发动机轴承中钢球发生剥落原因分析

发动机轴承中钢球发生剥落原因分析
发动机轴承中钢球发生剥落原因分析

滚动轴承钢球

前言 本标准对应于ISO3290:1998《滚动轴承—球—尺寸和公差》,与ISO3290的一致性程度为非等效,主要差异如下: ——按照汉语习惯对一些编排格式进行了修改; ——将一些适用于国际标准的表述必为适用于我国标准的表述; ——在第5章中增加了5.1“材料和热处理”、5.6“残磁”、5.7“其他”的技术要求; ——增加了第6章“标志”、第7章“测量及检验方法”、第8章“检验规则”、第9章“包装及贮存”。 ——增加了附录C“成品钢球压碎载荷值”。 本标准代替GB/T308—1989《滚动轴承钢球》 本标准与GB/T308—1989相比,主要变化如下: ——增加了表面不平度和形状参数、波纹度的术语和定义(见3.5和3.5.2); 的数值(见3.5.3和——修改了表面粗糙度的定义,并且压缩了表面粗糙度R a 表3) ——增加了优先采用的球公称直径表中的尺寸规格(见表1); ——增加了G24级的公差级别(见5.3、表3、表4); ——取消了各公差等级钢球所适用的尺寸范围表(1989年版的表4) ——修改了钢球硬度值(1989年版的5.4,本版的5.2、表2); ——增加了钢球残磁限值的规定(见5.6、7.5);

——增加了钢球裂纹的检查方法(见7.7); ——修改了钢球表面粗糙度的测量方法(1989年版的6.2.3,本版的7.3); ——修改了检测规则的内容(1989年的第7章,本版的第8章); ——将“标志”内容单独作为一章(1989年版的8.1,本版的第6章); ——修改了球形误差测量的附录(见附录B); ——增加了“成品钢球压碎载荷值”(见附录C) 本标准的附录A、附录B、附录C为规范性附录。 本标准由中国机械工业联合会提出。 本标准由全国滚动轴承标准化技术委员会(CSBTS/TC98)归口。 本标准起草单位:洛阳轴承研究所。 本标准主要起草人:马素青。 本标准所代替标准的历次版本发布情况为: ——GB308—1964、GB308—1977、GB308—1984、GB308—1989。 滚动轴承钢球 1范围 本标准规定了钢球的尺寸、技术要求、标志、测量及检验方法、检验规则、包装及贮存。 本标准适用于滚动轴承配套用钢球和商品高碳铬轴承钢钢球。 2 规范性引用文件

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

汽车发动机异响常见故障的诊断与排除

1汽车发动机异响的原因 1.1配合间隙过大 配合间隙是汽车装配质量的重要指标,当润滑,温度,负荷,和速度一定时,异响会随配合间隙的增大而越发明显,发动机某些运动机件因自然磨损使间隙增大超出的范围导致异响,如活塞与汽缸壁的敲击响声,连杆轴承与轴颈的撞击响声等。 1.2润滑不良 润滑是发动机正常工作的重要条件,通过润滑系统可实现润滑冷却清洗密封和防锈,当配合间隙,温度,负荷,和速度一定时,润滑油膜的厚度受润滑系统压力和润滑油品质影响,品质好的润滑油和适宜的压力就能产生较好的润滑油膜,润滑油膜越厚,机械冲击越小,不易发生异响。如果润滑油膜过薄,导致磨损力加剧,则发生异响而且明显而清晰。 1.3紧固件松动 发动机运转过程中产生振动,导致某些部件产生松动,出现撞击声。如飞轮固定螺栓松动,连杆螺栓松动等引起异响。 1.4个别机件变形损坏 由于某部件变形或损坏导致异响。如连杆弯曲导致敲缸,气门弹簧折断曲轴断裂引起的异响。 1.5不正常燃烧 汽油发动机点火时间过早或过火,导致爆燃,柴油发动机喷油时间过早导致过早粗暴引起金属敲缸声。 1.6装配调整或修理不当 因装配调整或修理不当导致机件配合间隙失准。如活塞销装配过紧,气门间隙调整不当引起的异响。 1.7转速 一般情况下,转速愈高机械异响愈强烈,但高转速时各种响起混杂在一起,某些异响反而不易辨清,所以诊断转速要视异响情况而定,如听诊气门响和活塞敲缸响时,在怠速或低速时异响非常明显,当主轴承响,连杆轴承响和活塞销响

较为严重时在怠速和低速下也能听到,总之诊断异响在响声最明显的转速下进行,并尽量在低速下进行,以减少不必要地噪声和损耗。 1.8温度 有些异响与发动机温度有关,而有些异响与发动机温度无关或关系不大,在机械异响诊断中,对于热膨胀系数大的配合要特别注意在发动机热态时工作状况,如活塞敲缸响,在发动机冷起动时,异响非常明显,一旦温度升高响声即减弱或消失,所以诊断冷敲缸响应在发动机低温进行,温度对热膨胀系数小的配合副间产生的异响影响不大,如曲轴主轴承响,连杆轴承响,气门响这类异响对诊断温度无特别要求,温度也是影响燃烧异响的主要因素之一,汽油发动机过热时往往产生点火敲击声。 1.9负荷 许多异响与发动机的负荷有关,如曲轴主轴承响,连杆轴承响,活塞敲缸响,气缸漏气响,汽油机点火敲击响等,均随负荷增大而增强,随负荷减少而减弱。 1.10缸位 某些异响与发动机的缸位有关,如活塞敲缸响,连杆轴承响,单缸断火时异响消失一个工作循环响2次,配气机构异响一个工作循环响1次,如活塞销响,连杆轴承响等,曲轴转1圈发响一次,而气门响,气门座圈响等,则曲轴转2圈响1次。 2异响的诊断方法 发动机异响常见故障主要在曲柄连杆机构和配气机构。发动机异响的诊断方法有两种,即人工经验听诊法和仪器辅助诊断法。 2.1人工经验听诊法 技术人员通过改变发动机工况等措施使异响再现,找出异响特征和规律并了解异响出现时发动机的运行状况及故障征兆,进而判断出异响部位这是目前使用最普通也是最主要的方法。在和用人工经验诊断发动机异响的过程中,常常借助于螺钉旋具来察听异响,这一传统的方法虽然简便有效,但也存在明显不足. 2.2仪器辅助诊断法 由于人工经验听诊法的准确率较低,因此常用一些仪器设备来辅助听诊与分析,常用的仪器主要有听诊器,噪声器,振动分析仪等。

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

轴承装后质量分析及解决方法

轴承装后质量分析及解决方法 1、内、外径尺寸超差原因及解决方法 原因:(1)前工序的产品漏检;(2)装配检查环境温度变化大;(3)标准件与套圈恒温不够;(4)磨加工与装配用的标准件不合格。 解决方法:(1)认真做好产品百检,合格品与不合格品要分开,并有标识;(2)严格控制产品温度,尽量不使产品带温度检测;(3)装配检查环境温度要稳定,实现恒温;(4)标准件与套圈必须等温检测;(5)磨工标准件与装配标准件的误差不应大于0.001mm,否则送检定部门重新检定;(6)内径尺寸大、外径尺寸小的产品为废品要剔出;(7)内径尺寸小的、外径尺寸大的产品应返工修磨成为合格品。 2、套圈宽度及平行差超差原因及解决方法 原因:(1)前工序的产品漏检;(2)宽度标准件磨损或超过使用有效期;(3)食品平台已磨损;(4)仪表出现“表跑”现象;(5)磨工与装后的标准件之间有误差,不合格;(6)产品端面有伤。 解决方法:(1)前工序要做好产品百检,合格品与不合格品要分开,并有标识;(2)宽度标准件要及时检定;(3)仪器平台要定期检定,损坏要及时修磨,(4)在检测中要及时校对仪表,杜绝“表跑”现象;(5)前工序标准件与装后标准件的误差超过0.001mm时,应送检定部门重新检定;(6)修磨掉产品端面伤痕后再检测。 3、圆锥滚子轴承装配高超差原因及解决方法 原因:(1)内、外圈宽度超差;(2)内、外圈、滚动体直径及角度超差;(3)滚子相互差超差;(4)内圈大挡边宽度超差;(5)外圈、内圈及滚子相互接触不良;(6)对装配高抽检时因漏检造成。 解决方法:(1)认真做好前工序零件尺寸精度的百检,合格品与不合格品要分开,并有标识,防止混串;(2)在检测产品装配高时,在外圈上施加一个平稳的向下负荷,保证测量时外圈、内圈及滚子相互接触良好;(3)加强装后工序对装配高的抽检频次,尽量杜绝漏检现象。 4、角接触球轴承装后高超差原因及解决方法 原因:(1)内、外圈宽度超差;(2)沟道曲率及位置不好造成滚道接触角超差,从而使装配高超差;(3)内、外圈沟道接触角超差;(4)外圈、内圈及钢球接触不良。 解决方法:(1)认真做好上工序产品尺寸的百检;(2)对本工序发现的套圈宽度尺寸小产品为废品应剔出,套圈宽度尺寸大的产品应交上工序返工修磨为合格品;(3)对沟道曲率及位置不好的产品,内、外圈沟道接触角超差的产品交上工序分选或返工修磨为合格品;(4)在检测产品装配高时,要在外圈上施加一稳定的向下负荷块,保证产品外圈、内圈及钢球相互接触良好。 5、推力轴承装配高超差原因及解决方法 原因:(1)推力球轴承套圈底面厚度超差,推力调心滚子轴承套圈宽度超差,内圈大挡边宽度超差为上工序漏检;(2)滚道曲率及位置不好;(3)滚动体相互差超差;(4)滚子曲率超差;(5)套圈端面有伤。 解决方法:(1)认真做好上工序百检,合格品与不合格品要分开,并有标识,防止混串;(2)修磨套圈端面伤痕后再检测;(3)滚道曲率及位置不好产品,滚子曲率超差的产品交上工序分选或修磨为合格品。 6、轴承径摆超差原因及解决方法 原因:(1)套圈壁厚超差;(2)内、外径对基准端面倾斜度变动量超差;(3)内、外椭圆严重超差;(4)内、外圈滚道及滚动体有伤;(5)滚动体相互差超差;(6)产品清洁度不好;(7)残磁超差。 解决方法:(1)对壁厚及椭圆超差的产品交上工序剔出废品或返工修磨为合格品;(2)认真做好前工序产品的百检,采取有效措施,防止产品漏检;(3)在产品退磁时,不要摆放过多,防止磁退不净;(4)加强产品外观的检查,发现产品卡磕伤要修掉伤痕后再合套,对严重卡磕伤的产品要剔出;(5)保持零件清洁,合套后的产品要清洗干净,经常更换清洗剂;(6)重新分选滚子;(7)Sd、SD超差剔出报废。 7、轴承沟摆超差原因及解决方法 原因:(1)滚道中心平面对基准端面平行度超差;(2)内、外滚道对基准端面倾斜度变动量超差;(3)内圈大端挡边平行差及角度超差;(4)内、外圈端面平行差严重超差;(5)内、外圈端面有伤;(6)滚子端面侧摆超差;(7)套圈滚道角度与滚子角度不吻合;(8)保持架变形;(9)产品清洁度不好;(10)残磁超差;(11)内、外圈滚、沟道有伤滚动体有伤。 解决方法:(1)滚道中心平面对基准端面平行度超差,内、外圈端面超差,内圈大挡边角度及平行差超差的产品交上工序返工,报废或修磨为合格品;(2)将滚道对基准端面倾斜度变动量超差产品交上工序返工修磨为合格品;(3)对滚子端面侧摆或角度超差的产品交零件工序返工修磨为合格品;(4)修掉套圈端面、滚、沟道及滚动体伤痕;严重卡磕伤应剔出报废;(5)对变形的保持架交上工序,整形为合格品;(6)产品清洗

钢球知识

不锈钢珠基本知识 Gcr15轴承钢球(Bearing Steel Balls) 简介:轴承在工作是承受这极大的压力和摩擦力,所以要求轴承钢有高而均匀的硬度和耐磨度,以及高的弹性极限。对轴承钢的化学成分的均匀性、非金属夹杂物的含量和分布,碳化物的分布等要求都十分严格,轴承钢又称高碳铬钢,含碳Wc为1%左右,含铬量Wcr为0.5%-1.65%。轴承钢有分为高碳铬轴承钢、无铬轴承钢、渗碳轴承钢、不休轴承钢、中高温轴承钢、防磁轴承钢。 特性:有磁,铁素体型钢,油性包装,硬度可以达到HRC62-65度,其材料耐磨性较好,冷加工成钢球后精度可达万分之一毫米,表面呈镜面效果。颜色为铬色,但是不能焊接。 产品用途:非标球广泛用于各种五金行业,阀门,轴承、压铸件,冲孔件,研磨,测量. 用途广泛:精密轴承、仪器、仪表、制笔、喷涂机、水泵、机械配件、密封阀、制动泵、冲挤孔、油田、盐酸实验室、硬度测量仪、渔具、配重、装饰、精加工等等高端行业。 理论重量表(单位:kg/m、mm): 0.1 不锈钢钢球规格0.5mm-100mm 精度G40-G1000 201不锈钢球(201 Stainless Steel Balls) 应用领域:201不锈钢球广泛用于各种五金行业,工艺品,塑料制品,如灯具、开关、摩托车配件、箱包、轴承、压铸件。 特性:属于节镍钢种,奥氏体型钢,无磁,具有价格低,性能优。可加工、焊接、钻孔,硬度HRC≤28。(201不锈钢球不可用于防锈、防腐要求较高的行业如:海水或酸性物质中)。 302不锈钢球(302Stainless Steel BallS) 应用领域:302不锈钢球广泛用于汽车配件、航空、航天,五金工具,化工。具体如下:工艺品,轴承,滑轮,医疗仪器、接柱,电器等。 特性:302不锈钢球属于奥氏体型钢,与304比较接近,但是302的硬度更高一些,HRC≤28。具有良好的防锈及防腐性。

扇形段轴承损坏原因分析(PDF X页)

扇形段轴承损坏原因分析 尹秀锦① (济南钢铁总厂机械设备制造公司 山东济南250101) 摘要 分析了济钢超低头板坯连铸机扇形段轴承损坏的原因,并找到了正确的解决措施。关键词 扇形段 载荷 游隙 润滑 Ana lysis on Fa ilur e Ca uses of Seg m en t ′s Bea r i n g Yin X iujin (J inan Ir on and Steel Gr oup Cor por a tion M achine r y Pr oduc tion Co .,L td.,J inan 250101) ABSTRAC T The fail ure cause s of seg ment ′s bearing in Jigang extra -lo w head continuous casting machine a re ana ly zed .The p roblem s are s olved w ith proper mea s ures . KEY W O RDS Seg ment Load C learance space Lubrica ti on 1 概述济钢4#、5#板铸机为超低头板坯连铸机,4#板于1994年投产,其年生产能力为70万t,铸机工作拉速为0.7~ 1.15m /m i n,铸坯规格为200×1400mm ,基本弧半径为5700mm 。二次冷却区域共有7个扇形段,其中1-2段属 于弯曲段,3、4段属于矫直段,5-7段为水平段,从3段以后每一段上都有一对拉矫辊,各段都是6根辊子布置的小辊径,单节辊,密排布置方式,辊径分260mm 和280mm 两种,轴承为调心滚子轴承。2007年4# 、5# 铸机扇形段下线 52台次,轴承原因造成的下线28次,占所有下线次数的53.85%,平均拉钢寿命为98.75天。频繁下线造成炼钢 非计划停机,影响生产节奏,同时也增加了维修成本。 2 原因分析2.1 载荷分布不均 1)辊子同轴度偏差大。在辊子修磨过程中辊子的同 轴度偏低,拉钢过程中辊子的弯曲量会加重,经过长时间的使用,导致个别辊子超负荷工作,使其损坏,同时也会使铸坯出现鼓肚、凹陷等质量问题。 2)对中间隙偏差大。单片对中时,个别辊子辊面与 样规间隙值(对中间隙)是标准的上限,而其他几根辊子对中间隙是标准值的下限,导致这根辊子较其他辊子高,对中时个别辊子水平度偏差大,导致高的轴承承受大负 荷,长时间运转或者超负荷运转导致轴承先损坏。 3)轴承径向游隙不均匀。同一根辊子上的轴承游隙 相差太大,导致辊子两侧轴承受力不均匀,如果同时存在上述任何一种影响因素,会加剧轴承的损坏。 2.2 径向游隙的影响 游隙的大小直接影响滚动轴承的载荷分布、振动、噪声、磨损、温升、使用寿命和机械运转精度等技术性能。通过对损坏轴承的分析,认为轴承游隙大小不合适是造成轴承损坏的另一个因素。 2.3 润滑不良 1)润滑脂供给方式不合适。滚动轴承的润滑主要为 了降低摩擦阻力和减轻磨损,也有吸振、冷却、防锈和密封等作用,但是装脂过多易于引起摩擦发热,影响轴承的正常工作。扇形段在现场使用时润滑脂供给时间长,频次少,导致轴承先是满脂运转,后是少脂运转,没有为轴承提供一个良好的润滑条件。 2)油号不对导致甘油堵塞。冬天维修好的扇形段存 放一段时间上线后就出现干油堵塞的问题,分析原因主要是北方冬天寒冷,润滑脂粘稠度增加,导致输送阻力增加。 2.4 灰尘等污染引起轴承损坏 1)密封结构不完善。分析轴承密封结构(如图1)和 现场环境,发现密封不合适,辊子一侧的单唇骨架油封隔 — 6— Extra Editi on (1)2009 冶 金 设 备M ET ALLUR GI CAL E QU IP MENT 2009年特刊(1) ①作者简介尹秀锦,女,年出生,助理工程师,年毕业于鞍山科技大学机械设计制作及自动化专业 2:19802004

发动机常见异响的诊断

发动机常见异响的诊断 发动机的常见异响,主要有曲轴主轴承响、连杆轴承响、活塞销响、活塞敲缸响、气门响、气缸漏气响、正时齿轮响、汽油机点火敲击 响和柴油机着火敲击响等。 1.曲轴主轴承响 1)现象:发动机突然加速时会发出沉重而有力的“当、当、当”或“刚、刚、刚”的金属敲击声,严重时机体发生很大振动;响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位是在缸体下部的曲轴箱内;单缸断火时响声无明显变化,相邻两缸同时断火时,响声会明显减弱;温度变化时响声不变化;机油压力明显降 低。 另外,后道轴承发响一般声音钝重发闷,前道轴承发响声音较轻、较脆。曲轴轴向窜动出现的响声,在低速下采用微抖节气门的方法,可听到较沉重的“咯噔”、“咯噔”的响声。 2)原因: (1)主轴承盖固定螺钉松动; (2)主轴承减磨合金烧毁或脱落; (3)主轴承和轴颈磨损过甚、轴向止推装置磨损过甚,造成径向 和轴向间隙过大; (4)曲轴弯曲; (5)机油压力太低或机油变质。 3)诊断方法:按下列方法诊断,其流程图如图1所示。 2.连杆轴承响 1)现象:当发动机突然加速时,有“当、当、当”连续明显、轻而短促的金属敲击声,是连杆轴承响的主要特征;轴承严重松旷时,怠速运转也能听到明显的响声,且机油压力降低;发动机温度变化时,响声不变化;发动机负荷变化时,响声随负荷增加而加剧;单缸断火,响声明显减弱或消失,但复火时又能立即出现,即具有所谓响

声“上缸”现象。 2)原因: (1)连杆轴承盖的固定螺栓松动或折断; (2)连杆轴承减摩含金烧毁或脱落; (3)连杆轴承或轴颈磨损过甚,造成径向间隙太大; (4)机油压力太低、机油变质或曲轴内通连杆轴颈的油道堵塞。 3)诊断方法:按下列方法诊断,其流程图如图2所示。 3.活塞销响 1)现象:发动机在怠速、低速和从怠速向低速抖动节气门时,可听到清脆而又连贯的“嗒、嗒、嗒”的金属敲击声;响声严重时,随转速的升高而增大,随负荷的增大而加重;发动机温度变化时,对响声稍有影响或影响不大;机油压力不降低;单缸断火时响声明显减弱或消失,复火瞬间响声又出现或连续出现两个响声。 2)原因: (1)活塞销与连杆小头衬套配合松旷; (2)衬套与连杆小头承孔配合松旷; (3)活塞销与活塞上的销座孔配合松旷; (4)诊断方法:按下列方法诊断,其流程图如图3所示。 4.活塞敲缸响 1)现象:发动机在怠速或低速运转时,在气缸的上部发出清晰而明显的“嗒、嗒、嗒”的金属敲击声,而中速以上运转时响声减弱或消失;发动机温度变化时响声亦变化:多数情况下响声冷车时明显,热车时减弱或消失,但个别原因造成的活塞敲缸响反而在温度升高后加重;响声严重时,负荷愈大响声也愈大,但机油压力不降低; 单缸断火,响声减弱或消失。 2)原因: (1)活塞与气缸壁配合间隙太大;

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

滚动轴承钢的分类,特性用途,性能和化学成分

滚动轴承钢 滚动轴承钢按使用特点可分为:高碳铬轴承钢(全淬透型轴承钢)、渗碳轴钢(表面硬化型轴承钢)、不锈轴承钢和高温轴承钢四大类。 一、高碳铬轴承钢 1.高碳铬轴承钢的牌号、特性及及用途 高碳铬轴承钢具有高的接触疲劳强度和耐磨性能,许多牌号属全淬透型钢,如GCr15 GCr15SiMn、GCr15SiMo、GCr18Mo。但由于有的轴承需要心部具有良好韧性而表面需要高硬度,因而又发展出限制淬透性轴承钢,如GCr4。 ①GCr15(全淬透型钢)GCr15是高碳铬轴承钢的典型钢种,在淬火、回火后有高的硬度、 耐磨性和接触疲劳强度。其热加工性能和可加工性良有好,淬透性适中,但焊接性差。 GCr15的白点敏感性大,但当采用真空脱气精炼的轴承里,此缺陷可消除。用于制造壁厚≤12mm、处径≤250mm的滚动轴承套圈,或制造直径≤22mm的圆锥、圆柱、球面滚子及全部尺寸的滚针。也可用于制造模具、量具和木工刀具及高弹性极限、高疲劳强度的机械零件。 ②GCr15SiMn(高淬透型钢)在GCr15钢的基础上提高硅、锰含量,因而淬透性、弹性极 限、耐磨性均比GCr15好。由其制作的滚动轴承件的使用温度不宜超过180℃。用于制造壁厚>12mm、外径>120mm的滚动轴承套圈、直径>50mm的钢球及直径>22mm的圆锥、圆柱、球面滚子及全部尺寸的滚针。其他用途与GCr15相同。 ③GCr15SiMo(高淬透型钢)在GCr15基础上增加含硅量,添加了钼。其淬透性高,耐磨 性好,疲劳强度高、综合性能良好。适于制造大尺寸范围的滚动轴承套圈及钢球、滚柱等。 ④GCr18Mo(高淬透型钢)在GCr15基础上加入质量分数0.15%~0.25%的钼,并提高了含 各量,因而淬透性、耐磨性均提高警惕。可进行下贝氏体等温淬火,达到与马氏体淬火相近的硬度和耐磨性,而且钢的冲击、断裂韧度和抗弯强度都得到提高,因而提高了钢的综合力学性能和寿命。可制造壁厚达20mm的滚动轴承套圈,其滚动轴承件的尺寸范围也扩大。 ⑤GCr4(限制淬透型钢)GCr4是低淬透性滚动轴承钢,用体积感尖加热、表面淬火回火 后,具有GCr15全淬透型轴承钢和低碳合金渗碳钢的性能。淬火后表面硬度高,表面耐耐性好,抗疲劳性能好,心部硬度只有35~40HRC,韧性好、抗冲击。主要用于制造各种尺寸、受载荷不大的滚动轴承套圈及滚子。 2.高碳铬滚动轴承钢的化学成分及力学性能 高碳铬滚动轴承钢的化学成分 高碳铬滚动轴承钢的力学性能

底板裂缝原因分析及处理措施

济南西客站客运枢纽地下室底板裂缝原因分析济南西客站综合客运枢纽工程位于槐荫区段店镇大金庄村,该工程为地上三层、地下二层;地下二层建筑面积为8800.61平米,地下一层建筑面积为16171.43平米(不含地下二层部分面积为7370.82平米)。根据勘察报告,勘察期间地下水位埋深6.57~8.55米,水位绝对标高为22.6~24.18米,水位年变化幅度不大,该工程正负零标高为31.5米,地下二层地面绝对标高为21.0米,地下一层地面绝对标高为26.5米,抗浮设计水位为29米。

一、基本情况 该工程基础形式为桩筏板基础,承压桩为776棵(∮800mm),抗拔桩为677棵(∮600mm)。基础承台厚1800mm,防水底板厚600mm,结构配筋为双层双向HRB400-Φ18@200。基础承台、防水底板及外墙采用补偿收缩混凝土,混凝土强度等级为C30,抗渗等级为P8。按设计要求,混凝土采用60天强度作为设计、验收和评定的依据。混凝土限制膨胀率(水中14天)≥0.03%,图纸设计推荐SY —K抗裂防水剂,掺量占总胶凝材料的8%左右,或由试验确定满足混凝土限制膨胀率。基础及外墙外防水采用两道PVC防水卷材,桩头刷1.2mm厚水泥基渗透再结晶防水材料,在防水层与防水底板间设置一层100mm厚聚苯板。 地下室基础混凝土于2011年1月施工,覆盖塑料薄膜及毛毡保

温保湿养护。2011年7月开始发现地下室局部有渗漏现象,经现场勘查,防水底板上出现较多交叉形式的贯通裂缝,且分布较广,水沿裂缝渗出,后浇带两侧也有,混凝土外墙个别部位也有渗漏。 二、二区工程结构特征 该工程基础由承台和防水底板组成,承台下设承压桩,防水底板下设抗浮桩,桩距2-3米,防水底板受承台和桩基的“嵌固”,完全约束,致使防水底板没有变形的余地。全约束条件的混凝土结构物最大应力与长度无关,图纸设置的温度后浇带意义不大,无法满足结构物的变形。按二维双向约束,最大约束应力;σmax=σx=σy=-E.ɑ.T/1-μεx=εy=0 防止上述混凝土结构开裂,在施工管理和质量控制上要控制综合温差,早期通过混凝土限制膨胀率来抵消或补偿混凝土的温度变形和收缩变形,后期应通过混凝土的徐变,以时间来控制混凝土的开裂的发生。 三、材料及施工配合比 3.1材料 水泥;P.O.42.5 砂;中砂 石;5-25mm碎石 掺和料,二级粉煤灰 外加剂;SY-K抗裂防水剂加防冻泵送剂或泵送剂

轴承保持架碎裂原因分析

轴承保持架碎裂原因分析 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。 轴承虽然由很多部件轴承组成,轴承最先损坏(失效)的部件是往往是保持架,保持架可以说是轴承“血管”了,可以把内圈、外圈、滚动体均匀有序的分布好,稍有差错就容易使轴承的使用寿命大缩短,甚至损坏。那么造成轴承保持架碎裂的原因是什么呢? 轴承保持架破损原因有: 1、轴承润滑不足。润滑油或脂干掉,没有及时添加(维护保养),润滑油或脂用的标号不对。 2、轴承的冲击负载。冲击负载中激烈的震动产生滚动体对保持架的撞击。 3、轴承的清洁度。轴承在轴承箱里密封不好,有粉尘进入,加要滚动体与保持架的磨擦,从而使保持架损坏。 4、安装问题。轴承安装不正确,在安装时就损伤保持架。 5、轴承蠕变现象 蠕变多指套圈的滑动现象,在配合面过盈量不足的情况下,由于滑动而使载荷点向周围方向移动,产生套圈相对轴或外壳向圆周方向位置偏离的现象。 6、轴承保持架异常载荷 安装不到位、倾斜、过盈量过大等易造成游隙减少,加剧摩

擦生热,表面软化,过早出现异常剥落,随着剥落的扩展,剥落异物进入保持架兜孔中,导致保持架运转阻滞并产生附加载荷,加剧了保持架的磨损,如此恶化的循环作用,便可能会造成保持架断裂。 7、轴承保持架材料缺陷 裂纹、大块异金属夹杂物、缩孔、气泡及铆合缺陷缺钉、垫钉或两半保持架结合面空隙,严重铆伤等均可能造成保持架断裂 8 、轴承硬质异物的侵入 外来硬质异物或其他杂质东西的侵入,加剧了保持架的磨损。针对以上种种原因进行解决,轴承的寿命一定会很长。很多轴承损坏的原因不是轴承本身寿命到了,而是很多外部环境造成的,如润滑不足,粉尘进入,安装错误,负载过大,温度过高,联轴器不对中等。 9、其它原因。如联轴器不对中产生轴承歪斜,受力不均;皮带安装过紧;环境问题等等都有可能损坏轴承或保持架。 针对以上种种原因进行解决,轴承的寿命一定会很长。但是,富海合精工机械建议:对于轴承保持架破损的原因还得具体问题具体分析,要看你用的是什么类型的轴承,装在哪种设备上,工况是怎样的等等。

轴承钢球热处理工艺设计

目录轴承钢球热处理工艺设计 ......................................... 摘要 ......................................................... 关键词:轴承钢球退火淬火回火表面热处理 ..................... 概述 ........................................................... 钢球发展历程 ............................................................................................................................ 1.2. 钢球的用途 ........................................................................................................................ 1.3. 影响钢球质量的因素 ........................................................................................................ 1.3.1 材质影响 .............................................................................................................. 钢球制造方法的影响 ........................................................................................................ 1.3.3.钢球金相组织的影响 ............................................................................................ 1.3.国家规定钢球压碎负荷值 ............................................................................................... 设计依据 ....................................................... 2.1. 退火 ............................................................................................................................ 2.2. 淬火................................................................................................................................ 2.3. 回火................................................................................................................................ 2.4.表面处理 .............................................................................................................................. 设计正文 ....................................................... 3.1设计流程 .............................................................................................................................. 3.2 球化退火 ............................................................................................................................. 3.3 等温淬火 ............................................................................................................................. 3.4 回火..................................................................................................................................... 低温回火 ............................................................................................................................ 回火时间 .......................................................................................................................... 回火后的冷却 .................................................................................................................... 3.5. 钢球表面热处理 ................................................................................................................ 3.6. 钢球的力学性能测试 ........................................................................................................ 四.总结 ....................................................... 参考文献 .......................................................

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

相关文档
最新文档