X Fc*f Y Fc (式3)

而C fc1= C f/ a p0 X Fc C fz2= C ap/ f0 Y Fc

式中:f0 和a p0 是实验中已知数据。C fc=(C fc1+ C fc2)/2

切削力实验报告

篇一:007切削力测量实验报告 专业班级姓名学号专业班级姓名学号实验日期实验地点 40号楼一楼实验室成绩 实验名称切削力测量实验 实验目的 本次切削力测量实验的目的在于巩固和深化《机械制造技术基础》课堂所学的有关切削力的理论知识,正确认识切削力直接影响切削热、刀具磨损与使用寿命、加工精度和已加工表面质量等问题。因此,研究切削力的规律,对于分析切削过程和生产实际是十分重要的。 本次实验在实验老师的指导下,达到如下实验目的: 1、了解三向切削力实验的原理和方法; 2、进行切削力单因素实验,了解背吃刀量、进给量和切削速度三大切削用量对切削力的影响规律,获得三向切削力实验公式; 3、了解在计算机辅助下的、利用三向测力仪进行切削力实验的软、硬件系统构成,以及三向切削测力仪标定的原理和方法。 实验基本原理 切削力是机械切削加工中的一个关键因素,它直接影响着机床、夹具等工艺装备的工作状态(功率、变形、振动等),影响着工件的加工精度、生产效率和生产成本等。 切削力的来源有两个:一是切削层金属、切屑和工件表层金属的弹塑性变形所产生的抗力;二是刀具与切屑、工件表面间的摩擦阻力。 影响切削力的因素很多,工件材料、切削用量、刀具几何参数、刀具磨损状况、切削液的种类和性能、刀具材料等都对切削力有较大的影响。 实验基本步骤 1、实验指导教师讲解实验的目的和要求;强调实验的纪律、进行安全教育。 2、车床及工件的准备:将圆钢棒材(工件)安装在车床上,利用三爪卡盘和活动顶尖将棒材装夹到位;安装车刀,注意刀尖对准车床的中心高,然后启动车床将工件外圆表面加工平整; 3、dj-cl-1型三向切削力实验系统的准备: 1)启动切削力实验程序,在“输入实验编号”栏目内,输入年级、专业、班级、组号、实验次数和主题词等,并点击“确定”; 2)点击“零位调整”软按钮,调出零位调整界面,进行三向零位调整; 3)点击“切削力实验方式向导”软按钮,调出切削力实验方式向导界面,进行实验方式选择:选择切削力单因素实验; 4、进行不改变进给量及切削速度,只改变背吃刀量单因素切削力实验; 5、进行不改变进给量及背吃刀量,只改变切削速度单因素切削力实验; 6、进行不改变背吃刀量及切削速度,只改变进给量单因素切削力实验; 7、建立单因素切削力实验综合公式,并输出实验报告。 原始记录 1、车床型号 c6240 2、工件参数工件参数见表1 3、测力传感器型号 dj-04b-917 4、刀具参数:刀具(刀片)材料 yt15 5、刀具几何参数刀具几何参数见表2 表2 单因素切削力实验刀具几何参数6、实验结果: 单因素实验图 改变背吃刀量、改变进给量和改变切削速度的切削力实验图见图 1、图2和图3。 3000 (n) 三向切削力 2500 2000 1500 1000500 0 0 0.5 1 1.5 2 2.5 3图

实验二 车削加工切削力测量实验报告书110

车削加工切削力测量实验报告书 学号 姓名傅亥杰 小组11 时间2015年12月17日 成绩 上海大学生产工程实验中心 2015-11

一.实验概述 切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。通过对实测的切削力、进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。 通过本实验可使同学熟悉制造技术工程中的基础实验技术和方法,理解设计手册中的设计参数的来由,在处理实际工程问题中能合理应用经验数据。 二.实验目的与要求 1.掌握车削用量υ、f、a,对切削力及变形的影响。 2.了解刀具角度对切削力及变形的影响。 3.理解切削力测量方法的基本原理、了解所使用的设备和仪器。 4.理解切削力经验公式推导的基本方法,掌握实验数据处理方法。 三.实验系统组成 实验系统由下列设备仪器组成 1、微型数控车床KC0628S 2、车床测力刀架系统(图1),包括 (1)车削测力刀架 (2)动态应变仪 (3)USB数据采集卡 (4)台式计算机 图1

四、实验数据记录与数据处理 1. 切削力测量记录表1

整理采集点并运用MATLAB对数据处理如下:

2. 请按指数规律拟合主切削力或背刀力和切削深度、进给量的关系,建立切削力的经验公式。 答:对已有数据运用最小二乘法进行拟合,得出主(背)切削力关于进给量的双对数y=ax+b曲线及参数,其中1、2为主切削力,3、4为背向力:k1= b1= k2= b2= k3= b3= k4= b4= 对已有数据运用最小二乘法进行拟合(由于只有两个数据,故直接取直线求解),得出主(背)切削力关于切削深度的双对数y=ax+b的参数,其中1、2为主切削力,3、4为背向力: k1= b1= k2= b2= k3= b3= k4= b4= 经上述数据可以计算得,其中1为主切削力,2为背向力: X Fc1 = Y Fc1 = X Fc2= Y Fc2 = C ap1= C ap2=

金属切削实验指导书1

实验一CA6140A车床传动系统分析 实验目的: 1. 了解机床的用途、总体布局、以及机床的主要技术性能。 2. 对照机床传动系统图,分析机床的传动路线。 3. 了解和分析机床主要零部件的构造和工作原理。 实验内容 1.了解车床的用途、布局、各操纵手柄的作用和操作方法; 2.了解主运动、进给运动的传动路线; 3.了解主运动、进给运动的调整方法; 4.了解和分析机床主要机构的构造及工作原理。 实验步骤 学生在实验指导人员带领下,到CA6140型普通车床现场教学。 1.观察CA6140型普通车床的主轴箱结构,注意调整方法; 2.观察、了解进给互锁机构及丝杠螺母机构的工作原理; 3.根据实物了解车床主要附件的使用。 分析讨论题 1.结合实验说明C6140机床主轴正、反转与操纵手柄位置的对应关系,并阐述 主轴正、反转、停转的工作原理。 主轴正转:操纵手柄向上扳,左离合器压紧,主轴正转; 主轴反转:操纵手柄扳至下端,右离合器压紧,主轴反转; 主轴停转:操纵手柄处于中间位置,离合器脱开,主轴停转。 工作原理:主轴的正反转、停转是由双向多片摩擦离合器实现的。摩擦离合器由内外摩擦片、止推片、压块、空套齿轮组成。例如左离合器,内摩擦片的孔是花键孔,装在主轴花键上,随主轴旋转的外摩擦片的孔是圆的,直径略大于花键外径。 外圆上有4个凸起,嵌在空套齿轮的缺口中,内外摩擦片相间安装。当杆通过销向左推动压块时,将内片与外片互相压紧。轴的转矩便通过摩擦片间的摩擦力矩传给齿轮,使主轴正转,同理,压块向右时,使主轴反转,当压块处于中间位置时,离合器脱开,主轴停止运动。

2.根据实验观察和教材47页内容,绘出CA6140A车床主轴的结构。说明主轴中 孔与莫氏锥孔的作用。 主轴中孔:是为了能通过较粗的棒料成管料。 莫氏锥孔:用来安装心轴,检测机床精度;在制作一些需要精确重复定位的夹具时,作为定位基准;可扩大车床的使用范围,可直接装夹刀具。具有定心性好,自锁性。 3.丝杠与光杠在结构上有何不同?作用分别是什么?如何操作才能使丝杠起传动作用?光杠传动与丝杠传动的互锁如何实现? 1)丝杠表面有螺纹;光杠截面为圆形。 2)丝杠能带动大拖板纵向移动,用来车削螺纹; 光杠用于机动进给时传递运动,用于一般车削。 3)合上开合螺母,可使丝杠起作用。 4)光杠与丝杠的互锁是靠溜板箱中的互锁机构实现的。 当合上开合螺母时,机动进给的操纵手柄就被锁在中间位置不能扳动,即不能再接通机动进给,则光杠不能动,丝杠可动;当向左扳机动进给手柄,接通纵向进给时,开合螺母操纵手柄不能转动,开合螺母不能闭合,则光杠能动,丝杠不能动。

《金属切削原理及刀具》实验报告

河南理工大学万方科技学院 金属切削原理与刀具设计 实验报告 班级 学号 姓名 机械与动力工程学院 机械制造实验室

注意事项 为了实验的顺利进行,确保学生人身安全和国家财产安全,特提出以下注意事项: (1)上实验课前必须按指导书作好预习及准备工作。 (2)除了必要的书籍和文具外,其他物品不得带入实验室。 (3)进入实验室后,应保持室内安静和整洁。不准打闹、乱扔纸屑和随地吐 痰。 (4)凡与本次实验无关的仪器设备,均不得使用或触摸。 (5)做实验时应按指导细心操作。如仪器发生故障,应立即报告指导老师, 不得自行拆修或安装软件。 (6)爱护国家财产,实验完毕应将实验仪器整理好,如损坏仪器,按有关规 定处理。 实验结束后,需在三日内上交实验报告,如有特殊情况,需向老师说明原因! 机械与动力工程学院 机械制造实验室

实验1切削力测量 1.1实验目的和要求: (1)了解切削测力仪的工作原理及测力方法。 (2)掌握切削深度、进给量对车削力的影响规律。 (3)掌握有关软件的应用。 1.2实验内容 (1)测力仪标定。 (2)切削速度、进给量一定的情况下,测量不同的切削深度下车削力的大小。 (3)切削速度、切削深度一定的情况下,测量不同的进给量下车削力的大小。 1.3实验设备、仪器和试件 CA6140车床一台 Kistler测力仪一台 计算机系统(数据分析软件)一台 1.4实验数据处理 初始条件: D=mm n=rpm ν=m/min a p=mm 1实验数据记录 记录ν、a p一定的条件下,不同的测得的切削力(如下图)。 表1.1:ν、a p一定的条件下,f对切削力的影响 序号f F x(N)F y(N)F z(N) 1 2 3 4 5 1

切削力的经验公式

切削力的经验公式 目前,人们已经积累了大量的切削力实验数据,对于一般加工方法,如车削、孔加工和铣削等已建立起了可直接利用的经验公式。 测力实验的方法有单因素法和多因素法,通常采用单因素法。即固定其它实验条件,在切削时分别改变背吃刀量ap和进给量f,并从测力仪上读出对应切削力数值,然后经过数据整理求出它们之间的函数关系式。 通过切削力实验建立的车削力实验公式,其一般形式为: 注意:切削力实验公式是在特定的实验条件下求出来的。在计算切削力时,如果切削条件与实验条件不符,需乘一个修正系数KF,它是包括了许多因素的修正系数乘积。修正系数也是用实验方法求出。 三、单位切削力、切削功率和单位切削功率 1、单位切削力p:是指切除单位切削层面积所产生的主切削力。可用下式表示: 上式表明,单位切削力p与进给量f有关,它随着进给量f增大而减小。单位切削力p不受背吃刀量ap的影响。 单位切削力p可查手册,利用单位切削力P来计算主切削力Fz较为简易直观。 2、切削功率Pm:消耗在切削过程中的功率称为切削功率Pm(国标为Po)。 切削功率为力Fz和Fx所消耗的功率之和,因Fy方向没有位移,所以不消耗功率。于是 Pm=(FzVc+Fxnwf/1000)×10-3 其中:Pm—切削功率(KW); Fz—切削力(N); Vc—切削速度(m/s); Fx—进给力(N); nw—工件转速(r/s); f—进给量(mm/s)。 式中等号右侧的第二项是消耗在进给运动中的功率,它占总功率5%左右,可以略去不计,于是 Pm=FzVc×10-3 按上式求得切削功率后,如要计算机床电动机的功率(PE)以便选择机床电动机时,还应考虑到机床传动效率。 PE≥Pm/ηm 式中:ηm—机床的传动效率,一般取为0.75~0.85,大值适用于新机床,小值适用于旧机床。 3、单位切削功率Ps 单位切削功率Ps是指单位时间内切除单位体积金属Zw所消耗的功率。 四、切削力的变化规律 实践证明,切削力的影响因素很多,主要有工件材料、切削用量、刀具几何参数、刀具材料刀具磨损状态和切削液等。 1、工件材料 (1)硬度或强度提高,剪切屈服强度τs增大,切削力增大。 (2)塑性或韧性提高,切屑不易折断,切屑与前刀面摩擦增大,切削力增大。 2、切削用量

单因素切削力实验报告

切削力单因素实验报告 10 年级 机制 专业 12 班 2组 第 1次实验 主题词 指导教师: 实验日期:2013-6-16 15:14:04 实验评分: 一. 实验条件: 1. 车床型号 CA6140 2. 工件参数 工件参数见表1 表1 实验工件参数 3. 测力传感器型号 4. 刀具参数: 1) 刀具(刀片)材料 YT15 2) 刀具几何参数 刀具几何参数见表2 表2 单因素切削力实验刀具几何参数 单位:度 二. 实验结果: 1. 单因素实验图 改变背吃刀量、改变进给量和改变切削速度的切削力实验图见图1、图2和图3。 3000 2500 2000 1500 1000 500 0 (N) 三 向 切 削 力 0 0.5 1 1.5 2 2.5 3 图1 改变背吃刀量切削力实验图 图例(下同) 切向力 轴向力 径向力

2. 单因素实验公式 单因素实验公式见表3 表3 单因素实验公式 (N) 三 向 切 削 力 3000 2500 2000 1500 1000 500 0 0.1 0.2 0.3 0.4 图2 改变进给量切削力实验图 (N) 三 向 切 削 力 3000 2500 2000 1500 1000 500 0 50 100 150 200 250 图3 改变切削速度切削力实验图

3.单因素实验综合公式: 切向力F c =412.83a sp 1.46 f0.77 v c0.37 轴向力F f = 42.71a sp 1.00 f0.46 v c0.64 径向力F sp =136.24a sp 1.43 f0.63 v c0.32实验评语: 三.课后习题 1.简述切削用量对切削力的影响。

车削加工切削力测量实验报告书(附指导书)

车削加工切削力测量实验报告书 学号 ___________________ 姓名 ___________________ 小组 ___________________ 时间 ___________________ 成绩 ___________________ 上海大学生产工程实验中心 2014-11

?实验概述 切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具 磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验 手段和主要研究方法。通过对实测的切削力、进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。 通过本实验可使同学熟悉制造技术工程中的基础实验技术和方法, 理解设计手册中的设计参数的来由,在处理实际工程问题中能合理应用经验数据。 二?实验目的与要求 1. 掌握车削用量U、f、a p,对切削力及变形的影响。 2. 了解刀具角度对切削力及变形的影响。 3. 理解切削力测量方法的基本原理、了解所使用的设备和仪器。 4. 理解切削力经验公式推导的基本方法,掌握实验数据处理方法。三?实验系统组成 实验系统由下列设备仪器组成 1、微型数控车床KC0628S 2、车床测力刀架系统(图1),包括 (1)车削测力刀架 (2)动态应变仪 (3)USB数据采集卡 (4)台式计算机

四、实验数据记录与数据处理 2. 请按指数规律拟合主切削力或背刀力和切削深度、进给量的关系,建立切削力的经验公式。答:(请将数据处理过程写于此处)

切削力计算的经验公式.-切削力计算

您要打印的文件是:切削力计算的经验公式打印本文 切削力计算的经验公式 作者:佚名转贴自:本站原创

度压缩比有所下降,但切削力总趋势还是增大的。强度、硬度相近的材料,塑性大,则与刀面的摩擦系数μ也较大,故切削力增大。灰铸铁及其它脆性材料,切削时一般形成崩碎切屑,切屑与前刀面的接触长度短,摩擦小,故切削力较小。材料的高温强度高,切削力增大。 ⑵切削用量的影响 ①背吃刀量和进给量的影响背吃刀量ap或进给量f加大,均使切削力增大,但两者的影响程度不同。加大ap 时,切削厚度压缩比不变,切削力成正比例增大;加大f加大时,有所下降,故切削力不成正比例增大。在车削力的经验公式中,加工各种材料的ap指数xFc≈1,而f的指数yFc=0.75~0.9,即当ap加大一倍时,Fc也增大一倍;而f加大一倍时,Fc只增大68%~86%。因此,切削加工中,如从切削力和切削功率角度考虑,加大进给量比加大背吃刀量有利。 ②切削速度的影响在图3-15的实验条件下加工塑性金属,切削速度vc>27m/min 时,积屑瘤消失,切削力一般随切削速度的增大而减小。这主要是因为随着vc的增大,切削温度升高,μ下降,从而使ξ减小。在vc<27m/min时,切削力是受积屑瘤影响而变化的。约在vc=5m/min时已出现积屑瘤,随切削速度的提高,积屑瘤逐渐增大,刀具的实际前角加大,故切削力逐渐减小;约在vc=17m/min处,积屑瘤最大,切削力最小;当切削速度超过vc=17m/min,一直到vc=27m/min时,由于积屑瘤减小,使切削力逐步增大。 图3-15 切削速度对切削力的影响 切削脆性金属(灰铸铁、铅黄铜等)时,因金属的塑性变形很小,切屑与前刀面的摩擦也很小,所以切削速度对切削力没有显著的影响。 ⑶刀具几何参数的影响 ①前角的影响前角γo加大,被切削金属的变形减小,切削厚度压缩比值减小,刀具与切屑间的摩擦力和正应力也相应下降。因此,切削力减小。但前角增大对塑性大的材料(如铝合金、紫铜等)影响显著,即材料的塑性变形、加工硬化程度明显减小,切削力降低较多;而加工脆性材料(灰铸铁、脆铜等),因切削时塑性变形很小,故前角变化对切削力影响不大。 ②负倒棱的影响前刀面上的负倒棱(如图3-16a),可以提高刃区的强度,

第2章%20金属切削原理[2]

第2章 金属切削原理、规律与切削参数优化 习 题 2-1 车削时切削力为什么要分解为三个分力,说明各分力的作用和计算切削力的应用价值。 2-2 说明切削力实验数据处理和建立指数经验公式的方法。 2-3 已知工件材料为正火45中碳钢,工件直径Φ100mm ,刀具材料为硬质合金刀片(牌号为 YT15),刀具几何角度为 ?-===?-=?='?=?=?=10,6.0,5.0,5,15,60,6,1811o r s r r o o mm b mm r γλκκαγε ,刀具磨损值为VB =0.4mm ,机床型号CA6140车床,主电机功率为7.5kW ,切削用量为min /100,/6.0,5m v r mm f mm a p ===,求切削时的三个分力f p c F F F ,,,切削功率m P 及进给功率f P 。机床能否正常工作及对策。 2-4 用硬质合金车刀粗车外圆,加工材料为调质45钢,选择切削切削深度mm a p 3=、切削 速度min /100m v =,试求在切削面积不改变情况下,分别采用mm a p 3=、r mm f /3.0=和mm a p 5.1=、r mm f /6.0=时,它们产生的主切削力c F 、消耗的切削功率m P 各多少? 2-5 切削塑性材料和切削脆性材料时,刀具上什么位置切削温度最高,为什么? 2-6 为什么切削不锈钢和高温合金时,其切削温度要比切削其它常用材料都高许多? 2-7 为什么许多复杂刀具如滚刀等用高速钢制造? 2-8 硬质合金刀具材料主要牌号有哪几种,比较YG 、YT 、YW 的特性,各主要适用于切削 加工什么样的工件材料,哪些刀具材料适用于切削不锈钢、耐热合金,哪些刀具不适合,为什么? 2-9 金刚石刀具适用切削的材料是什么,是否适合于切削钢,CBN 刀具如何? 2-10 纯铁硬度低,是不是可以说比45中碳钢容易加工?不锈钢为什么难加工? 2-11证明切削钢料时(见图2-1),第一变形区内切削单位体积金属所消耗的剪切变形功为 s τε?,s τ为剪切平面上钢料的平均剪切流动应力,ε为剪切平面上相对滑移。() 00cos sin cos γφφγε-=,式中,0γ为刀具前角,φ为剪切角。 提示: (1) 键切面上消耗的功率的定义:剪切力与键切面上滑移速度的乘积。 (2) 剪切面上滑移速度与切削速度的关系。 (3) 剪切面上剪切力的求得。

刀具实验报告

实验一车刀角度的测量 一、实验目的 1.熟悉车刀角度,学会一般车刀角度基准面的确定及角度的测量方法。 2.了解不同参考系内车刀角度的换算方法。 二、实验设备,工具和仪器。 1.车刀量角台(三种型式)。 量角台的构造如图1—1。(1)台座、(2)立柱、(3)指度片、(4)刻度板、(5)螺钉、(6)夹固螺钉、(7)定位块。 2.各种车刀模型。 A型量γ0 、α0、αo·B型量λs C型量K r、K 图1—1车刀量角台 三、实验内容 车刀标注角度的测量。 用车刀量角台测量外园车刀的γ0 、α0 、λs 、K r、K r·、αo·等角。 (a)量前角:如图1-2,将车刀放置在台座上,调整刻度板4和指度片3使指度片的B边位于车刀主剖面内并与前刀面贴合,则由刻度板上读出γ0。如 果指度片位于横向或纵向剖面,则可测得γf或γp 。 (b)量后角:如图1-3,调整刻度板和指度片使指度片A边位于主剖面内,并与后刀面贴合则由刻度板可测得α0。同理指度片位于横向或纵向剖面内可测得αf或αp。调整刻度片位于副剖面内,可测得αo〃。 (c)量刃倾角:如图1-4,调整指度片使之位于切削平面内并使其测量边与主切削刃贴合,则由刻度板读出λs。 (d)量主偏角、副偏角:如图1-5,将车刀刀杆靠紧定位块.调整刻度板的指度片,使指度片测量边分别与主、副切削刃贴合,由刻度板读出K r和K r〃。

图1—2前角γ0测量图1—3后角量α0的测量 图1—4刃倾角λs的测量图1—5主偏角K r、副偏角K r〃的测量

实验记录 1.主剖面参考系的基本角度(单位:度) 计算: 3.在所测量刀具中选择刃倾角最大的刀具,计算切深前角γp,进给前角γf。 由tgγp=tgγo cos K r +tgλs sin K r 得γp=arctg(tg10.5o cos42o+tg(-6o)sin42o)=3.86o 由tgγf=tgγo sin K r -tgλs cos K r 得γf=arctg(tg10.5o sin42o-tg(-6o)cos42o)=11.43o

切削力测量

R l r r R l ε??=?=? 3101 234R R U U R R R R ??=- ?++??调平衡后,U 0=0所以R 1R 4=R 2R 3。 当四个桥臂的电阻值均相等,即R 1=R 4=R 2=R 3时的电桥成为等臂电桥。 若电桥中的R 1 =R 2=R 、R 4=R 3= R’,则称为卧式电桥。若R 1=R 3=R ,R 4=R 2=R’则称为立式电桥,由于立式电桥的非线性系数是不确定的,因此在应变测量中,只应用等臂电桥和卧式电桥两种。根据工作桥臂的多少,可将电桥电路分为单路电桥,半桥差动电路和全桥电路三种。只有单臂工作的电桥电路称为单桥电路,如图4.7所示。调平衡时,由上式可得 31101 1234R R R U U R R R R R ??+?=- ?+?++?? 把R 1 =R 2、R 4=R 3代入可得 111011111224R R R U U U R R R ??+??=-≈ ?+??? 如果桥臂电阻和邻边桥臂电阻都有应变片替代,且使一个应变片受拉,另一个受压,这种接法称为半桥差动工作电路,如图4.8所示。 311021 12234+R R R U U R R R R R R ??+?=- ?+?+?+?? 若△R 1 =△R 2、R 1 =R 2、R 4=R 3,则 1021 12R U U R ?≈ 若R 1=R 3=R 4=R 2,△R 1=△R 3=△R 4=△R 2,则称为全桥电路,如图4.9所示。 输出电压为 33110311223344+R R R R U U R R R R R R R R ??-?+?=- ?+?-?-?++??? 1031 R U U R ?≈ 分析上边可得到单臂半桥和全桥工作时的输出电压,可得到(1)电桥灵敏度输出信号强度之比为1:2:4。(2)电桥中相邻两臂电阻同向变化或者相对两臂电相反变化无输出信号;相邻两臂电阻相反变化或相对两臂电阻同向变化时输出信号强度为单臂工作时的两倍,此原理称为电补偿原理,对测力仪设计很重要。(3)在电源电压不能调节时电桥各臂中应变片采用串接或并接时,测量结果将反应电阻变化的综合量,并不改变电桥的灵敏度。 4.3应变式测力仪常用变形元件的力学性能 4.3.1直筋式变形元件的力学特性 1.单臂固定悬臂梁 受力后的弯矩和测量电桥如图4.10所示。B 点处的弯矩M B 和应变最大,其值为 {

金属切削原理及工具实验指导书

金属切削原理及工具 实验指导书 湖南工业大学机械工程学院

实验一 车刀几何角度的测量 一、实验目的及要求: 1. 研究车刀(直头外园车刀、弯头车刀和切断刀等)的构造。 2. 根据刀具几何角度的定义,使用车刀量角仪,按主剖现参考系和法剖面参考系测量车刀的0γ、0α、s λ、r k 、 n γ、n α等角。 3. 根据测量结果绘制车刀的角度标注图及其与工件的相关位置。 二、实验所用的设备及工具 1. 车刀量角仪。 2. 直头外园车刀、弯头车刀、切断刀、900外园车刀、螺纹车刀。 三、仪器的构造与说明: 车刀量角仪的构造如图所示 车刀的几何角度是在车刀的各辅助平面内测量的,而车刀上除法剖面以外的所有剖面均垂直于车刀的基面,因此,以工作台上平面作为车刀的基面,以大指针的量刀板平面代表各剖面,当工作台转到不同位置时,即能测出车刀各剖面内角度(包括切削平面内角度)。 测量基面内角度时,大指针量刀板代表走刀方向。 将副量角器上的小指针指着测出的刃倾角入S s 的值,这时大指针量刀板所在的平面即为车刀的法剖面,因此能测出车刀法剖面内角度。 四、车刀几何角度的测量方法和步骤 将车刀置于如图所示的矩形工作台面上,侧面紧靠定位块,测量车刀主、副切削刀上角度的顺序依次是: r k →s λ→0γ→0α→→' r k →' s λ →' 0γ→' 0α l 、主偏角r k 的测量 大小指针对零,以顺时针方向旋转矩形工作台,同时推动车刀沿刀台侧面(紧贴)前进,使主切副刃与量刀板正面密合,这时量刀板面为切削平面,则矩形工作台指针2a 指向盘形工作台上的刻度值即为主偏角r k 。 2、刃倾角s λ的测量

机械制造实验报告

《机械制造技术》课程实验报告 时间: 2015/2016 学年第 2 学期 专业:机械设计制造及其自动化 班级: 姓名: 学号: 同组实验人员: 指导老师: 机械与汽车工程学院

实验一、车刀几何角度的测量 一、实验目的 通过实验加深对车刀几何角度、参考平面等概念的理解,掌握测量车刀标注角度的方法,能正确测量车刀角度并根据测量结果绘出车刀工作图。 二、实验设备 车刀量角仪、外圆车刀 三、实验步骤与内容 1.实验内容 测量角度0γ、0α、0γ'、0α'、r κ、r κ'、s λ 2 实验步骤 (1)确定进给方向(向左),判断主切削刃、副切削刃、前、后刀面及副后刀面。 (2)把车刀放在活动底座上,并将其侧面紧靠在定位块上,活动底座左侧的底座指针刻线对准底座的零度(即车刀与大指针垂直)。 (3)顺时针转动活动底座,使被测刀具的主切削刃与大指针的前面相切(此时大指针置“0”),在圆盘底座上读出主偏角r κ的值;然后调节大指针的高度使被测刀具主切削刃与大指针的底面重合,在大扇形板上读出刀具刃倾角s λ的值。 (4)活动底座向相反方向旋转900 ,此时过主刀刃指定点,大指针与被测刀具主切削刃在基面投影垂直。那么利用大指针的底面、侧面分别与车刀的前刀面、后刀面相切即可从大扇形板上读出主切削刃的前角0γ和后角0α的值。 (5)转动活动底座使副切削刃与大指的前面接触,在圆盘底座上读出副偏角r κ'的值。 (6)把实验数据记录在表1-1中。 (7)车刀工作图:

四、实验注意事项 1.练习时应注意掌握正确的操作方法 2.注意安全 3.爱护工具,夹具,量具 4.文明操作 该刀具并未达到标准 六、实验心得体会及其它 更加直观的了解到了车刀各个角度定义的含义,也知道了标准车刀的测量方法和各项指标,掌握了车刀量角仪的使用方法,看到了几种刀具的实际形状。刀具的这次实验很经典且实用,在帮助我们理解刀具的角度位置和切削力与切削用量的关系有很大的作用。在处理数据的过程中要抓住主要的关键数据,舍弃与总体数据相差很多的干扰错误数据。 实验二、切削变形的测量 一、实验目的 1 观察切削变形的过程,以及所出现的现象。 2 掌握测量切削变形和计算变形系数的基本方法。 3 研究切削速度、刀具前角和走刀量等因素对切削变形的影响规律。 二、实验设备 1 设备:卧式车床 2 工具:游标卡尺、钢板尺、细铜丝等。 3 刀具:外圆车刀若干把。 4 试件:硬铝,轴向带断屑槽的棒料,直径50mm 。 三、实验步骤与内容 1. 切削速度c v 对切削变形的影响 刀具参数:r κ=95°、r κ'=6°、s λ=0°、0γ=10°、0α=7°、εr =0.8 mm ;切削用量:f = 0.39 mm /r 、p α=1mm 。 改变切削速度,从低速到高速,可先取c v =10、20、30、40、50m /min ;对应转速约为n =64、127、191、255、318r/min ; 2. 进给量f 对切削变形的影响

切削力计算

一切削力的来源,切削合力及其分解,切削功率 研究切削力,对进一步弄清切削机理,对计算功率消耗,对刀具、机床、夹具的设计,对制定合理的切削用量,优化刀具几何参数等,都具有非常重要的意义。金属切削时,刀具切入工件,使被加工材料发生变形并成为切屑所需的力,称为切削力。切削力来源于三个方面: 克服被加工材料对弹性变形的抗力; 克服被加工材料对塑性变形的抗力; 克服切屑对前刀面的摩擦力和刀具后刀面对过渡表面与已加工表面之间的摩擦力。 切削力的来源 上述各力的总和形成作用在刀具上的合力Fr(国标为F)。为了实际应用,Fr可分解为相互垂直的Fx(国标为Ff)、Fy(国标为Fp)和Fz(国标为Fc)三个分力。在车削时: Fz——切削力或切向力。它切于过渡表面并与基面垂直。Fz是计算车刀强度,设计机床零件,确定机床功率所必需的。 Fx——进给力、轴向力或走刀力。它是处于基面内并与工件轴线平行与走刀方向相反的力。Fx是设计走刀机构,计算车刀进给功率所必需的。 Fy——切深抗力、或背向力、径向力、吃刀力。它是处于基面内并与工件轴线垂直的力。Fy用来确定与工件加工精度有关的工件挠度,计算机床零件和车刀强度。它与工件在切削过程中产生的振动有关。 切削力的合力和分力 消耗在切削过程中的功率称为切削功率Pm(国标为Po)。切削功率为力Fz和Fx 所消耗的功率之和,因Fy方向没有位移,所以不消耗功率。于是 Pm=(FzV+Fxnwf/1000)×10-3 其中:Pm—切削功率(KW); Fz—切削力(N); V—切削速度(m/s); Fx—进给力(N); nw—工件转速(r/s); f—进给量(mm/s)。

(生产管理知识)在切削实验和生产中,可以用测力仪测量切削力

机械制造工程学实验指导书实验报告 王庆明许虹肖民 李英刘正道陆科杰 编写 班级: 姓名: 学号: 华东理工大学机械与动力工程学院

机械制造及其自动化教研室 实验一切削力实验 1 实验目的 通过测量车削力,使学生掌握切削过程中切削力测量的基本方法,了解切削力的特性、影响因素以及对刀具、工件和切削过程的影响效应。 2 实验设备、工件与刀具 1.KBJM6132数控车床 2.YDC-Ⅲ89A三向压电车削测力仪。 3.PCI-9118DG数据采集卡 4.DIN-50S接口板及附件 5.圆柱工件、外圆车刀、 3 实验原理 切削力就是在切削过程中作用在刀具与工件上的力。它直接影响着切削热的产生,并进一步影响着刀具的磨损、耐用度、加工精度和已加工表面质量。在生产中,切削力又是计算切削功率、设计和使用机床、刀具、夹具的必要依据。 在切削实验和生产中,可以用测力仪测量。 目前最常用的测力仪是电阻式测力仪和压电式测力仪,本实验采用后者方式。 3.1.车削压电式测力仪 YDC-Ⅲ89A 三向压电车削测力仪外型如图所示。

图1 YDC-Ⅲ89A 三向压电车削测力仪 该测力仪同一些必要的二次仪表组合在一起,可以完成切削力的静、动态测试,从而使人们可以准确而容易地获得金属切削加工中最重要的参数,既三维切削力。现在,金属切削理论的研究已由过去的静态测量发展到动态测量,对测力仪有了更高的要求。YDC-Ⅲ89A 压电式车削测力仪能以其高刚度、高灵敏度、高固有频率能很好地满足静、动态测试的要求, 可测出任意方向力的三个相互正交的分量(Fx、Fy、Fz)。 3.2压电石英晶体三维力传感器原理 压电测力仪的工作原理是利用某些材料(石英晶体或压电陶瓷等)的压电效应。在受力时,它们的表面将产生电荷,电荷的多少与所施加的压力成正比而与压电晶体的大小无关。用电荷放大器转换成相应的电压参数,从而可测出力的大小。 图2为单一压电传感器的原理图。压力F通过小球1及金属薄片2传给压电晶体3。在压电晶体之间有电极4,由压力产生的负电荷集中在电极上,由绝缘的导体5导出。正电荷通过金属片2或测力仪接地。由5输出的电荷通过电荷放大器后由记录仪记录下来,按预制的标定图就可知道切削力的大小。测力仪中沿F z,F x和F y三个方向都各自有传感器,分别测出三个分力。 图2 压电传感器的原理图 近代常采用多向力传感器,把几个石英元件按次序机械地排列在一起。加在传感器上的力作用在石英片上。由于石英晶体的切割方向选择的不同,所以各受力方向上的灵敏性不同,故能分别测出各个切削分力。其结构如图3所示。

007切削力测量实验报告

007切削力测量实验报告

专业班级姓名学号 专业班级姓名学号 实验日期实验地点40号楼一楼实验室成绩 实验名称切削力测量实验 实验目的 本次切削力测量实验的目的在于巩固和深化《机械制造技术基础》课堂所学的有关切削力的理论知识,正确认识切削力直接影响切削热、刀具磨损与使用寿命、加工精度和已加工表面质量等问题。因此,研究切削力的规律,对于分析切削过程和生产实际是十分重要的。 本次实验在实验老师的指导下,达到如下实验目的: 1、了解三向切削力实验的原理和方法; 2、进行切削力单因素实验,了解背吃刀量、进给量和切削速度三大切削用量对切削力的影响规律,获得三向切削力实验公式; 3、了解在计算机辅助下的、利用三向测力仪进行切削力实验的软、硬件系统构成,以及三向切削测力仪标定的原理和方法。 实验基本原理 切削力是机械切削加工中的一个关键因素,它直接影响着机床、夹具等工艺装备的工作状态(功率、变形、振动等),影响着工件的加工精度、生产效率和生产成本等。 切削力的来源有两个:一是切削层金属、切屑和工件表层金属的弹塑性变形所产生的抗力;二是刀具与切屑、工件表面间的摩擦阻力。 影响切削力的因素很多,工件材料、切削用量、刀具几何参数、刀具磨损状况、切削液的种类和性能、刀具材料等都对切削力有较大的影响。 实验基本步骤 1、实验指导教师讲解实验的目的和要求;强调实验的纪律、进行安全教育。 2、车床及工件的准备:将圆钢棒材(工件)安装在车床上,利用三爪卡盘和活动顶尖将棒材装夹到位;安装车刀,注意刀尖对准车床的中心高,然后启动车床将工件外圆表面加工平整; 3、DJ-CL-1型三向切削力实验系统的准备: 1)启动切削力实验程序,在“输入实验编号”栏目内,输入年级、专业、班级、组号、实验次数和主题词等,并点击“确定”; 2)点击“零位调整”软按钮,调出零位调整界面,进行三向零

金属切削原理及刀具期末测试1

《金属切削原理及刀具》期末测试1 一、填空。(每空1分,,共20分) 1. ( )类硬质合金主要用于加工短切屑的黑色金属、有色金属和非金属材料,用 红色(包括K10~K40)作为标志,它相当于我国( )合金。 2. 通过切削刃选定点并与合成切削速度方向相垂直的平面称为( ),用符号re p 表 示。通过切削刃选定点与切削刃相切并垂直工作基面的平面称为( ),用符号se p 表示。通过切削刃上的选定点同时与工作基面和工作切削平面相垂直的平面称为 ( ),用符号oe p 表示。 3. 在金属切削过程中,切削层金属受刀具前面挤压要产生一系列变形,通常将其划分为三 个变形区,分别是( )、( )、( )。 4. 由于工件材料性质和切削条件不同,切削层变形程度也不同,因而产生的切屑形态也多 种多样,归纳起来主要包括( )、( )、( )、( ) 四种类型, 5. 切削合力的大小和方向是变化的,很难测量。为简化分析,将该切削合力按空间直角坐 标系分解为三个相互垂直的切削分力,即( )、( )、( )。 6. 随着切削时间的延长,刀具的后面磨损量随之增加。其磨损过程分为初期磨损阶段、 ( )和( )。 7. 工件材料硬度包括( ) 、( )。 8. 车刀按其用途可分为外圆车刀、( )、端面车刀、切断车刀和螺纹车刀等。

1.钨钼系高速钢就是将钨钢中的一部分钨以钼代替而得到的。() 2.在实际生产中,切削方式通常多属于自由切削方式。为了简化条件常采用直角自由切削 方式研究金属变形。() 3.切削力的大小可采用间接测量法和直接测量法来测量。常用的测量方法有电功率法及测 力仪法。() 4.切削力实验公式是指切削力的指数公式,公式是通过切削实验建立起来的。() 5.切削塑性金属时,切削速度vc对切削力的影响如同对切削变形影响的规律,即是通过 积屑瘤与摩擦的作用造成的。() 6.刀具的前后刀面刃磨质量越好,切削力越大。() 7.切削过程中所产生的热量主要靠切屑、工件和刀具传出,被周围介质带走的量很多(干 切削时约占99%)。() 8.切削过程中,工件、刀具通常是由两种不同的金属材料组成的。在刀具与切屑和刀具与 工件接触区总存在着相当高的切削温度,称为热电偶的热端。() 9.切削底层(同刀具前而相接触的一层)温度最低,离切削底层越远温度越低。这主要是 因为切削底层金属变形最大,且又与刀具前面存在摩擦的缘故。() 10.工件材料的强(硬)度和导热系数对切削温度有很大影响。工件材料的强(硬)度越高, 切削力越大,切削时消耗的功越多,产生的切削热量越多,切削温度也就越高。 () 11.切削温度随前角的增大而增加。这是因为前角增大时,切削变形变大,单位切削力变大, 产生的切削热增加的缘故。() 12.切削时温度虽然很高,但对工件材料强(硬)度的影响并不很大,对剪切区应力的影响 不明显。() 13.在切削高温下,刀具表面与切出的工件、切屑新鲜表面接触,刀具与切屑、刀具和工件 双方的化学元素互相扩散到对方去,改变了原来材料的成分与结构,削弱了刀具材料的性能,加速了磨损过程,这种磨损被称为化学磨损。() 14.剥落是指在刀具的前面和后面上几乎平行于切削刃而剥下一层碎片,有时经常连切削刃 一起剥落,有时也在离切削刃一小段距离处剥落。陶瓷刀具端铣时常发生剥落。

切削力试验与数据处理

切削力试验与数据处理 [摘要] 在切削过程中,切削力直接决定着切削热的产生,并影响刀具磨损、破损、使用寿命、加工精度和已加工表面质量。在生产中,切削力又是计算切削功率,制定切削用量,监控切削状态,设计和使用机床、刀具、夹具的必要依据。因此,研究切削力的规律和计算方法,将有助于分析切削机理,并对生产实际有重要实用意义。切削力的来源有两方面:一是切削层金属、切屑和工件表面层金属的弹性变形、塑性变形所产生的抗力;二是刀具与切屑、工件表面间的摩擦阻力。 [关键词] 切削力刀具磨损切削功率摩擦阻力 一、引言 常见的切削力研究方法有两大类:理论分析与试验测量方法。理论分析切削力能相当充分反映切削过程,多年来,国内外学者对计算切削力的理论分析公式作了大量工作,大多切削力理论公式考虑到了刀具材料、工件材料、切削用量、刀具几何参数等影响因素[1],却没有考虑到副切削刃及刀尖圆弧半径等的影响,因此,迄今为止还不能说己经得出了与实验结果相吻合的切削力理论分析公式。通过切削实验,由测力仪可以测得具体切削条件下的切削力。但由于切削过程非常复杂,影响因素很多,不可能对各种影响因素都进行试验研究。因此,对切削力的研究应采取理论分析与试验研究相结合的研究方法。 切削力实验是《机械制造技术基础》课程的一个基础实验,通过实验可以验证切削力的基础理论,了解测量三向切削力的基本方法和计算机辅助实验系统的基本构成,了解应变式三向测力传感器的原理和结构。在完成切削力实验的过程中,可以求出切削用量对三向切削力的影响规律,可以学习和掌握计算机辅助实验的方法和技能,认识信息技术在实验中的作用。 本实验的目的是:1.了解切削测力仪的工作原理和测力方法和实验系统;2.掌握背吃刀量进给量和切削速度对切削力的影响规律;3.通过实验数据的处理,建立切削力的经验公式。所采用的实验方法是单因素法和正交法。在实验之前已经对测力系统进行了三通道增益标定、机械标定。实验过程中还需经常进行三通道零位调整,之后再通过数字显示观察输出情况,若输出稳定就可以进行单因素实验和正交实验。 二、试验设备及试验原理 1.检测三向切削力与标定测力传感器的原理 三向切削力的检测是使用三向车削测力(应变)传感器进行的,其输出的低电压模拟信号经高精度线性放大(放大倍率可达数万倍,没有采用传统的应变仪,有效的简化了调整和操作)后,经A/D板数字化,再送入计算机。这个测力系

切削力计算的经验公式

切削力计算的经验公式 通过试验的方法,测出各种影响因素变化时的切削力数据,加以处理得到的反映各因素与切削力关系的表达式,称为切削力计算的经验公式。在实际中使用切削力的经验公式有两种:一是指数公式,二是单位切削力。 1 .指数公式 主切削力(2-4) 背向力(2-5) 进给力(2-6) 式中F c————主切削力( N); F p————背向力( N); F f————进给力( N); C fc、 C fp、 C ff————系数,可查表 2-1; x fc、 y fc、 n fc、 x fp、 y fp、 n fp、 x ff、 y ff、 n ff------ 指数,可查表 2-1。

K Fc、 K Fp、 K Ff---- 修正系数,可查表 2-5,表 2-6。 2 .单位切削力 单位切削力是指单位切削面积上的主切削力,用 kc表示,见表 2-2。 kc=Fc/A d=Fc/(a p·f)=F c/(b d·h d) (2-7) 式中A D -------切削面积( mm 2); a p ------- 背吃刀量( mm); f - ------- 进给量( mm/r); h d -------- 切削厚度( mm ); b d -------- 切削宽度( mm)。 已知单位切削力 k c ,求主切削力 F c F c=k c·a p·f=k c·h d·b d (2-8) 式 2-8中的 k c是指 f = 0.3mm/r 时的单位切削力,当实际进给量 f大于或小于 0.3mm /r时,需乘以修正系数K fkc,见表 2-3。

表 2-3 进给量?对单位切削力或单位切削功率的修正系数 K fkc, K fps

相关文档
最新文档